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Abstract

Mobile phones running open operating systems such
as Google Android will soon be the norm in cellular
networks. These systems expose previously unavailable
phone and network resources to application develop-
ers. However, with increased exposure comes increased
risk. Poorly or maliciously designed applications can
compromise the phone and network. While Android
defines a base set of permissions to protect phone
resources and core applications, it does not define what
a secure phone is, relying on the applications to act
together securely. In this paper, we develop the Kirin
security framework to enforce policy that transcends
applications, called policy invariants, and provides an
“at installation” self-certification process to ensure
only policy compliant applications will be installed. We
begin by describing the Google Android security model
and formally model its existing policy. Using relatively
simple policy invariants describing realistic security
requirements, Kirin identified insecure policy config-
urations within Android leading to vulnerabilities in
core phone services, thereby motivating additional
security framework defining system-wide policy.

1. Introduction

Mobile phones have historically provided limited
and tightly controlled interfaces to third-party appli-
cations. API restrictions often significantly limit an
application’s ability to interact with user data, other ap-
plications, and the network. However, this trend is re-
versing: open platforms such as Google Android [23],
OpenMoko [41], and Apple iPhone APIs [4] provide
opportunities to weave newly open phone information,
communication, and location services into a wide
range of novel and useful applications. This promise
of innovation has inspired a surge of investment, with
rapid adoption of both iPhone [27] and Android [10].

The move from closed to open mobile phone sys-
tems also raises new concerns. A single poorly vet-

ted program can compromise user data [53], disrupt
fragile cellular networks [51], [52], or simply render
a mobile phone inoperable [14], [42]. The current
solution offered by providers is certification [3], [34],
[48]: an application may be used only if it is certi-
fied by a mandated trusted source. Online application
stores such as Apple’s AppStore [3] review submitted
applications and certify them (or not) based in part
on an evaluation of its security features and risks.
Increasingly, providers [49] and OS developers [13],
[37] have adopted this “AppStore” model.

Certification presents challenges in practice: the
trusted third party has mixed incentives1 that can be
at odds with those of the application developer, users,
and network providers. More generally, even the most
altruistic certifying authority cannot fulfill its charge
because (a) there is not a single definition of what
is acceptable risk for all users and providers, and
(b) any analysis performed without knowledge of the
applications, data, and services present on a given
phone will be incomplete.

The Android platform uses a modified Binder [40]
framework to regulate interactions between application
objects. The developers provide some initial policy in
an attempt to govern system applications, but there is
no way to know if the phone is secure in of itself, even
less so when adding new applications. Thus, Android
does not define what a secure phone is, but rather
relies on the applications to act together securely.
Therefore, additional infrastructure is required to make
sense of individual application policies, interpreting
them into the security requirements of the phone’s
many stakeholders, including the network provider, OS
and application developers, and end user.

In this paper, we develop a framework, called Kirin,2

to capture security policy that transcends Android ap-

1. There have been complaints of some providers “selectively”
accepting applications based on commercial interests, rather than
genuine security or quality concerns [19].

2. Kirin is the Japanese animal-god that protects the just and
punishes the wicked.
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plications. Stakeholders define security requirements as
policy invariants, through which we use formal analy-
sis to certify applications at installation; non-compliant
applications will not be installed. Using relatively
simple policy invariants, we have used Kirin to identify
insecure policy configuration in Android’s framework
and bundled applications. These results lend credence
to our beliefs that as mobile phone operating systems
provide more open APIs for third-party applications,
the security framework must not only provide per-
interface permissions, but also support “administrative”
policies defined by each stakeholder.
Contributions – This work makes the following
contributions:

• We reverse engineer Android’s security model,
providing a formal representation. This task
proved non-trivial as a result of insufficient doc-
umentation and changing security features.

• We provide a framework for specifying and en-
forcing stakeholder security policy that tran-
scends applications. This install-time certification
framework uses Prolog, a common language for
security policy evaluation, to evaluate formalized
application policy against policy invariants and
generate automated proofs of compliance.

• We use our framework to identify insecure ap-
plication policy configurations within Android af-
fecting voice, SMS, and location services. We
have developed proof-of-concept applications that
exploit these vulnerabilities.3

Additionally, our experiences with Kirin have revealed
important lessons for secure application development:
a) identifying sensitive interfaces is easier than ensur-
ing proper permission settings; b) applications cannot
implicitly trust data in system broadcasted messages;
and c) Kirin can help developers identify poor pro-
gramming practices leading to vulnerabilities.

The remainder of this paper is structured as follows.
Section 2 details the structure of the Android frame-
work and the mechanisms used to enforce security
goals. Section 3 describes an enhanced installation
process. Section 4 models the Android security en-
forcement system within an expressive logic. Section 5
describes and demonstrates how the logical model
is used to articulate security requirements through
policy invariants. Section 6 evaluates Google provided
applications against our invariants and demonstrates

3. We are currently working with Google to use Kirin as a means
of identifying flaws. This article describes our successful attempts at
discovering vulnerabilities with Kirin, and our findings have lead to
changes in the latest deployed release of the T-Mobile G1 firmware,
and others are expected in a January release. Due to the sensitivity
of outstanding security vulnerabilities, the reviewer is asked to keep
the contents of this article confidential during the review process.
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Figure 1: The Android operating system supports
component-based applications using a middleware ab-
straction based on the Binder framework. A refer-
ence monitor mediates communication establishment
between components.

discovered weaknesses. Section 7 discusses the limita-
tions of the model and possible extensions. Section 8
considers similar work in policy and mobile phone and
network security. Section 9 concludes.

2. Android Overview

The Android operating system is based upon the
Linux kernel; however, it provides a middleware ab-
straction wherein individual applications are divided
into multiple software Java “components.” This section
discusses the aspects of Android necessary for under-
standing the remainder of this paper. We assume the
v1.0r1 SDK release of Android (the current release at
the time of writing) unless otherwise specified.

2.1. System Architecture

The Google Android OS includes a Linux kernel,
hardware drivers, application libraries, and a runtime
environment based on application components that
communicate through a special lightweight IPC mech-
anism derived from OpenBinder [40]. Applications
only interact with the component framework and have
no functional or security reliance on the underlying
UNIX-based system (except isolation). Android de-
fines an application as a task comprised of a set of
components running in a pool of one or more pro-
cesses, each executing one or more threads [24]. From
the underlying system’s perspective, each application
is isolated by executing its processes as a unique UNIX
user identity (uid); however, the runtime environment
enables application interaction (e.g., sharing objects,
executing methods, registering callbacks, etc.) through
the Binder mechanism, which ensures data object
consistency across processes, similar to COM [36] and
CORBA [50]. The Android middleware relays mes-
sages and resolves application names to establish Inter-
Component Communication (ICC), Android’s dual to
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Figure 2: Typical ICC between Activities, Services, Content Providers, and Broadcast Receivers.

IPC on traditional UNIX-like systems. Shown in Fig-
ure 1, a reference monitor [2] mediates ICC establish-
ment according to a system policy; however, once ICC
is established, communication proceeds uninhibited.

An application consists of multiple components de-
fined in a manifest file; there is a 1-to-many rela-
tionship between applications and components. Shown
in Figure 2, there are four component types,4 and an
application may contain any number or combination.
An Activity component interfaces with the physical
user via the touchscreen and keypad. By convention,
an application will contain many Activities, one for
each “screen” presented to the user. The interface
progression is a sequence of one Activity “start-
ing” another, possibly expecting a return value. A
Service component provides background processing
that continues even after its application loses focus.
Services also establish arbitrary interfaces for ICC,
including method execution and callbacks, which can
only occur after the service has been “bound”. A
Content Provider component is a database-like mech-
anism for sharing data with other applications within
the system. This interface supports standard SQL-like
queries, e.g., SELECT, UPDATE, INSERT, through
which components in other applications can retrieve
and store data according to the Content Provider’s
schema. A Broadcast Receiver component acts as an
asynchronous mailbox for directed broadcasts of sys-
tem and application event messages. Once a Broadcast
Receiver is registered with the system to receive a
certain type of message, it will be executed by the
system as needed. The message itself arrives in the
form of an Intent, which is Android’s data primitive for
most ICC initiation. An Intent simply bundles data with
a target component address, defined either explicitly by
component name or implicitly by an “action” string,
which is used by the system to resolve the appropriate
destination component, launching the application if
necessary.

2.2. Security Enforcement

In its most basic operation, shown in Figure 3, An-
droid’s middleware reference monitor provides manda-

4. We capitalize the first letter of component types to distinguish
them from terms describing general concepts.

Application 1

Permission 
Labels
l1,...

A: ...

Application 2

Permission 
Labels

...

B: l1

C: l2
X

Inherit
Permissions

Figure 3: Android’s basic access control model defines
how applications can access components. Application
1 is assigned label l1 (but not l2), which is inherited
by Component A. Access to Components B and C is
restricted by permission labels l1 and l2, respectively.
Therefore, Component A can access B but not C.

tory access control (MAC) enforcement of how appli-
cations access components, with the assumption that
all inter-application communication occurs through the
described application-level ICC (the underlying UNIX
system provides file and IPC isolation). The reference
monitor decides access based on a permission label5

primitive. An application’s manifest definition enumer-
ates the set of permission labels it uses at runtime
(these permission labels are granted at install-time and
cannot change afterwards). Conversely, the manifest
definition of a component specifies a single access
permission label used to restrict runtime access (two
components may share the same access permission
label). At runtime, the component initiating ICC in-
herits all permission labels assigned to its containing
application, and if the label restricting access to the
target component is in that set, ICC may proceed,
otherwise access is denied.

Unfortunately, Android has extended its conceptu-
ally simple MAC enforcement model with a number
of complex exceptions and extensions that must be
understood by application developers. The security
extensions operate as follows:
Public vs. Private Components – Similar to Java
class methods, not all components are addressable
from an external application. For example, an appli-
cation may contain many “sub-Activities” that should
only be started from other components within that ap-
plication (e.g., they return sensitive data). A component
is public or private as a result of either a) an explicit
“exported” tag in the manifest, or b) implicit rules

5. The Android documentation refers to permission labels as sim-
ply permissions; however, we include the term “label” to distinguish
the text string from the semantics of having a permission.
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interpreted by Android.
Implicitly Open Components – The manifest defini-
tion of a public component need not specify an access
permission label (by default no label is specified),
thereby allowing access to any application on the
system. This configuration is required for the “main”
Activity to allow the application to be “launched.”
Protected APIs – The Android SDK includes special
“reserved” permission labels for accessing hardware
and other resources. The most notable permission
protects the network interface. An application must
be assigned the INTERNET permission label for its
components to make network connections.
Content Provider Permissions – The manifest def-
inition of a Content Provider allows the developer to
define both read and write access permission labels
to restrict queries that read (e.g., SELECT) and write
(e.g., INSERT), respectively.
Intent Broadcast Permissions – When an applica-
tion broadcasts an Intent, the API optionally allows
the sender to include an access permission label. To
receive such an Intent, the application containing the
Broadcast Receiver must include that permission label.
This effectively limits the applications that can receive
the broadcasted message.
Service Hooks – Once a Service component is bound
to, the initiating component can execute any method
defined in that Service’s interface. The developer may
extend an application with additional reference monitor
hooks in the form of checkPermission() method
invocations. These hooks allow the developer differen-
tiate access to interface methods.
Permission Protection Levels – The Android frame-
work provides a base set of permission labels; however,
application developers may define additional permis-
sions. Each permission definition includes “protection
level” meta-information used when granting an ap-
plication the permissions it requests. There are four
protection levels: “normal,” “dangerous,” “signature,”
and “signature or system”. “Normal” permissions are
always granted; “dangerous” permissions are granted
only after user confirmation; “signature” permissions
are granted only if the requesting application is signed
with the same developer key as the application defining
the permission; and “signature or system” permissions
follow the rules of “signature” permissions, with the
exception of always being granted to applications
installed in /system/app.
Pending Intents – An application can define an Intent
with the intention of performing ICC, but instead create
a “Pending Intent” object. By passing this object to an-
other application, the originating application delegates
the ability to fills in remaining fields (e.g., destination,

or data) and time of ICC execution. Upon executing
the Pending Intent, an RPC invokes the ICC from the
originating application.
URI Permissions – Content Providers are addressed
by a URI of the form content://authority/table/[id],
where “authority” specifies the Content Provider, “ta-
ble” indicates a table within the database, and “id”
optionally specifies a record. An application with read
or write access to a Content Provider can specify a URI
in the “data” field of an Intent with additional read or
write “grant” flags set, thereby delegating the ability
to read or write that record in the Content Provider to
the recipient of the Intent, even though the recipient
may not have read or write permission for the Content
Provider.

2.3. Example

Figure 4 illustrates a concrete policy evaluation. The
Android SDK includes the ContactsProvider applica-
tion that contains one component, a Content Provider
similarly named ContactsProvider, which is used by
all applications to lookup phone numbers and store
contact information for the user’s acquaintances. The
ContactsProvider component is assigned the read per-
mission label READ_CONTACTS and the write la-
bel WRITE_CONTACTS in order to restrict read and
write requests, respectively. The SDK also includes a
Contacts application that contains a number of Ac-
tivities that allow the user to manipulate the address
book. The Contacts application is assigned both the
READ_CONTACTS and WRITE_CONTACTS permis-
sion labels in its manifest file. Therefore, any Activity
component in the Contacts application can read and
write entries in the ContactsProvider component. The
SDK also includes the Maps application, which is
only assigned the READ_CONTACTS permission label.
Activity components within the Maps application can
query the ContactsProvider to find an address; how-
ever, they cannot write back to the address book. Here,
the policy attempts to embody least privilege [45].

3. Kirin

The complexity underlying Android’s security
model makes it impossible for even sophisticated users
to reason about overall phone security. We propose a
model wherein before the system installs a downloaded
application package, it first ensures the application
meets predefined security requirements. If any re-
quirements are not met, the package is rejected. This
installation model ensures the mobile phone stays in
its original secure state, without relying on the user to
make security decisions.
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Figure 4: Policy evaluation for the Contacts example.
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Figure 5: Enhanced Installation Logic. New packages cannot be installed unless all policy invariants pass.

Figure 5 illustrates Kirin’s enhanced installation
process. A policy preprocessor extracts policy (e.g., the
permission assignments described in Section 2.2) from
the target application package, turning it into Prolog
facts, and merges it with existing policy knowledge.
The result of the merger represents the system’s secu-
rity state if the package installation were to proceed.
The policy engine then uses the temporary policy state
to evaluate invariants defined by the key stakeholders.
The policy invariants are encoded as Prolog predicates
that perform queries on the temporary policy state
composed of Prolog facts. In doing so, we use Prolog
to automatically generate compliance proofs for the
target application. If all invariants pass, the installation
proceeds, and the permanent policy store is appended;
however, if any invariant fails, the package is rejected.

The remainder of this paper describes the theory and
constructions required to build Kirin. We begin with a
formal interpretation of Android’s security model.

4. Formal Interpretation

Kirin’s ability to reason about policy requires formal
semantics to be extracted from Android’s security
model. We begin by modeling Android’s basic MAC
enforcement model and then capture the above men-
tioned extensions through a series of preprocessing
steps the retain the expressibility of the basic model.
Note, we only model ICC enforcement, as Android
provides low-level isolation. Additionally, we defer
placing restrictions on the first-order logic used to
express the model until Section 4.3.

4.1. Policy Model

We initially express an Android security policy
as a traditional Subject-Object-Rights (SOR) Access
Matrix [30]. Each application includes a manifest file

that defines the contained components, permissions
required to access components, permissions requested
by the application, and potentially newly defined per-
missions. The aggregate of system and add-on appli-
cation manifests defines the system policy. We model
this policy as P : S × O × R → {true, false},
where true and false represent allow and deny,
respectively.
Subjects (S) – The subjects are the set of all
applications in the system. In Android, permissions
are assigned to an application and inherited by all
contained components. All access control decisions are
made with respect to the application containing the
component initiating the ICC.
Objects (O) – The objects are the set of all com-
ponents in the system. In Android, access permissions
are assigned to components, hence they are the objects
in the access matrix.
Rights (R) – The rights are the set of all permission
labels in the system. Figure 6 depicts rights assign-
ment. There is a 1-to-many mapping between subjects
and rights; mapping an application to a permission la-
bel assigns it that right. There is a many-to-1 mapping
between objects and rights; mapping a component to a
permission label requires the subject to have that right
to access the component.
Policy P (·) – Trivially, the policy allows a component
in application s ∈ S to access a component o ∈ O
that requires right r ∈ R if the following expression
evaluates to true:

P (s, o, r) = requires(o, r) ∧ has perm(s, r)

where requires(o, r) = true when the manifest file
for component o specifies r as the access permis-
sion, and has perm(s, r) = true when application
s is assigned r in its manifest file. The intuition
to use permission labels as rights stems from both

5



Applications
(Subjects)

Components
(Objects)

Permission 
Labels
(Rights)

Component
Containment

Rights
Assignment

Access Right
Assignment

Figure 6: Subjects, Objects, and Rights Relationships

the natural language description of the labels, e.g.,
WRITE_CONTACTS, and the semantics of assigning
“rights” to an application that are required to access
specific components throughout the system. Finally,
we say contains(s, o) = true when application s
contains component o.

4.2. Capturing Model Extensions

We now turn to the security model extensions de-
scribed in Section 2.2. We capture these extensions
by expanding the sets of objects and rights through a
series preprocessing steps.
Public vs. Private Components – As private compo-
nents are not addressable by external applications, we
mimic Android’s inference rules and exclude private
components from the model.
Implicitly Open Components – We model com-
ponents with unspecified access permission labels by
assigning a special reserved “open” right, ε, as follows:

1) If the manifest has not specified an access per-
mission for a component, assign ε to the corre-
sponding object o, i.e., requires(o, ε) = true.

2) Assign ε to all subjects corresponding to appli-
cations, i.e., ∀s ∈ S, has perm(s, ε) = true.

By inspection, this modification gives all applications
access to components without explicitly specified ac-
cess permissions while retaining the monotonicity of
our policy model.
Protected APIs – We model each protected API
by adding one object oi and one right ri and
ensuring requires(oi, ri) = true, for example,
requires(network, INTERNET) = true. Note that no
application contains these special objects.
Content Providers Permissions – For each Content
Provider o, replace o with two new objects or and
ow corresponding to the read and write interfaces,
respectively. Then, ensure requires(or, rr) = true
and requires(ow, rw) = true for the read (rr) and
write (rw) permission labels specified in the manifest.

Intent Broadcast Permissions – Recall that Intent
broadcasts can address either an explicit destination
(i.e., a single Broadcast Receiver), or more commonly,
an implicit destination (via an “action” string to which
any number of Broadcast Receivers can “subscribe”).
To capture read permissions on explicit destinations,
we create a new object ob,r for each Broadcast Re-
ceiver b and right r. To capture permissions on im-
plicit destinations, we create a new object oa,r for
each action string a and right r. We then ensure
requires(ob,r, r) = true and requires(oa,r, r) =
true for each new object. This object expansion en-
sures the model captures every possible access control
case (i.e., maximal access). However, for practical
purposes, only Intent objects of interest are included
in the policy knowledge; Section 7.1 discusses the
possibility of automatic enumeration via code analysis.
Service Hooks – While hook placement can imply
arbitrary access policies, we believe common prac-
tice will assign one access permission per Service
interface method. Assuming this operation, we model
this extension by creating a new object oi for each
interface and ensure requires(oi, r) = true as
appropriate. However, like broadcast permissions, code
analysis is required to extract policy semantics, there-
fore our current implementation conservatively ignores
per-interface service hooks to view Services as opaque
objects at the cost of false positives. Section 7.1
discusses how simple manifest extensions can resolve
this complication.
Permission Protection Levels – No changes
are required to model “normal” permissions. We
model “dangerous” permissions by ensuring the
has perm(s, r) fact is removed if the user denies the
assignment (Section 6 assumes “Click OK to proceed.”
succeeds). “Signature” and “signature or system” per-
missions are modeled by expanding the set of rights
and modifying assignment as follows.

For each “signature” right r ∈ R:

1) Create the right rki as “sig_<hash(ki)>:r”
for each signature key ki, where <hash(ki)>
is the hash (e.g., SHA1) of ki (public key).

2) ∀s ∈ S, if has perm(s, r) = true, ensure
has perm(s, rks) = true, where ks is s’s
signature key.

3) ∀o ∈ O, if requires(o, r) = true, set it to
false and ensure requires(o, rki) = true,
where ki is the key used to sign the application
defining r.

This preprocessing ensures s can only access o if ks =
ki and P (s, o, r) was previously true.

For each “signature or system” right r ∈ R:
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1) Create the right rs as “system:r”.
2) ∀s ∈ S, if has perm(s, r) = true and s is

in /system/apps, ensure has perm(s, rs) =
true.

3) ∀o ∈ O, if requires(o, r) = true, ensure
requires(o, rs) = true.

4) Ensure all of the rules defined for “signature”
permissions hold.

This preprocessing ensures system applications can
always access objects protected by “signature or
system” permissions. Finally, if s is installed in
/system/apps, we create the reserved right system
and ensure has perm(s, system) = true for use in
policy invariants.
Pending Intents and URI Permissions – Both
Pending Intents and URI permissions are late additions
to Android’s security framework, first appearing in the
v0.9r1 (August 2008) and v1.0r1 (September 2008)
SDK releases. Incorporating permission delegation has
far reaching implications for any access control model,
especially so when done as an afterthought. Future
work will investigate the impact of these mechanisms.

4.3. Invariant Building Blocks

We now demonstrate how our model can express
higher level security requirements. We construct invari-
ants as non-recursive queries over the knowledgebase
of has perm, requires, and contains facts using
first-order logic with negation as failure (NAF) and
the closed world assumption. This constraint is a direct
result of the types of security requirements discussed
in Section 5. The remainder of this section describes
three different invariant patterns that sample types of
policy expressibility one might expect from mobile
phone security requirements, but are not meant to be all
encompassing. While these examples are in fact invari-
ants, we term them patterns for differentiation from the
invariants presented in Section 5. For demonstration
purposes, we use the example in Section 2.3 with
the additional assumption that the Maps application
has Internet access. See the appendix for a Prolog
encoding of these patterns. Each pattern is defined as
patX : S → {true, false}.

4.3.1. Simple Access Control Checks. The most
trivial pattern is a formula describing if a subject
can access an object. For example, “Can application
s acquire write access to ContactsProvider?”. pat1

encodes this question in logic.

pat1(s) = ∃r ∈ R. P (s, ContactsProvider w, r)

Informally, this formula asks if application s can
use any right r to access the write interface of

ContactsProvider. In our Contacts example, the
Contacts application satisfies pat1, because it has the
WRITE_CONTACTS permission; however, the Maps
application does not, and hence does not satisfy pat1.

4.3.2. Mutual Exclusion. Security requirements com-
monly embody Chinese Wall [11] characteristics
wherein an application cannot have simultaneous ac-
cess to resources. For example, “Can application s be
installed such that if it can read from ContactsProvider,
then it cannot connect to the network?”. pat2 encodes
this question in logic.

pat2(s) =∀r1 ∈ R,∃r2 ∈ R,∀r3 ∈ R.

¬P (s, ContactsProvider r, r1)
∨ (P (s, ContactsProvider r, r2)
∧ ¬P (s, network, r3))

Informally, this formula ensures that either application
s cannot read from ContactsProvider using any
right r1, or if there exists some right r2 allowing s
access, then s cannot access the network with any right.
In our Contacts example, the Contacts application
satisfies pat2, because it does not have Internet access;
however, the Maps application has Internet access,
therefore it does not satisfy pat2.

4.3.3. Rights Dependence. A variation of mutual ex-
clusion is a dependence condition, a useful requirement
for ensuring proper operating conditions (i.e., usabil-
ity). For example, “Can application s be installed such
that if it can write to ContactsProvider, then it can also
read from it?” pat3 encodes this question in logic.

pat3(s) =∀r1 ∈ R,∃{r2, r3} ∈ R.

¬P (s, ContactsProvider w, r1)
∨ (P (s, ContactsProvider w, r2)
∧ P (s, ContactsProvider r, r3))

Informally, this formula ensures that either application
s cannot write to ContactsProvider using any
right r1, or there exists a pair of rights r2 and r3 that
allow both write and read access. In our example, both
ContactsApp and MapsApp satisfy pat3.

5. Realistic Policy Invariants

We now use the formalism and invariant building
blocks described in Section 4 to define policy in-
variants representing realistic security requirements for
mobile phones. For illustrative purposes, we describe
invariants protecting core system functionality (e.g.,
making phone calls), user privacy (e.g., access to
call information), and applications (e.g., preventing
forged messages). The invariants are not necessarily
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compatible and were designed to demonstrate desir-
able concepts (e.g., privacy) currently unavailable in
Android. When applied correctly, Kirin can use these
invariants to identify applications asserting harmful
sets of permissions or discover insecure policy con-
figuration within applications or the platform itself.

The invariants described herein are not intended to
exhaustively define appropriate security requirements
for mobile phones; this can only be done by the stake-
holders themselves. Similarly, the invariants are not
intended to test the limits of our model’s expressibility.
Rather, we have defined relatively simple, but practical,
invariants to show the power and usefulness of an
automated analysis framework such as Kirin.

Similar to the patterns in the previous section, in-
variants take the form invX : S → {true, false}.
5.1. Core System Functionality Invariants

Invariant 1: “An application must have explicit per-
mission to make an outgoing voice call.”
Description: While the Android framework uses the
CALL_PHONE and CALL_PRIVILEGED permissions
to protect the API for making outgoing calls, an appli-
cation given a call permission may indirectly provide
API access via a component interface (e.g., starting an
Activity). This Invariant ensures applications do not
inadvertently allow indirect access.
Logic: The system developer (e.g., Google) knows
all interfaces for making voice calls. For each such
interface object IFi, including both the telephony API
and all relevant components in the system provided
PhoneApp, we define inv1i(s) that must be true for
all applications s ∈ S installed on the system.

inv1i(s) =∀r1 ∈ R,∃r2 ∈ R. ¬P (s, IFi, r1)∨
(P (s, IFi, r2) ∧ (has perm(s, CALL PHONE)

∨ has perm(s, CALL PRIVILEGED)))

Informally, this formula states that if an application s
can access the interface IFi capable of directly making
phone calls from input data, then it must have one of
the special call privileges. A violation of this invariant
indicates an interface on the phone that could be ex-
ploited by an application without proper permissions.
Pragmatically, such a policy not only restricts direct
access to the call setup network interfaces, but also to
“dialer” applications.

Invariant 2: “An application holding a dangerous
permission must have no unprotected components.”
Description: The Android framework tags a subset of
the provided permissions with the “dangerous” protec-
tion level. Semantically, this meta-information requires
user confirmation for any application requesting it.
For example, the CALL_PHONE and RECEIVE_SMS

permissions are marked as dangerous to ensure the
user is notified when a new application wishes to make
outgoing phone calls and receive SMS messages. This
invariant prohibits a new application from creating an
open interface through which other applications can
indirectly gain access to “dangerous” functionality.
Logic: For each “dangerous” permission label PLi in
the framework (and accompanying applications), we
define inv2i(s) that must be true for a new application
s to be installed.
inv2i(s) =∀o ∈ O. ¬has perm(s, PLi)∨

(has perm(s, PLi)∧
¬(contains(s, o) ∧ requires(o, ε)))

Informally, this formula states that an application s
with the permission label PLi must not contain an
implicitly open component.

Invariant 3: “Only system applications can interface
with hardware.”
Description: The Android framework provides high
level Java APIs for interfacing with hardware. To
provide flexibility, Android allows any application with
the proper permissions to use these APIs. Commonly,
only system applications use these APIs, providing
add-on applications indirect access through exported
service interfaces. This invariant ensures that only
system applications obtain direct access.
Logic: The framework developer knows all hardware
interfaces. For each such interface object IFi, we
define inv3i(s) that must be true for an application
s to be installed on the system.

inv3i(s) =∀r1 ∈ R,∃r2 ∈ R. ¬P (s, IFi, r1)∨
(P (s, IFi, r2) ∧ has perm(s, system))

Informally, this formula states that if an application s
can access a hardware interface IFi, then it must have
preprocessed the system right.
5.2. User Privacy Invariants

Invariant 4: “Only system applications can process
outgoing calls.”
Description: The Android framework allows applica-
tions to receive notification of outgoing calls, including
the destination phone number. For privacy reasons, a
user may wish to specify that only system applications
(i.e., in /system/apps) may receive such notifica-
tions. The notification itself is an Intent broadcasted
to the NEW_OUTGOING_CALL action string restricted
by the PROCESS_OUTGOING_CALLS permission.
Logic: This invariant relies on two policy extensions
described in Section 4.2. First, we model the Intent
notification message as the combination of the action
string (NEW_OUTGOING_CALL) and the permission
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label (PROCESS_OUTGOING_CALLS). We refer to
this object as Iout for simplicity. Second, we use our
preprocessing rule indicating that an application has
the system right if it is installed in /system/apps.
These two extensions allow us to define inv4(s) that
must true to install applications s.

inv4(s) =∀r1 ∈ R,∃r2 ∈ R. ¬P (s, Iout, r1)∨
(P (s, Iout, r2) ∧ has perm(s, system))

Informally, this formula states that if an application
s can access the Iout Intent object, it must have the
preprocessed system right.

Invariant 5: “Applications that can perform audio
record must not have network access or pass data to
an application that has network access.”

Description: Privacy conscious users may desire sepa-
ration between the audio recording subsystem and the
Internet. While modeling information flow policies in
Android is difficult (see Section 7.2), we can define an
invariant that mitigates Internet-based eavesdropping
by looking at an application and all connecting appli-
cations (three colluding applications may be unlikely).

Logic: As discussed in Section 4.2, resource APIs are
modeled as additional objects; this invariant uses the
record_audio object. We define inv5(s) such that
it must be true to install application s.

inv5(s) =∀r1 ∈ R,∃r2 ∈ R,∀r3 ∈ R,∀s1 ∈ S,∀o ∈ O,

∀{r4, r5} ∈ R. ¬P (s, record audio, r1)
∨ (P (s, record audio, r2)∧
¬P (s, network, r3)∧
¬(P (s, o, r4) ∧ contains(s1, o)∧

P (s1, network, r5)) )

Informally, this formula states that if an application s
can access the audio record API, then it cannot access
the network or an application with network access.

Invariant 6: “An application with access to wifi or
network state must also declare network access.”

Description: The Android framework provides an API
(protected by the ACCESS_NETWORK_STATE per-
mission label) that registers a callback that executes on
network state change (e.g., GPRS vs HSPA, ESSID).
Network state, especially an ESSID, leaks informa-
tion about the user’s physical activity. This invariant
ensures an application with network state access also
has access to the network. A similar invariant can be
written for access to Bluetooth and Bluetooth state.

Logic: This invariant models the network state API
the network_state object. We define inv6(s) that

must be true for an application s to be installed.

inv6(s) =∀r1 ∈ R,∃{r2, r3} ∈ R.

¬P (s, network state, r1)
∨ (P (s, network state, r2)∧

P (s, network, r3))

Informally, this formula shows a rights dependence
between access to network_state and network.

5.3. Applications Invariants

Invariant 7: “An application can only receive SMS
notifications from trusted system components.”
Description: Any application can broadcast an Intent;
however, some Intents should only originate from
trusted system components. This invariant protects an
application by ensuring only the system can send
it an SMS message. We assume PhoneApp is the
application trusted to send SMS messages. This in-
variant generalizes to any notification assumed to be
broadcasted by a trusted system component.
Logic: For each such Broadcast Receiver BRi sub-
scribed to the SMS_RECEIVED action string (known
by the application developer), inv7i must be true for
all applications s ∈ S installed on the system.

inv7i(s) =∀r1 ∈ R,∃r2 ∈ R. ¬P (s, BRi, r1)∨
(P (s, BRi, r2) ∧ (s ≡ PhoneApp))

Informally, this formula states that if s can broadcast
an Intent to BRi, then s must be PhoneApp. Note,
dynamic Broadcast Receivers, require either source
code analysis or developer aid, see Section 7.1.

Invariant 8: “An application can only receive location
updates from trusted system components.”
Description: The SDK provides two methods for loca-
tion updates: interval (i.e., time or distance) and prox-
imity. Beginning with the v0.9r1 SDK release, interval-
based updates use a callback mechanism with the
location manager running with the system_server.
Proximity updates arrive via an Intent broadcasted to
a Broadcast Receiver defined in a PendingIntent. The
invariant protecting an application from forged location
updates need only consider proximity updates, as the
application initiates the ICC for interval updates.
Logic: For each Broadcast Receiver BRi used for
location updates (known by the application developer),
invariant8i must be true for all applications s ∈ S
installed on the system.

inv8i(s) =∀r1 ∈ R,∃r2 ∈ R. ¬P (s, BRi, r1)∨
(P (s, BRi, r2) ∧ (s ≡ system server))

Similar to Invariant 7, this states that if s can broadcast
an Intent to BRi, then s must be system_server.
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6. Security Evaluation

The policy invariants described in Section 5 define
illustrative, but realistic, security requirements for a
mobile phone. In this section, we show that An-
droid’s existing security framework is insufficient by
evaluating the Android framework and SDK bundled
applications against our invariants. These applications
represent a best effort of ad hoc permission assignment
to protect core mobile phone functionality such as
voice and SMS services, and upon evaluation of these
invariants we identified multiple vulnerabilities arising
from policy misconfiguration. The analysis described
herein was performed on the v0.9r1 SDK release;
however, the presented results hold for the v1.0r1
release. The remainder of this section describes our
analysis tool, interesting test results, and proof-of-
concept malware exploiting discovered flaws.

6.1. Implementation

We developed Kirin as an Android application to
evaluate invariants using only application packages
(.apk files) as input. Our implementation currently
only performs invariant evaluation on the phone. Kirin
follows the installation flow presented in Figure 5, and
with the release of Android’s system source code, we
are currently implementing tighter integration with the
package installation system.

Kirin first extracts policy knowledge from the target
application package using the PackageManager and
PackageParser APIs included in the Android SDK
and stores the result as Prolog facts (e.g., has perm(),
requires(), contains()) in a temporary file. It then
performs the preprocessing steps described in
Section 4.2 and merges previously derived Prolog
facts corresponding to the framework and applications
required for basic phone operation (i.e., Phone,
TelephonyProvider, DownloadProvider,
Laucher, SdkSetup, SettingsProvider).
Finally, Kirin uses the XSB [54] Prolog engine,
which we recompiled for the ARM-based Android
environment, to test each of our invariants. In all cases,
the invariants in Section 5 were trivially encoded into
Prolog. See the appendix for a screenshot of Kirin.

6.2. Invariant Evaluation

The provided system applications represent most,
but not all, of the functionality considered in our eight
sample invariants. Table 1 presents the experimental
results with interesting failures. We omit the results
of many invariants, because the tested applications
are either installed in /system/apps or do not use

the specialized interfaces, and therefore pass trivially.
Additionally, we added two example applications to
demonstrate a subtle programming error related to the
location API. We now discuss the origins of failure.

Unchecked Interfaces – Surprisingly, all applications
fail Invariant 1, which ensures applications request
the CALL_PHONE permission in order to make an
outgoing phone call. All applications fail, because
the Phone application (included in the base policy
knowledge) contains an Activity that will automatically
dial out if provided a telephone number as a parameter,
but does not specify an access permission. While
this vulnerability is easily mitigated by adding an
access permission, it demonstrates the utility of Kirin:
identifying sensitive interfaces is easier than ensuring
proper permission settings.

Controlling Dangerous Permissions – All appli-
cations that simultaneously contain a dangerous per-
mission and define a main Activity fail Invariant 2.
The failure results, because the main Activity of an
application must not contain an access permission, oth-
erwise it can never be started. While we could model
this proper execution by defining a new reserved right
εlaunch for components launched from the desktop,
the discovery indicates that applications containing
dangerous permissions may be maliciously controlled
via start parameters. We expect source code analysis
to help identify Activities not consuming parameters.

Intent Origin – The MMS application, which handles
all SMS and MMS messages, fails Invariant 7. Further
investigation indicates no access permission on its
SMS Broadcast Receiver. Hence, Kirin’s preprocessor
assigns the ε right, indicating any application can
broadcast Intents to the MMS application. This im-
plies an unprivileged malicious application can forge
SMS messages. Fortunately, this specific vulnerability
can be mitigated by defining a new permission for
broadcasting SMS Intents. However, this vulnerability
more generally impacts all system broadcasted Intents,
indicating a larger concern: applications cannot trust
data broadcasted to system defined action strings.

Location API – The Maps application only uses inter-
val location updates, therefore it trivially passes Invari-
ant 8. Recent releases of the SDK broadcast proximity
Intents using the special PendingIntent class, which
allows a location client to register for an explicitly
addressed broadcast to a private component. If done
correctly, proximity updates are secure; however, sub-
tle inference rules can make a component public and
therefore subject to forgery. Developers first introduced
to the previous M5 SDK are at greater risk of poor
programming practices affecting this vulnerability. In
Table 1, ProximityClientA was intentionally developed
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Table 1: Applications Presenting Invariant Failures

System Applications Example Applications
Invariant Browser Maps Mms Music ProximityClientA ProximityClientB

1 F F F F - -
2 F F F F - -
7 P P F P - -
8 - P* - - F P

P = Pass; F = Fail; - = Not tested; P* = Pass, but proximity alert not used

with poor practices, whereas ProximityClientB was de-
veloped using best practices. The invariant test results
indicate that Kirin can help developers identify poor
programming practices leading to vulnerabilities.

6.3. Malicious Applications

We developed three applications that exploit the
vulnerabilities identified by Kirin. A system that passes
our sample invariants is not susceptible to these at-
tacks. However, each attack has been verified on the
SDK emulator. See the appendix for screenshots.
Making Unprivileged Phone Calls – The unpro-
tected component in the Phone application allows
an unprivileged application to make phone calls to
arbitrary phone numbers (however, emergency num-
bers, e.g., 911, still require the CALL_PRIVILEGED
permission). By starting an Activity for the CALL
action string and specifying tel:<phone_number>
as a data parameter, the phone will dial without user
confirmation. Our proof-of-concept application waits
until the screen is blanked before connecting the call
in an effort to hide the event from the user. The act
of making a call re-enables the screen, and the call
must be remotely disconnected; however, once the call
is connected, eavesdropping can proceed until the user
becomes cognizant of the event.
Forging SMS – The lack of a standard convention
for protecting Broadcast Receivers subscribed to the
SMS_RECEIVED Intent leaves all SMS listeners vul-
nerable to a forging attack. Our unprivileged attack
application broadcasts a standard GSM SMS PDU data
structure [20], [21] to the SMS_RECEIVED action
string, which is successfully received by the MMS
application. As such, our attack application can forge
messages from emergency alert systems or for specific
applications (e.g., the Grey access control system [5]).
Forging Location – Our last application attacks the
vulnerable ProximityClientA application constructed
for Section 6.2. By knowing either the Broadcast
Receiver’s component name, or the action string to
which it subscribes, our attack program can forge a
proximity alert indicating that the phone has either
entered or exited an area. This type of forgery is

especially dangerous when using proximity updates for
security decisions, e.g., physical access control.

7. Limitations and Future Extensions

7.1. Extracting Security Policy

Kirin is currently limited to knowledge obtainable
from the application package metadata, e.g., the man-
ifest file. Therefore, dynamically created Broadcast
Receivers, which are not specified in the manifest file,
are not automatically analyzed. Note that our invari-
ants involving Broadcast Receivers were classified as
“protecting the application,” therefore, we can expect
aid from the developer. While we are working on
source code analysis additions to automate detection,
we propose extending the Manifest file to include
specifications for dynamically created Broadcast Re-
ceivers. Additionally, we are working on an extension
to identify broadcasted Intents, which, as described
in Section 4.2, are modeled as objects. Such source
code analysis tools could also automatically populate
the manifest file for developers, ensuring it contains a
policy upper bound for use by Kirin or similar analysis
tools. Note that Android would require changes to
enforce these new upper bounds; however, the open
source nature of Android makes it amenable to such
modification.

In addition to the manifest file, the Android SDK al-
lows developers to specify arbitrary permission checks
within the program code, e.g., “Service Hooks.” As
described in Section 2.2, while we expect Service
hooks to follow straightforward patterns, extraction of
arbitrary policy from source code may be intractable,
or even undecidable. As an alternative approach, we
propose modifying the manifest file to include a per-
interface policy specification, allowing the developer
to separate policy and mechanism.

7.2. Information Flow

Mandatory Access Control (MAC) mechanisms,
e.g., SELinux [39], commonly support information
flow security policies. For example, in Invariant 5, it
may have been more appropriate to define logic that
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Figure 7: Information flow implications of ICC establishment.

ensures recorded audio cannot reach an application
with network access through any number of hops.
Unfortunately, the Android architecture itself makes
useful information flow policies difficult to create. As
shown in Figure 7, considering opaque ICC estab-
lishment often results in bidirectional flows between
components (the double arrows). Therefore, many ap-
plications may reside in symmetric security classes.
This property is further exacerbated by implicitly open
Activities used to launch an application, i.e., informa-
tion can flow into any application with a user interface.
The inclusion of source code analysis to determine
flow directionality or trusted filters may make such
polices practical. We leave a deeper analysis of the
potential for information flow policies in Android for
future work.

8. Related Work

Authorization decisions traditionally stem from the
Access Matrix [30], which specifies if a subject (e.g.,
process) can access some object (e.g., file) for some
action (e.g., read). HRU [26] demonstrate a logic for
managing the access matrix for discretionary access
control. While conceptually, the access matrix is the
fundamental building block for access control systems,
sparse matrices and policy specification often moti-
vate alternate representations. Logics that describe dis-
tributed authorization [1], Trust Management [6], [7],
[18], or polices in general [25] enable formal proofs
to reason about the security of a system, and many
works define access control logics based on Data-
log [17], [28], [29], [31], [32], [33], a subset of Prolog.
While Android’s distributed component infrastructure
and application specified policies tangentially relate to
these distributed authorization systems, its core system
embodies a reference monitor [2], allowing globally
aware policies. With centralized enforcement, operat-
ing system reference monitors provide a framework
for enforcing mandatory access control capable of
expressing information flow polices [15].

Software installation represents a broad challenge
of systems security research, with significant focus on
containing Trojans after the fact [22], [39], [43]. Code
signing provides a mechanism to authenticate software
origin; however, it does not express how programs are
expected to interact with the system. Rueda et al. [44]
consider applications with predefined policies; how-
ever, this work is limited to verifying the compliance of
a small set of trusted utilities written in a security typed
language, rather than mediating software installation a
whole. In the mobile spectrum, Trojans and viruses
are an increasing problem [46], with virus propaga-
tion through multiple vectors [9], which has lead to
literature describing various detection techniques [8],
[12], [47]. The state of secure software installation on
mobile phones resembles that of commodity operating
systems, with application signing [35], [48] providing
the most common malware mediation. However, more
advanced mechanisms are emerging. Mobile phone
security techniques based on SELinux and Trusted
Platform Modules are increasingly common [38], [55],
and Desmet et al. [16] describe an architecture for
mobile phone application distribution based on “se-
curity by contract.” The latter has similar motivations
as our installer, but is targeted at the Windows Mobile
framework.

9. Conclusion

The move from closed to open mobile phone sys-
tems requires attention. While these phones are subject
to the same types of Trojans and viruses as general
purpose systems, tight integration with fragile cellular
networks and user privacy significantly raises security
stakes. In this paper, we proposed Kirin as an alternate
application installer and security framework for the
Google Android mobile phone platform that allows the
phone to enforce policy invariants that transcend appli-
cations. Our goals presented many challenges in terms
of both modeling the existing security mechanisms and
acquiring appropriate policy primitives. However, once
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in place, the formal model allowed automated analysis
to identify insecure policy configurations leaving the
phone vulnerable to attack. While our current imple-
mentation relies on information residing in manifest
files, future work will apply source code analysis to
more accurately model application interaction, and
ultimately define a more secure method of installing
applications on mobile platforms.
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Appendix A.
Prolog Example

The following is a Prolog encoding of the invariant patterns defined in Section 4.3. For example, MapsApp does
not pass pat2 because it possesses both the READ_CONTACTS and INTERNET permissions.
has_perm(’ContactsApp’,’READ_CONTACTS’).
has_perm(’ContactsApp’,’WRITE_CONTACTS’).
has_perm(’MapsApp’,’READ_CONTACTS’).
has_perm(’MapsApp’,’INTERNET’).
requires(’ContactsProvider_r’,’READ_CONTACTS’).
requires(’ContactsProvider_w’,’WRITE_CONTACTS’).
requires(’network’,’INTERNET’).

policy(S,O,R) :- requires(O,R),has_perm(S,R).
pattern1(S) :- policy(S,’ContactsProvider_w’,_).
pattern2(S) :- not(policy(S,’ContactsProvider_r’,_)).
pattern2(S) :- policy(S,’ContactsProvider_r’,_),not(policy(S,’network’,_)).
pattern3(S) :- not(policy(S,’ContactsProvider_w’,_)).
pattern3(S) :- policy(S,’ContactsProvider_w’,_),policy(S,’ContactsProvider_r’,_).

| ?- pattern1(’ContactsApp’).
yes
| ?- pattern1(’MapsApp’).
no
| ?- pattern2(’MapsApp’).
no
| ?- pattern2(’ContactsApp’).
yes
| ?- pattern3(’ContactsApp’).
yes

Appendix B.
Screenshots

Figure 8: Kirin extracts security-related facts from the application as shown on the left figure. These facts are
merged with the existing facts which represent the current security state of the phone. The right figure shows an
example Prolog encoding of a security invariants to be tested during the installation.
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Figure 9: SMS Attack - Our malicious SMS forging
application sends a forged Paypal notification mes-
sage, which cannot be distinguished from legitimate
SMS messages.

Figure 10: Proximity Update Attack - Our malicious
application sends forged proximity alert to confuse
the user that the device is approaching Google Inc. in
CA while it is in Washington DC.

Figure 11: Voice Call Attack - Without any permission assigned to it, our unprivileged caller can make an outgoing
voice call to another device. Note that each Android emulator uses the port number as the device’s phone number.
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