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ABSTRACT
Mobile applications frequently request sensitive data. While prior
work has focused on analyzing sensitive-data uses originating from
well-de�ned API calls in the system, the security and privacy im-
plications of inputs requested via application user interfaces have
been widely unexplored. In this paper, our goal is to understand the
broad implications of such requests in terms of the type of sensitive
data being requested by applications.

To this end, we propose UiRef (User Input REsolution Frame-
work), an automated approach for resolving the semantics of user
inputs requested by mobile applications. UiRef’s design includes
a number of novel techniques for extracting and resolving user
interface labels and addressing ambiguity in semantics, resulting in
signi�cant improvements over prior work. We apply UiRef to 50,162
Android applications from Google Play and use outlier analysis
to triage applications with questionable input requests. We iden-
tify concerning developer practices, including insecure exposure of
account passwords and non-consensual input disclosures to third
parties. These �ndings demonstrate the importance of user-input
semantics when protecting end users.

1 INTRODUCTION
Mobile applications continue to consume an increasing amount
of sensitive data to perform a variety of tasks, such as personal
banking, health tracking, and online shopping. Vetting these appli-
cations to identify abnormal behaviors is paramount to ensure that
privacy and security requirements of users are adequately satis�ed.

Prior research [6, 10, 11, 13, 14, 32] has demonstrated the utility
of analyzing sensitive-data requests to identify security and privacy
problems within applications, including insecure-data transmission,
private-data leakage, and malware identi�cation. Such approaches
often rely on the semantics of the user data to enable automated
analyses, e.g., for taint sources and runtime privacy notices. How-
ever, these approaches focus on only sensitive data originating
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from well-de�ned, system API calls, which explicitly represent the
semantics of the data returned by the API invocation. Such focus
addresses only a part of the challenge: applications also obtain a
wide range of sensitive data, such as passwords and credit-card
numbers, as input within their graphical user interfaces (GUIs).
These data requests are largely ignored by prior analyses.

In this work, we focus on protecting sensitive data collected by
third-party applications via their GUIs. Resolving the semantics of
such data is challenging, as the API calls that retrieve a user input
are generic and do not indicate the data’s semantics. For example,
a user’s home address and credit-card number are retrieved by the
same getText() API call if entered into EditText widgets. Instead,
the semantics of a user input is denoted by natural-language text
in the GUI, which prompt the user to enter speci�c types of data.

Semantics resolution of user inputs has been explored in two
recent techniques: SUPOR [18] and UIPicker [22]. However, as we
discuss in Section 3, both techniques have signi�cant limitations
that lead to inaccuracies. Further, both techniques fail to take into
account the problem of word ambiguity, which is the coexistence
of multiple meanings for a word or phrase. For example, the word
“address” can refer to a postal address or an IP address depending on
the context that the word is used, and hence can cause confusion for
the existing techniques. In Section 5.3, we measure the prevalence of
ambiguity during semantics resolution and show that 20.9% of input
resolutions contain an ambiguous term. Although word ambiguity
is a known and actively researched area in NLP, the limited amount
of text within GUIs makes disambiguation especially challenging.

In this paper, we propose UiRef, a User Input REsolution Frame-
work that automatically resolves the semantics of user-input wid-
gets by analyzing the GUIs of Android applications. UiRef advances
the state of the art using novel techniques in its three main stages:
layout extraction, label resolution, and semantics resolution. First,
UiRef’s layout extraction provides a new hybrid analysis that accu-
rately renders custom widgets. Prior techniques do not fully support
custom widgets, which are used by 48.7% of the applications under
our study. Second, UiRef’s label resolution models patterns within
the spatial arrangement of widgets, achieving a 20.8% improvement
over prior work [18]. Finally, UiRef’s semantics resolution disam-
biguates words within input labels. Existing word-disambiguation
techniques [20] cannot be applied directly, as GUIs rarely display
text in full sentences. Instead, UiRef learns di�erent word senses
based on text that appears in other widgets within layouts.

We use UiRef to perform a large-scale analysis of 50,162 appli-
cations from Google Play. UiRef resolves the user-input semantics
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First Name

Last Name

Address

1 <LinearLayout width="match_parent" height="wrap_content" orientation="vertical">
2 <LinearLayout width="match_parent" height="wrap_content">
3 <TextView width="wrap_content" height="wrap_content" text="First Name"/>
4 <EditText width="match_parent" height="wrap_content" id="@+id/�rst"/>
5 </LinearLayout>
6 <LinearLayout width="match_parent" height="wrap_content">
7 <TextView width="wrap_content" height="wrap_content" text="Last Name"/>
8 <EditText width="match_parent" height="wrap_content" id="@+id/last"/>
9 </LinearLayout>

10 <TextView width="wrap_content" height="wrap_content" text="Address"/>
11 <EditText width="match_parent" height="wrap_content" id="@+id/address"/>
12 </LinearLayout>

Figure 1: Example Android layout and corresponding XML speci�cation with stripped namespaces
for each application. We then use outlier detection to identify ques-
tionable, and potentially malicious, input requests. The goal of our
analysis is to provide an understanding of what sensitive infor-
mation applications are asking for and broadly identify various
questionable practices in collecting user inputs that can potentially
compromise users’ security and privacy. Note that for this work,
we do not di�erentiate a questionable practice from malicious in-
tent. Such di�erentiation can be done by further analysis using
existing techniques [6, 10, 11, 13, 14, 32]. Rather, UiRef can �lter
the application dataset for focused deeper inspection.

Our analysis leads to three main security and privacy �ndings
(see Section 6). First, we �nd that applications request a wide range
of sensitive data, including SSNs, passport numbers, and healthcare
information. While legitimate requests for this data may exist, we
�nd that many such requests do not align with the purpose of
the requesting application. Second, we identify 66 applications
that directly request the user’s third-party account passwords (e.g.,
Gmail). These requests expose the user’s third-party accounts to
compromise, as well as violating the primary tenet behind OAuth-
like solutions. Finally, we identify 6 popular applications that send
sensitive-input data to advertisers without disclosing the behavior.

During our analysis, we also identify application design �aws
that may result in loss of privacy. First, applications allow third-
party libraries to directly request sensitive inputs from users, likely
resulting in user confusion. In other words, the user cannot identify
whether the library or the application is requesting data. This �aw
can be exploited by malicious libraries to compromise sensitive data.
Second, applications display untrusted third-party components in
the same GUIs as sensitive-input requests, leaving the applications
vulnerable to private-data theft due to layout-traversal attacks [29].

In summary, this paper makes the following main contributions:
• We develop novel techniques for semantics analysis of GUI

inputs to considerably improve over the current state of
the art (5.5%-25.6% more accurate at extracting layouts
and 20.8% more accurate at resolving labels). We perform
a direct comparison with prior work by implementing a
representative solution in SUPOR [18].

• We propose a novel approach to address ambiguity of de-
scriptive text in mobile applications. Ambiguity is a key
challenge unaddressed by prior work, and it is particularly
challenging for GUIs due to limited text. We demonstrate
that word embeddings can e�ectively perform this task.

• We demonstrate the utility of UiRef in performing security
and privacy analysis through a large-scale study on 50,162
Android applications. Our study highlights various forms
of questionable, and potentially malicious, practices by
developers and emphasizes the need to consider user inputs
in the security and privacy analysis of mobile apps.

The remainder of this paper describes the design and implemen-
tation of UiRef, followed by its application towards security and
privacy threats in user inputs.

2 BACKGROUND
When using Android applications, users interact with layouts (i.e.,
GUIs) to enter inputs and perform actions. Layouts consist of wid-
gets, such as push buttons, text �elds, and check boxes. These
widgets are arranged and grouped within layouts through the use
of view groups, which are containers for holding other views (i.e.,
view groups or widgets). Due to view groups, layouts are structured
as hierarchical trees named as view hierarchies.

Layouts are typically de�ned by the developer at compile time us-
ing XML. Figure 1 shows a simpli�ed version of a layout’s XML �le
(i.e., main_layout.xml) and a corresponding screenshot. To render a
layout, applications pass the resource identi�er of the layout’s XML
�le to the setContentView() or LayoutIn�ater.in�ate() methods. To
access a resource, developers use the Java R class generated during
compilation, while the compiled application uses integer constants
to internally refer to resources. For example, to render the layout
in Figure 1, an app invokes setContentView(R.id.main_layout). The
public.xml �le in the application package (APK) provides a mapping
of the integer constants to the strings used in the XML layout.

Android’s SDK provides a wide range of pre-de�ned view groups
and widgets. However, developers may also de�ne custom views in
their Java code by extending these pre-de�ned classes, which can
then be referenced in the layout’s XML �les. The implementation of
these custom views may customize rendering and also dynamically
insert view groups and widgets within its view hierarchy.

3 PROBLEM AND CHALLENGES
Unlike information retrieved from Android platform APIs (e.g.,
GPS), the semantics of text inputs is often poorly de�ned. As such,
it received limited investigation by prior research [18, 22] in contrast
to the wealth of literature studying the abuse of privacy-sensitive
platform APIs [11, 13, 14, 32].
Problem Statement: This work seeks to understand what informa-
tion Android apps are requesting through their GUIs by automatically
resolving the semantics of the user inputs and to further analyze their
potential security and privacy repercussions.

Semantics resolution is the �rst step in ensuring proper han-
dling of security and privacy sensitive input. There are many ways
in which the resulting meta information can be used to enhance
security analysis (e.g., semantics for taint sources). In this paper,
we use the resolved semantics to achieve two main goals. First, we
use it to understand the general landscape of the types of security
and privacy sensitive information that applications are requesting
from the user. Second, we leverage it to identify questionable, and
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Figure 2: UiRef Architecture

potentially malicious, practices used by apps by performing outlier
analysis. This analysis identi�es applications that request data un-
common for the its category (e.g., a game asking for an SSN) and
allows us to triage apps for manual analysis.

Our work is not the �rst to consider the semantics of user inputs
in Android applications. Prior techniques (SUPOR [18], UIPicker [22],
and AppsPlayground [28]) have signi�cant limitations that impact
the accurate and unambiguous resolution of the semantics of user
inputs. We identify three areas of challenges: layout extraction,
descriptive-text (label) resolution, and semantics resolution.
Layout Extraction: The spatial arrangement of widgets in�uences
the layout’s semantics. While the parent-child and sibling relation-
ships of a layout’s view hierarchy in�uence the spatial arrangement,
it is a poor approximation of proximity due to the �exibility allowed
by widgets. Further, code de�ning custom views may control the
types of widgets displayed as well as their position in the layout.
Around 48.7% of apps in our study (Section 6) use custom views.

UIPicker operates directly on the XML speci�cation of layouts;
therefore, it cannot accurately interpret the spatial arrangement of
widgets and their proximities to one another. In contrast, SUPOR
extracts layouts by modifying the static rendering engine of the
Android Developer Tool (ADT), which provides this positioning.
However, neither UIPicker or SUPOR su�ciently handles custom
views. The UIPicker paper does not mention custom views. The
static rendering engine of ADT used by SUPOR cannot execute
the bytecode of custom views. Therefore, SUPOR renders custom
views as the nearest superclass available in the Android framework,
causing inaccurate and incomplete layout rendering. Finally, App-
sPlayground can handle custom views, but it must dynamically
navigate the GUI to reach layouts.
Descriptive-Text Resolution: To prompt the user for inputs, de-
velopers either use text widgets with a label in the nearby proximity
to the input �elds (Figure 1), or embed descriptive text as attributes
on the input widgets (e.g., the hint and text attributes on the Edit-
Text widget). While embedded descriptive text is straightforward to
resolve, identifying the correct label for an input widget is nontriv-
ial. Even if embedded descriptive text exists for an input widget, the
corresponding label widget must be resolved. Some applications use
labels to denote the type of information and embedded descriptive
text to provide instructions to the user (e.g., “required”).

A general approach to match an input widget with a label widget
is to de�ne a distance metric. Both UIPicker and AppsPlayground
use sibling relationships in layouts to resolve the associated de-
scriptive text. However, in practice, sibling relationships do not
accurately gauge proximity. In contrast, SUPOR performs label res-
olution by partitioning the space surrounding an input widget into
nine areas, calculating a position-based weighted average for each

pixel in the input widget to the nearest pixels in labels, and mapping
each input widget to the label widget with the lowest weighted
average. However, SUPOR su�ers from multiple limitations that
are sources for incorrect label resolutions as shown in Section 5.
First, it always resolves labels to an input widget even if the label is
too far away from the input widget. Second, it depends on the input
widget’s area size and prede�ned weights that bias it towards labels
to the left and above, thus a�ecting the algorithm’s generality.
Semantics Resolution: Mobile applications use short text phrases
in descriptive text, making semantics resolution of user inputs
challenging. Word polysemy limits the use of simple key-phrase
matching techniques, and a�ects 20.9% of input-�eld resolutions
(Section 5.3). Therefore, disambiguation is required.

None of the prior techniques resolve the ambiguity of words.
SUPOR, UIPicker, and AppsPlayground use key-phrase matching
on the input widget’s associated descriptive text, but cannot di�er-
entiate the multiple semantics of that key phrase. SUPOR acknowl-
edges this limitation, and excludes the word “address” from their
key-phrase list. Additionally, UIPicker leverages developer-de�ned
variable names and input-widget type attributes (e.g., password) in
their resolution. However, such developer-de�ned names are not
tolerant to name-based obfuscation or poor coding practices.

4 SYSTEM APPROACH AND DESIGN
The UiRef resolves the data semantics of user-input widgets by
analyzing Android layouts. Figure 2 shows UiRef’s architecture.
The layout-extraction module instruments APKs to force the ren-
dering of their layouts and exports the rendered layouts for further
analysis. The label-resolution module identi�es patterns within the
placement and orientation of labels with respect to input widgets
in the layout and geometrically resolves labels. The semantics-
resolution module applies text-analytics techniques on the input
widget’s associated descriptive text to determine the expected type
of information accepted by the input widgets.

4.1 Layout Extraction
The goals of the layout-extraction module are three-fold: (1) identify
all layouts in an application; (2) identify the spatial relationships
between UI widgets for each layout; and (3) identify the descriptive
text displayed to users. The spatial relationships are needed to map
label widgets to input widgets, as discussed in Section 4.2.

UiRef’s layout-extraction module uses a hybrid technique to
extract rendered layouts. UiRef’s technique uses static analysis to
identify the layouts used by the application, and dynamic on-device
rendering to extract each rendered layout that users eventually
interact with. Since on-device rendering allows for the execution of
developer code, it allows for the correct rendering of custom views.
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UiRef disassembles an APK using ApkTool [4], and collects the
resource identi�ers for each layout present in the APK’s public.xml
�le. It saves the layout resource identi�ers to the application’s assets
folder to be used later during on-device rendering. Subsequently, it
injects a custom activity into the APK, and rewrites the application’s
manifest �le to register the injected activity as an entry point. UiRef
then reassembles the APK, and sideloads it onto a live device.

When the injected activity is executed, it iterates through the
resource identi�ers saved in the assets folder, and invokes the set-
ContentView() method for each identi�er to cause the application
to render the layout. It then iterates through the rendered layout’s
view hierarchy to extract associated metadata, such as the coor-
dinates of each view, visibility attributes, and text strings. This
information along with the view hierarchy is exported as XML.

As discussed in Section 4.2, UiRef’s label-resolution module re-
quires a list of potential labels and a list of input widgets. To con-
struct these lists, UiRef uses class-inheritance information to iden-
tify the types of widgets that commonly accept user inputs (i.e.,
EditText, AbsSpinner, CheckedTextView, RadioButton, CheckBox,
ToggleButton, Switch, SwitchCompat, RatingBar), and widgets that
display static text (i.e., TextView). For example, an EditText, or wid-
gets that extend EditText, are likely to accept user inputs. Note that
this technique di�ers from SUPOR’s use of inheritance information,
as SUPOR uses it during the rendering process to determine how to
render custom views. In contrast, UiRef does not rely on inheritance
information during rendering, as UiRef can render custom views.
UiRef extracts inheritance information during layout extraction to
avoid performing the Class Hierarchy Analysis o�ine.

To determine whether a widget accepts a user input, UiRef re-
solves the closest ancestor in a widget object’s class hierarchy that
is in Android’s framework, and includes the nearest SDK class in the
metadata output. For example, if a class CustomTextView1 extends
android.view.Textview, UiRef would mark its ancestor as TextView.
Similarly, if CustomTextView2 extends CustomTextView1, UiRef
would also mark its ancestor as TextView, because CustomTextView2
extends CustomTextView1, which extends TextView. We identify
14 base widget types from Android’s documentation, and use Java’s
instanceof operator to �nd the view object’s nearest SDK class.

Note that UiRef executes only the code needed to render lay-
outs, and hence does not su�er from code-coverage limitations.
This technique does have two limitations. First, UiRef is limited to
statically de�ned layouts. However, statically de�ning layouts is a
common practice, as it typically requires less e�ort than dynamic
generation. Second, UiRef cannot extract dynamically generated
text (e.g., from network connections). However, since we focus on
text labels for user inputs and not display content, we believe it is
reasonable to assume that labels statically de�ne the text.

4.2 Label Resolution
The goal of UiRef’s label-resolution module is to identify the label
associated with each user-input widget. It operates on the intu-
ition that developers are consistent with the physical arrangement
and orientation of labels to user-input widgets. For example, if a
developer positions labels to the left of an input widget, then it is ex-
pected that other labels in the layout will also be positioned on the
left. Therefore, the label-resolution module works by identifying
patterns within the placement of labels relative to input widgets.

Algorithm 1 Resolution of Label to Input Widget
1: procedure ResolveLabels(uif s , labels )
2: r esolved ← init empty list
3: do
4: pairs ← GenCandidateSets (uif s, labels )
5: labels .r emove (pairs .labels )
6: uif s .r emove (pairs .uif s )
7: r esolved .append (pairs )
8: while size (pairs ) > 0
9: return r esolved

UiRef’s algorithm for label resolution (Algorithm 1) is iterative,
so it correctly resolves labels even if inconsistencies exist. As an
example, the “Address” label in the layout of Figure 1 is inconsistent
as it is placed above the input widget while other labels are placed
to the left of the input widgets, and is still successfully resolved by
the algorithm. During the �rst iteration, UiRef resolves the label
with the text “First Name” to the EditText with the identi�er @+id/-
�rst, and “Last Name” to the EditText with the identi�er @+id/last.
During the second iteration, UiRef resolves the label with the text
“Address” to the EditText with the identi�er @+id/address.

The label-resolution module accepts the rendered layouts from
the layout-extraction module as input, and resolves labels associated
with user-input widgets.
Label-ResolutionAlgorithm: UiRef maps labels to input widgets
by identifying patterns in their relative placements. Algorithm 1
describes the algorithm. The input is the sets of input widgets
(ui f s) and potential labels (labels) identi�ed using class-inheritance
information within the layout-extraction module (Section 4.1).

Algorithm 1 starts (Line 4) by invoking GenCandidateSets (Algo-
rithm 2) to generate a list of candidate sets of label and input-widget
pairs. For each input widget, GenCandidateSets creates a set of
vectors from the input widget to all potential labels in the layout
(Lines 3–8, Algorithm 2). The vectors represent the euclidean dis-
tance (i.e., magnitude) and direction (i.e., angle) between the input
widget and label. calcSmallestVector (not shown) creates up to three
vectors for each input-widget and label pair. Two vectors go from
the two closest corners of the input widget to the corresponding
corners of the label. The third vector is created if a label is directly
above, below or to the sides of the input widget, being anchored at
the closest point between the input widget and label.

If a vector’s magnitude is greater than a predetermined thresh-
old, it is not considered as a candidate (Lines 6–7, Algorithm 2).
The algorithm then appends the input-widget and label pair to the
candidate set under the entry for the corresponding vector if either
of the widgets does not already exist (Line 8, Algorithm 2). During
implementation, we empirically determine the threshold by taking
the average distances of labels to input widgets for 100 randomly
sampled applications. The distance threshold can be made indepen-
dent from the device’s screen size by representing the threshold as
a proportion of the screen size. Note that the apps in the validation
set were excluded from the datasets used in our evaluation.

After the candidate sets are constructed, GetOptimalSet (Algo-
rithm 3) is invoked (Line 9, Algorithm 2) to extract the optimal label
to input-widget mapping. The algorithm �rst retrieves the candi-
date sets with the largest set size (Line 2, Algorithm 3). If there are
multiple such sets, the algorithm prioritizes sets whose labels are
either above or to the left of input widgets (i.e., the vector direction
is 90 degrees or 180 degrees, respectfully) (Lines 5–8, Algorithm 3).
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Algorithm 2 Create Candidate Map
1: procedure GenCandidateSets(uif s , labels )
2: candidates ← init empty candidate map object
3: for each i ∈ uif s do
4: for each l ∈ labels do
5: v ← calcSmallestV ector (i, l )
6: if v .distance > threshold then
7: continue
8: candidates[v].appendN E ( {i, l })
9: return GetOptimalSet (candidates )

If multiple sets are of equal size and both vector directions are to
the left or top of the input widgets, then GetOptimalSet selects the
set with the smallest vector distance (Lines 9–10, Algorithm 3). The
algorithm returns the optimal label to input-widget mapping.

Once Algorithm 1 receives the optimal mapping of label to input-
widget pair, it removes the resolved pairs from the initial lists, and
appends the resolved pairs to the resolved set (Lines 5–7, Algo-
rithm 1). This process is repeated until no new labels are resolved.

4.3 Semantics Resolution of Input Widgets
The goal of semantics resolution is to resolve the types of input data
prompted by the associated descriptive text. These types of data
correspond to concepts in our terminology, which are expressed by
terms (i.e., single word or phrase) in layouts. However, the mapping
of terms to concepts is not necessarily disjoint. Di�erent terms may
represent the same concept (synonymy), and the same term may
represent multiple concepts (polysemy). Due to polysemy, strategies
of keyword-based resolution cannot be used to resolve concepts.

The semantics-resolution module uses the context surrounding
a term to resolve its concept. The module has two main tasks:
(1) terminology extraction, and (2) concept resolution.

4.3.1 Terminology Extraction. Terminology extraction is used
to determine candidate terms that represent concepts in the do-
main. UiRef requires terminology of security and privacy sensitive
concepts that applications use to prompt for inputs. Terms can be a
single word (uniterm) or a phrase (multiterm), such as gender and
date of birth. UiRef uses a data-driven technique for de�ning a list
of security and privacy sensitive terms. The list is derived from the
text displayed within layouts from the dataset in Section 6.

Our terminology-extraction process uses all text displayed in
the layouts extracted by the layout-extraction module. We begin
by using regular expressions to replace email addresses, URLs, and
common phone-number formats (e.g., a@b.com, http://www.b.com,
123-456-7890) by their respective terms. For example, a@b.com is
replaced by email_addr_example. We also substitute the # symbol
with the word “number”, and use regular expressions to remove
prompt text, such as “enter your”. We then lemmatize the text,
being a common preprocessing step to normalize text. For example,
lemmatizing the word “ethnicities” would change it to “ethnicity.”

After preprocessing the text, we mark text that contains only a
single word as a potential uniterm. To heuristically remove noise
and reduce the manual post-processing e�orts described below, we
remove uniterms that appear only within a single layout. Note that
removing uniterms may cause us to miss a few important terms;
however, missed terms can be added manually.

Next, we create a candidate set of sensitive multiterms by ex-
tracting n-grams of sizes 2-4 for each piece of text. Note that this

Algorithm 3 Find Optimal Mapping
1: procedure GetOptimalSet(candidates )
2: maxSets ← GetLarдestSets (candidates )
3: opt ←maxSets[0]
4: for each s ∈ maxSets[1 :] do
5: optLorT ← I sLef tOrTop (opt .vec )
6: sLorT ← I sLef tOrTop (s .vec )
7: if !optLorT & sLorT then
8: opt ← s
9: else if optLorT == sLorT AND opt .vec .dist > s .vec .dist then

10: opt ← s
11: return opt

process uses a sliding window across the words in the text to �nd
the most appropriate groupings of words.

Once the set of n-grams is created, we heuristically re�ne the set
as follows. First, we remove n-grams that appear in less than two
separate layouts. Second, we remove n-grams that are a substrings
of larger n-grams and appear in only the same layouts. For example,
we remove the bigram “social security” if the only time that it
appears is in the longer term “social security number”. Third, we
remove n-grams that start or end in stopwords (e.g., “a”, “the”, “and”).
Fourth, we remove n-grams with common verbs occurring in middle
positions of n-grams (e.g., “could”, “have”, “would”). Note that the
goal of multiterm extraction is not to extract textual prompts, but
rather to extract terms that correspond to concepts. For example,
we seek to extract the term �rst name from the following text,
“What is your �rst name?” Finally, if a matching unigram is found
when spaces are removed from n-grams, we mark the unigram as a
potential synonym of the n-gram (e.g., user name and username).

Once the candidate lists are created, we perform two �nal manual
post-processing steps. First, we read through the lists and �lter
out n-grams representing verb phrases not caught with our �lters,
and phrases that do not clearly represent concepts. Second, we
scan through the lists of n-grams and uniterms, and mark down
potentially sensitive terms along with their synonyms. For example,
in this step, we mark “last name” as a sensitive term, and “surname”
as its synonym. We also create a list of potentially ambiguous terms
(e.g., name, address, number), which is used later during semantics
resolution to determine which terms require disambiguation.

4.3.2 Concept Resolution. The goal of concept resolution is to
determine the semantics of an input widget. For example, UiRef
aims to link the concepts �rst name, last name, and postal address to
the corresponding input widgets in Figure 1. Recall from Section 3
that key-phrase matching alone is not su�cient due to polysemy.
Before we can disambiguate terms, we must determine the di�er-
ent meanings (i.e., senses) in which a term appears. Note that an
automated technique is required, as all possible senses of the term
must be considered when performing disambiguation.

The process of determining these di�erent meanings is known
as word-sense induction. The process of resolving the meaning of a
speci�c instance of a term is known as word-sense disambiguation.
UiRef performs these two tasks using the Adaptive SkipGram (Ada-
Gram) model [8]. AdaGram extends Mikolov’s SkipGram model [21]
by using a non-parametric Bayesian approach over Dirichlet pro-
cesses to learn multiple word vectors per word. For a single word,
a word vector represents a sense in which the word appears.
Word-Sense Induction: Training an AdaGram model to perform
word-sense induction requires �at text documents. To �atten text
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within layouts, UiRef generates a string from the text within lay-
outs, scanning from the layout’s top-left corner to the bottom-right
corner. For each piece of text, UiRef preprocesses the text by per-
forming lemmatization, stripping stopwords, and transforming the
text into lowercase. For input widgets with both labels and hints,
UiRef outputs the label text before the hint. For example, Figure 1
produces the following document: “�rst name last name address”.

To allow for the disambiguation of multiterms, UiRef gener-
ates the second document for the same layout with multiterms
treated as one lexical unit. UiRef collapses adjacent words that
form multiterms by replacing spaces with underscores (e.g., “�rst
name” becomes “�rst_name”) using the list of multiterms from the
previous step. For example, Figure 1 also produces the following
document: “�rst_name last_name address”.

After these two documents are created for each layout, UiRef
trains an AdaGram model, which is used to perform word-sense
disambiguation. Note that UiRef trains the AdaGram model using
a maximum of 25 potential word senses being learned per word.
This number is chosen through experimental exploration to avoid
underestimating the number of word senses, as doing so would
cause concepts to overlap in the same word sense.

Once the model is trained, we manually resolve the concept to
which the word vector refers for each potentially ambiguous word
by analyzing the terms that have the closest relation to the word
vector. For example, the closest related words for one meaning
discovered for “address” are city, street, �rst, zip, postal. Therefore,
we mark the semantics for that meaning of “address’ as a postal
address. The closest related words for another meaning of “address”
are port, host username, ip, and pswd, which we mark as IP address.
Semantics Resolution and Disambiguation: To resolve the se-
mantics of each input widget, UiRef �rst lemmatizes the hint text,
combines multiterms into one lexical unit, and removes stopwords.
Next, UiRef uses the spotter to scan the hint’s preprocessesed text
to search for the sensitive terms constructed in Section 4.3.1. If the
spotter locates a sensitive term that is unambiguous, UiRef marks
the input widget with the term’s associated concept. However, if the
spotter �nds a potentially ambiguous term, UiRef uses the trained
AdaGram model to disambiguate the term using the surrounding
context with a window size of 5 (i.e., 5 words before and 5 words
after). To disambiguate a word, UiRef predicts the probability of
the target term given the context, and returns the concept with the
highest probability. If the hint text does not contain any sensitive
terms, UiRef repeats this process with the associated label’s text.

For example, UiRef resolves the input widget with the widget
identi�er @+id/address in Figure 1 as follows. Since the widget does
not contain embedded text (e.g., hint or text attributes), UiRef begins
by analyzing the text of the label that it resolves for this widget (i.e.,
“address”). UiRef’s spotter �nds the word “address” in the text and
tags it as ambiguous. UiRef disambiguates address by extracting the
surrounding context (�rst_name last_name), and using the model
to predict the meaning of the word. UiRef predicts that “address”
refers to the sense that corresponds to a postal address.

5 EVALUATION
In this section, we evaluate the e�ectiveness of UiRef with respect
to its major modules. To evaluate UiRef’s layout extraction, we use
a combination of emulators and real devices. We use 12 x86 Android

Table 1: Performance Evaluation Results
Label Resolution Semantics Resolution Disambig.
UiRef SUPOR∗ UiRef SUPOR∗ UiRef

Acc. 84.0% 63.2% 95.0% 90.2% 82.1%
Raw 630/750 474/750 708/745 672/745 275/335
∗ UiRef’s Layout Extraction, and our reimplementation of SUPOR

emulators and a single Nexus 4, both running Android 5.1.1. We run
applications that contain ARM-based native libraries on the real
device, as the x86 emulators do not include the translation library.

Our dataset is based on the October 31, 2014 PlayDrone [33]
snapshot (1.4 million applications). We perform proportionate strat-
i�ed random sampling across the dataset to ensure a representative
sample by using the Google Play categories and number of down-
loads to form our strata. For veri�cation purposes, we use Python’s
langdetect module to ensure the dataset contains only applications
with English descriptions. Our �nal dataset consists of 50,162 apps.

We use SUPOR [18] as a representative baseline for comparison.
Since SUPOR’s source or binary code was not available, we reimple-
ment their approach. When speci�c implementation details are not
clear or ambiguous, we contact the authors for clari�cations. We do
not compare our results to UIPicker due to the limitations discussed
in Section 3, and the unavailability of their trained classi�ers.

5.1 Layout-Extraction Performance
To evaluate the e�ectiveness of UiRef’s layout-extraction technique,
we estimate its improvement over SUPOR’s technique for render-
ing static layouts. As discussed in Section 3, one improvement that
UiRef provides over SUPOR is the rendering of custom views. To
evaluate the improvement for handing custom views, we estimate
a lower bound and upper bound: (1) lower bound: the number
of layouts and applications that include custom views that pro-
grammatically add other views; and (2) upper bound: the number
of layouts and applications that include custom views. Note that
we do not evaluate other potential limitations of SUPOR’s layout
extraction, e.g., the accuracy of ADT’s rendering.

Our dataset consists of the 50,162 applications described earlier.
To identify custom views that add other views programmatically, we
disassemble the APKs using ApkTool and perform class-hierarchy
analysis to identify classes whose inheritance hierarchy contains
the View class or any other SDK class that extends the View class
(e.g., EditText, LinearLayout). Next, we perform a signature-based
search on the custom view’s underlying code for method invoca-
tions used to add views, such as ViewGroup→addView(View child).
Since our goal is to provide a conservative estimation rather than
an exhaustive analysis, we choose a signature-based technique over
reachability analysis to reduce computational overhead.
Results: In total, around 25.6% of the static layouts (479,337/1,873,737)
and 48.7% of the applications (24,436/50,162) contain at least one
custom view. Further, 35.1% of applications in the dataset contain
at least one custom view whose underlying code dynamically adds
views (17,597/50,162), which impacts around 5.5% of static layouts
(102,671/1,873,737). Therefore, UiRef provides between a 5.5% to
25.6% improvement over SUPOR for extracting layouts with an
average extraction time of 53.7 milliseconds per layout.

5.2 Label-Resolution Performance
To evaluate UiRef’s label-resolution technique, we manually anno-
tate the label that corresponds to each input widget. We compare
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our manual annotations with the results from both UiRef and SU-
POR’s label resolutions. Note that we use UiRef’s layout-extraction
technique when reporting SUPOR’s label-resolution results to al-
low for a direct comparison between the algorithms, and to reduce
potential errors carried over from SUPOR’s layout extraction.

We randomly select 12 applications for each of Google Play’s 42
categories from the 50k dataset. We run UiRef on the 504 applica-
tions to extract layouts. Note that SUPOR handles only EditText
widgets. Therefore, we remove layouts that do not contain at least
one EditText widget to provide a fair comparison to SUPOR (al-
though UiRef resolves 9 base input widget types), reducing our
dataset to 280 applications. We then remove layouts whose screen-
shot fails or does not capture the entire layout, layouts that are
duplicates of another layout, contain non-English text, are a frag-
ment such as a search bar, or do not contain any descriptive text
or icon. Our �nal dataset consists of 349 layouts (109 applications)
with 750 input widgets where 420 widgets have associated labels,
and 472 are manually tagged as containing sensitive data.
Results: Table 1 shows that UiRef provides a signi�cant 20.8% im-
provement in accuracy over SUPOR when resolving labels. In total,
UiRef correctly resolves the labels for 630/750 input widgets (84.0%)
with an average runtime of 16 milliseconds per layout. The majority
of UiRef’s incorrect label resolutions are due to applications using
TextViews to display non-modi�able data alongside user-input wid-
gets, causing UiRef’s pattern-based resolution algorithm to choose
incorrect candidate sets. In future work, we plan to resolve this
problem by applying program analysis to di�erentiate between la-
bels and such TextViews. The rest of the incorrect label resolutions
are due to the multiple labels per input widget (e.g., measurement
units), or multiple input widgets per label (tabular arrangements).
SUPOR’s errors originate from the lack of maximum distance metric
always resulting in a resolved label for an input widget, and from
its preference for labels located to the left or above input widgets
while the correct label is located below the input widget.

5.3 Semantics-Resolution Performance
We next evaluate (1) UiRef’s accuracy of resolving semantics; (2)
the prevalence of ambiguity during semantics resolution; and (3)
the e�ectiveness of UiRef’s disambiguation.

5.3.1 Overall Performance. To evaluate UiRef’s semantics reso-
lution, we manually annotate the 349 layouts in Section 5.2 with
a semantics label for each input. We remove input widgets from
our results whose ambiguity could not be resolved from viewing
the screenshot alone (5 input widgets in total). We compare our
manual annotations with the results produced by UiRef’s semantics
resolution algorithm for input widgets, and SUPOR’s key-phrase
matching using our term list. Note that SUPOR ignores the resolu-
tion of ambiguous terms, such as “name”, so our re-implementation
of SUPOR also ignores ambiguous terms.
Results: Table 1 shows that UiRef achieves 95.0% accuracy when
resolving the semantics of input widgets (4.8% increase in accuracy
over SUPOR). UiRef’s incorrect resolutions are due to UiRef not
having enough context to disambiguate the term (14/37), the spotter
missing sensitive keywords (13/37), insu�cient parsing of the text
(5/37), incorrect label resolutions (4/37), and incorrectly marking a
non-sensitive input request as sensitive (1/37). Although SUPOR

has a 90.2% accuracy with this dataset, such result is an overapprox-
imation due to dataset selection, as the dataset has a low number
of input widgets with ambiguous terms, and the majority of input
widgets with SUPOR’s incorrect label resolutions are resolved using
the embedded text attributes (171/192). In Section 5.3.3, we measure
the prevalence of ambiguity during semantics resolution.

5.3.2 Prevalence of Ambiguity. To demonstrate the importance
of disambiguation when resolving semantics of input widgets, we
measure the impact of ambiguity on semantics resolution. We run
UiRef’s semantics resolution on the 50,162 applications described in
Section 5 and output input requests where the descriptive text (i.e.,
hint, label, or text) used for semantics resolution contains one of the
19 ambiguous terms shown in Table 2. From the 50,162 applications,
there are 175,101 input requests requiring semantics resolution
across 71,291 layouts and 15,642 applications.
Results: Table 2 shows that the resolution of 20.9% (36,600/175,101)
of input requests contain an ambiguous term within the descriptive
text used when resolving semantics. Further, ambiguity a�ects the
semantics resolution of 36.1% (25,720/71,291) of the layouts and
63.9% (10,003/15,642) of applications. The prevalence of ambiguity
clearly demonstrates limitations of key-phrase-based techniques
for resolving semantics. For example, SUPOR ignores the reso-
lution of the term “name”, which impacts the resolution of 5.6%
(9,753/175,101) of input �elds being semantically resolved. Similarly,
the term “address” a�ects 1.8% (3,228/175,101) of semantics resolu-
tions. The pervasiveness of ambiguity when resolving semantics
demonstrates the necessity of a disambiguation technique.

5.3.3 Disambiguation Performance. To evaluate UiRef’s disam-
biguation technique, we evaluate UiRef’s accuracy on 19 ambiguous
terms shown in Table 2. For each ambiguous term, we randomly
select 25 input requests that contain the ambiguous term as a hint,
label, or text attribute of an input widget from the dataset in Sec-
tion 5. Note that for terms that do not appear in at least 25 input
requests (e.g., “cc”), we select the maximum number of samples
available. We substitute layouts with another randomly selected
layout if we cannot manually resolve ambiguity when viewing the
screenshot. Further, since certain layouts are duplicated across ap-
plications and can skew the evaluation (e.g., over-approximating
accuracy), we substitute layouts with another randomly selected
layout if it is a duplicate of a previously annotated layout for that
term. Our dataset consists of 362 input requests from 296 layouts
(250 applications). For each layout, we manually resolve ambiguity
by viewing the screenshot and XML �le and then compare our
manual annotation to UiRef’s prediction.

Note that UiRef does not resolve the semantics of an input widget
requesting non-sensitive data (e.g., cement age for the term “age”),
occurring with 26 widgets in our dataset. Such result is due to
word-sense induction not learning a sense for the concept due to
under-representation in the dataset. However, unresolved semantics
for non-sensitive requests should not a�ect the results, as UiRef’s
goal is to identify sensitive requests. Thus, we remove these 26
widgets from our dataset, resulting in 335 input requests.
Results: Table 2 shows that UiRef achieves an 82.1% accuracy for
resolving the ambiguity of sensitive terms (275/335). The results
demonstrate that UiRef’s disambiguation provides a signi�cant
advantage over key-phrase-based techniques, such as SUPOR. In
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Table 2: Disambiguation Evaluation Results
Ambiguous Term
(<=25 widgets) Example Concepts Prevalence of Ambiguity During Semantics Resolution (175,101 widgets) Disambiguation Performance (335 widgets)

Requests Layouts Apps Correct Incorrect
account_number bank account, utility account 292 (0.2%) 274 (3.8%) 181 (1.2%) 20 3
address IP address, postal address 3,228 (1.8%) 2,905 (4.1%) 2,310 (14.8%) 22 2
age person age, product age 334 (0.2%) 297 (0.4%) 198 (1.3%) 21 3
cc carbon copy, credit card 61 (0.03%) 55 (0.1%) 48 (0.3%) 3 0
cm person height, product height 1,599 (0.9%) 1,569 2.1%) 1,553 (9.9%) 4 2
day birth day, current day 7,297 (4.2%) 5,502 (7.7%) 2,095 (13.4%) 1 5
destination physical location, �le location 165 (0.1%) 158 (0.2%) 141 (0.9%) 16 7
�rst �rst name, �rst place 325 (0.1%) 307 (0.4%) 254 (1.6%) 22 3
ft person height, product height 1,537 (0.9%) 1,530 (2.1%) 1,521 (9.7%) 1 2
height person height, product height 246 (0.1%) 233 (0.3%) 148 (0.9%) 19 2
last last name, last place 201 (0.1%) 176 (0.2%) 144 (0.9%) 20 2
lb person weight, product weight 3,056 (1.7%) 1,548 (2.2%) 1,533 (9.8%) 2 4
location physical location, �le location 4,577 (2.6%) 4,545 (6.4%) 2,653 (17.0%) 23 2
month birth month, expiration month 386 (0.2%) 313 (0.4%) 235 (1.5%) 3 6
name person name, �le name 9,753 (5.6%) 9,497 (13.3%) 7,403 (47.3%) 19 5
number phone number, card number 1,641 (0.9%) 1,330 (1.9%) 995 (6.4%) 20 3
security_code CCV code, veri�cation code 145 (0.1%) 136 (0.2%) 109 (0.7%) 22 2
weight person weight, product weight 285 (0.2%) 273 (0.4%) 181 (1.2%) 19 3
year birth year, expiration year 1,472 (0.8%) 1,394 (1.9%) 1,174 (7.5%) 18 4
Total 36,600 / 175,101 (20.9%) 25,720 / 71,291 (36.1%) 10,003 / 15,642 (63.9%) 275/335 (82.1%) 60 / 335 (17.9%)

particular, UiRef resolves the semantics of the term “address” with
88.0% accuracy (22/25) where SUPOR ignores the term due to ambi-
guity. UiRef’s disambiguation also shows a 91.6% accuracy (22/24)
when distinguishing between credit-card veri�cation (CCV) codes
and passphrases denoted by the term “security code.” In this case,
UiRef correctly disambiguates “security code” as CCV code (15
widgets), and as a passphrase (7 widgets).

6 SECURITY AND PRIVACY ANALYSIS
Our primary motivation for creating UiRef was to classify the secu-
rity and privacy sensitive inputs provided by users. In this section,
we use UiRef to perform a large-scale study of 50,162 Google Play
applications from Section 5 to understand the scope of questionable
security and privacy practices We ran UiRef on the dataset and
triaged applications using outlier detection for manual inspection.
We aim to explore two main research questions:
RQ1: What types of security and privacy sensitive information are
mobile applications asking for?
RQ2: What are the security and privacy implications of sensitive
input requests?

Note that our analysis is not intended to be comprehensive.
Rather, we intend to broadly highlight various forms of question-
able practices by application developers. Our hope is that our initial
�ndings will drive further research in understanding the security
and privacy challenges associated with user input requests. Ex-
tended results are available on the project website [5].

6.1 Sensitive Information Requests
To answer RQ1, we consolidated the sensitive input requests iden-
ti�ed by UiRef for every application. We grouped this information
into 9 categories based on high-level semantics (Table 3). To fur-
ther understand the sensitive input requests made by applications,
we use the following methodology: (1) We manually identify rele-
vant sensitive concepts extracted by UiRef, (2) for interesting input
requests, we view the layout’s screenshot, and (3) if further clari�-
cation is required, we analyze the application’s disassembled code.
Our analysis results in several interesting �ndings as follows.
Finding 1: Applications request a wide-range of security and privacy
sensitive information. Table 3 shows the types of sensitive infor-
mation requested by applications. The most frequent information

requests are related to account or contact information (e.g., user-
names/email addresses, passwords), which is due to applications
requiring account login or registration. Applications also request a
substantial amount of personal information (e.g., the person’s name,
date of birth, gender, age, race, marital status, religion, and political
a�liation). Other requests include sensitive personal identi�ers
(e.g., SSN - 52 applications, driver’s license number - 51 applica-
tions). Finally, applications request a range of �nancial data (e.g.,
credit card numbers), vehicular data (e.g., vehicle identi�cation
numbers—VIN), location data (e.g., postal addresses), and device
data (e.g., IMEI). IMEI represents an interesting use case as the
applications are asking the user to input the IMEI rather than re-
trieving the IMEI in the background. Note that for this study, we
determine the sensitivity of the terms based on own experiences,
however, UiRef’s approach is generic and can be easily adapted for
alternative terms with di�erent sensitivities (see Section 7).
Finding 2: Applications directly request third-party passwords de-
feating the purpose of OAuth-like solutions. Knowledge of a password
leads to full control of users’ accounts. A primary goal of OAuth is
to allow third-parties to access a user’s resources without having
direct access to their password. Further, the user can revoke access
without changing the password. If the user enters the password
directly into the application, the application can still request an
OAuth token; however, it eliminates much of OAuth’s bene�ts.

We found 68 applications directly requesting the user’s Twitter
(55 apps), Gmail (10 apps), Facebook (2 apps), and Adobe (1 app)
credentials within internally-de�ned layouts. Most Twitter pass-
word requests (51/55) come from the WinterWell JTwitter library,
which requests the user’s password within a static Android layout.
The remaining 4 applications requesting the user’s Twitter pass-
word use other third-party libraries to request an OAuth token (e.g.,
Twitter4J). During our analysis, we found that the JTwitter library
also has an option to request OAuth tokens within an embedded
WebView. This is still a bad practice, as the application that embeds
the WebView can access all of the WebView’s data. In fact, Google
deprecated support for OAuth requests to Google in embedded
WebViews for security concerns [1]. The applications requesting
Gmail (10), Facebook (2), and Adobe (1) passwords directly request
the data for login purposes and are subject to the same problem.
Finding 3: Applications frequently request sensitive �nancial infor-
mation. We found that around 8% of applications (4,433/50,162) are
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Table 3: Consolidated Sensitive Information Requests
Category Sensitive Information Requests (# Applications)
Account/Contact username_or_email (11047), passwd (10251), phone_num (6307), twitter_passwd (55), wi�_passwd (17), gmail_passwd (10), social_media_url (8), wi�_ssid (7), ftp_passwd (6),

smtp_passwd (5), facebook_passwd (2), nq_account_passwd (1), mint_passwd (1), gritsafe_passwd (1), exchange_passwd (1), adobe_passwd (1)
Personal person_name (8057), date_of_birth (2285), gender (1237), company_name (499), person_age (178), person_weight (149), job_title (121), person_height (109), school_name (75),

education_info (38), marital_status (37), demographic_info (27), native_language (8), citizenship (7), birth_place (7), marriage_date (5), religion (4), political_a�liation (3),
Financial credit_card_info (4433), loan_info (1974), bank_account_info (156), salary (116), bank_info (78), house_�nancial_info (57)
Vehicle/Driver vehicle_info (173), license_plate (66), vehicle_vin (61), insurance_policy_num (52), vehicle_registration (11), license_expiry_date (3)
Device device_id (106), mac_address (27), serial_num (26), service_provider (19), device_manufac_info (6), sim_card (6),
Health medication_name (70), prescription_num (27), drug_dosage (23), blood_pressure (22), blood_type (16), heart_rate (14), body_mass_index (11), blood_glucose (6), doctor_email_id (2)
Personal Id # SSN (52), driver_license_num (51), id_num (20), tax_id (5), passport_num (3), student_id (1), medicaid_num (1)
Family Member family_member_name (30), family_member_phone (9), guardian_email (3), mother_birth_place (2)
Location/Travel location_info (6761), �ight_num (28)

requesting the user’s credit card information (e.g., credit card num-
ber, security code, and expiration date). Exposing credit card details
and other �nancial information to untrusted third-party applica-
tions is high risk, as demonstrated by the numerous data breaches
in recent years [3]. Further, applications that are not fully compliant
to the Payment Card Industry’s Data Security Standard [2] (PCI
DSS) place the user at potential risk for �nancial loss and fraud.
PCI DSS outlines standards for merchants that handle credit card
information, such as encrypted storage and transmission. Based on
our �ndings, we believe that there is a need for deeper analysis to
identify non-compliance, and explore alternate payment solutions,
such as opting for centralized and well-tested billing processors
(e.g., Google’s In-app Billing service), to reduce associated risks.

6.2 Identifying Anomalous Input Requests
To explore RQ2, we used outlier analysis to triage applications
for manual analysis. We apply an unsupervised technique, called
the Ranking-based Outlier Analysis and Detection (ROAD) algo-
rithm [31] at the granularity of Google Play’s 25 application cate-
gories (games subcategories combined into one category), to gener-
ate a ranked list based on the likelihood that a record is an outlier.
Note that we modify the distance function of the ROAD algorithm
by using a probability-based value weighting function, so that rare
attributes have a larger in�uence on the distance function. An ap-
plication is considered to be an outlier based on its distance from
the largest cluster (or second largest cluster if the largest cluster
requests no sensitive input), where clusters are formed based on
the types of sensitive information they request. Interestingly, only
the Weather category had sensitive input requests associated with
the largest cluster. Section A (Appendix) provides a detailed expla-
nation on ROAD and how we use it to detect outliers in our dataset.
Table 4 (Appendix) shows an except of the results of our outlier
analysis, where the counts represent the number of applications.

Our approach is to use outlier analysis as a �ltering mechanism
to identify applications that merit further deeper analysis. We focus
our manual analysis on the top-10 outlier applications (based on
the distance from the largest cluster) for each of the 25 Google
Play categories (250 apps in total). Our deeper manual analysis
involves reviewing the screenshots of the application’s layouts and
its disassembled code to explore how the application is using the
data. The following discussion reports our high-level �ndings.
Finding 4: Applications are making questionable requests asking
for too much sensitive data. Table 4 (Appendix) shows the contrast
between expected and unexpected input requests by outlier apps.
When the largest cluster requests a concept (e.g., username) it is not
unexpected for the outlier to also request it. However, outlier anal-
ysis identi�es a number of interesting cases where the requested

data does not align with the app’s category. For example, in the
Communication category, outliers request the user’s religion, mari-
tal status, and demographics. We inspected these apps and found
that some request the data to send to advertisers and disclose this
purpose to users, while others request it to search for friends.

In the Personalization category, outlier applications ask for data
such as the user’s birthday, birth place, and bank account informa-
tion. Through manual inspection, we found the app (com.Chinese_I_
Ching_Horoscope_20706) requests the user’s birthday and birth-
place to provide horoscope readings, but send the data to a third-
party website to provide the service without notifying the user. The
app (psmainapp-ui) requesting bank account information (bank
name and credentials) provides a vault for encrypted data storage.
Upon manual analysis, we found that the app uses a constant seed
for key generation (’sknpyvvn’), which puts the users’ data at risk.

Similarly, in the Game category, outliers ask for a wide-range of
personal information, such as the user’s name, salary, age, marital
status, gender, and SSN, which we discuss further in Findings 5-7.
Finding 5: Applications disclose sensitive input requests to advertis-
ers. We found 6 game applications requesting the user’s zip code,
age, salary, gender, marital status, education information, ethnicity,
and political a�liation. On further analysis, we found that they
were disclosing this information to the Millennial Media advertising
network for targeted advertisements. The apps were all developed
by the same developer (Brett Plummer), and 3 of them are relatively
popular1, as they have 100-500k downloads. The apps collect the
sensitive data requests in layouts claiming to be used for pro�le
information, which is misleading as it is only used to disclose to
advertisers. Further, the privacy policies and layouts do not specify
that the sensitive data provided is being disclosed to advertisers.
Finding 6: Applications include third-party libraries that directly
request sensitive information. We found 2 game apps2 that include a
third-party library (i.e., Skillz eSports) that displays layouts to re-
quest a wide-range of sensitive information, such as SSNs, passport
numbers, names, addresses, credit card data, and phone numbers.
Although we could not successfully run the apps to verify the re-
quests due to crashing, we viewed the Skillz eSports’s website and
found that it requests this data to allow users to withdraw their
winnings. The main concern in such cases is that the user may not
understand to which entity they are disclosing information. For ex-
ample, consider the case where the user trusts the main application
and is willing to disclose their SSN to that application, but does not
trust Skillz eSports with their information. Since the layouts do not
denote who (library or application) is collecting the information,
users may potentially expose data to third-parties they do not trust.

1com.alaskajim.{football, bible2, rockmusic}
2com. binarypumpkin.bingo.{easter,usa}
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Finding 7: Applications are displaying untrusted ads in the same
windows as sensitive data requests. We found the same 6 applica-
tions discussed in Finding 5 displaying ads in layouts that requests
sensitive input. Prior work [29] showed that untrusted code can
traverse UIs to steal private data in layouts. For example, an un-
trusted widget loaded within the same view hierarchy can obtain
the root view, and then traverse back down the hierarchy to search
for input widgets with sensitive data. Our �nding demonstrates the
need for mechanisms such as LayerCake [29].
Takeaway: The �ndings from our study motivate the need to ana-
lyze how apps use sensitive data requested through input widgets.
These �ndings were possible due to the availability of reliable user
input semantics from UiRef. Although our analysis is not compre-
hensive, we found several concerning practices and sensitive input
requests with limited manual analysis, further motivating the need
for automated analysis to focus on the apps triaged by UiRef.

7 DISCUSSION
Threats to External Validity: The dataset used in the study may
not be representative of the entire market. To mitigate this threat,
we use proportionate strati�ed sampling to select our dataset, using
the application categories and popularity to form the strata. Further,
UiRef’s outlier detection assumes that the majority of applications
are well behaved and not requesting an extraneous amount of data.
Although this assumption is acceptable for Google Play applications,
this assumption may not be transferable to other markets.
Threats to Internal Validity: UiRef extracts the statically de�ned
layouts from applications. Applications may also dynamically gen-
erate and modify layouts at runtime, and display content in Web-
Views, which may result in false negatives. Reconstructing dynamic
layouts using static analysis is a challenging problem, left as fu-
ture work. Applications may also include unreachable or unused
layouts in the APKs, such as layouts bundled with libraries or as ar-
tifacts from testing. As this characteristic can lead to false positives,
identifying reachable layouts from the applications’ entry points
may mitigate this problem. Although textual labels are commonly
used for internationalization, icons and images may also denote
semantics, leading to false negatives. Integrating optical character
and image recognition can be conducted in future work.

Automatically extracting a comprehensive lexicon of security
and privacy related terms is an open problem and warrants future
investigation. Although an incomplete lexicon may result in false
negatives, as UiRef uses it to determine types of information con-
sidered private, UiRef’s techniques are general and the list can be
substituted once a more comprehensive lexicon becomes available.
Further, users commonly progress through sequences of layouts to
accomplish tasks within applications, such that prior layouts may
provide context into the semantics of the current layout. The lack
of prior context may lead to imprecision when resolving certain
layouts. In future work, we plan to explore leveraging context from
prior layouts in work�ows to assist in resolving semantics.

8 RELATEDWORK
Although there has been a considerable amount of work that fo-
cuses on mobile malware analysis, we limit our discussion to privacy
analysis of mobile applications. TaintDroid [11] pioneered the area
by using dynamic taint analysis to identify Android applications

that leak private information, such as GPS location and device
identi�ers. PiOS [10] and AndroidLeaks [14] are the initial static
analysis duals of TaintDroid for iOS and Android, respectively.
Due to the various challenges associated with statically analyz-
ing Android applications, a number of additional static-analysis
frameworks [12, 13, 15, 24, 25] have been proposed. Other program
information than information �ows is also used to study privacy in
mobile applications. Han et al. [17] compare API calls within iOS
and Android applications, and show iOS applications call signi�-
cantly more privacy-sensitive APIs than their Android counterparts.
In prior work, the privacy semantics of information is unambiguous,
as it comes from a well-de�ned APIs. In contrast, UiRef resolves
privacy semantics from ambiguous user-input APIs.

The act of sending privacy-sensitive information to the net-
work does not constitute a violation. AppIntent [34] pairs screen-
shots with potential privacy leaks for human review. Recent re-
search has sought to lessen the need for human review by using
natural language processing. WHYPER [26], AutoCog [27], and
CHABADA [16] consider the application’s text description to help
infer the user’s expectation of security and privacy relevant ac-
tions. AsDroid [19] checks the coherence between UI text and event
callbacks triggering sensitive behavior. UiRef complements these
approaches by providing comprehensive contextual semantics of
the UI. Pluto [9] assesses user data exposure by resolving the se-
mantics of data originating from well-structured �les (e.g., SQL,
XML, JSON). Closest to our work are SUPOR [18] and UIPicker [22]
for which we provide a detailed comparison in Section 3.

Other work has focused on using program analysis to extract
the structure and sequence of GUIs as intermediate representations.
GATOR [30] extracts GUI-layout hierarchies and transition graphs
for test-input generation by performing static reference analysis
and control-�ow analysis. A3E [7] constructs activity-transition
graphs to drive automated application exploration by using static
taint tracking to resolve intents that �ow to method invocations that
launch activities. Test-input generation and automated exploration
tools would bene�t from UiRef by using it to resolve the semantics
of input widgets, and use such semantics to generate input data.

9 CONCLUSION
While prior studies of Android security and privacy have focused
on information from well-de�ned APIs, they have largely ignored
user inputs as a source of sensitive information. In this paper, we
have presented UiRef for resolving the security and privacy seman-
tics of data entered into input widgets. We have introduced novel
techniques that achieve an overall accuracies of 95.0% at semantics
resolution and 82.1% at disambiguation. We have used UiRef to
perform a large-scale study of 50,162 apps, and identi�ed concern-
ing practices, including insecure exposure of account passwords
and non-consensual input disclosures to third parties. Our �nd-
ings demonstrate that user-input semantics could provide a unique
perspective into improving mobile-app security and privacy.
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A APPENDIX: OUTLIER DETECTION
Due to space constraints, full details on outlier analysis are available
on the project website [5]. The goal of outlier analysis is to identify
abnormal input requests that do not align with the app’s purpose
and functionality. Since di�erent types of apps vary in types of the
data that they request, comparing sensitive input requests across a
broad range of apps is not su�cient to identify outliers. For example,
a �nancial app may be expected to request the user’s income while
a game would not be expected to do so. Therefore, outlier analysis
is performed at the granularity of Google Play’s 25 app categories
(18 game subcategories collapsed into one game category).

To detect outliers for each Google Play category, we �rst manu-
ally collapse sensitive concepts into 75 semantic buckets (e.g., �rst
name and last name are grouped in a person_name bucket). Second,
we apply an unsupervised technique, called the Ranking-based Out-
lier Analysis and Detection (ROAD) algorithm [31], to generate a
ranked list based on the likelihood that a record is an outlier.

We modify the distance function proposed by Ng et al. [23] by
multiplying the dissimilarity score by a probability-based value
weighting function so that rare attribute values have a larger in-
�uence on the score. For example, if most apps do not request the
user’s SSN, it is more signi�cant that an app requests the user’s SSN
than not. Therefore, the attribute value of requesting the user’s SSN
(i.e., rare values) holds more weight in the distance function than
the attribute value of not requesting the user’s SSN (i.e., frequent
values). The weighting function, is the reciprocal of the square root
of the probability that the value occurs in the categorical dataset.
The probability is the frequency of the value divided by the total
number of categorical data records. The weighting function returns
a higher weight for rare occurrences of attribute values. Full details
on the modi�ed distance function and the ROAD setup are available
on the project website [5].
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Table 4: Input Request Outliers Excerpt (Full results on project website [5])

Category k Cluster Concepts

Communication 92 Largest (83)* username_or_email (83), passwd (83)
Outliers (438) phone_num (289), username_or_email (275), passwd (252), person_name (195), location (142), credit_card (59), DOB (43), gender (16), loan_info

(12), job_title (9), serial_num (6), company_name (5), school_name (4), wi�_passwd (2), twitter_passwd (2), service_provider (2), person_age (2),
marital_status (2), mac_addr (2), lic_plate (2), id_num (2), gmail_passwd (2), facebook_passwd (2), education_info (2), device_id (2), bank_acct
(2), vehicle_vin (1), vehicle_info (1), smtp_passwd (1), sim_card (1), religion (1), person_wt (1), person_ht (1), family_contact_phone (1), de-
vice_manufac_info (1), demographic_info (1)

Finance 125 Largest (60)* username_or_email (60), passwd (60)
Outliers (389) username_or_email (235), passwd (234), person_name (222), location (215), phone_num (164), credit_card (86), DOB (66), bank_acct (54), salary

(46), loan_info (43), bank_info (40), SSN (25), gender (25), company_name (19), vehicle_info (10), house_�n_info (5), marital_status (4), job_title (4),
driver_lic_num (4), vehicle_vin (3), person_age (3), lic_plate (3), family_member_name (3), school_name (2), insurance_policy_num (2), birthplace
(2), vehicle_reg (1), tax_id (1), person_wt (1), mint_passwd (1), id_num (1)

Game 56 Largest (425)* username_or_email (425), passwd (425)
Outliers (604) username_or_email (348), person_name (313), passwd (200), location (142), DOB (114), gender (87), credit_card (86), phone_num (83), person_age

(52), demographic_info (10), salary (9), marital_status (9), education_info (9), SSN (3), school_name (3), passport_num (3), twitter_passwd (2), per-
son_wt (2), device_id (2), person_ht (1), loan_info (1), job_title (1), gmail_passwd (1), bank_info (1), bank_acct (1)

Health & Fitness 142 Largest (105)* username_or_email (105), phone_num (105), passwd (105), location (105), loan_info (105), person_name (105), credit_card (105)
Outliers (554) username_or_email (367), passwd (342), person_name (298), location (244), phone_num (194), DOB (193), credit_card (176), gender (105), per-

son_wt (75), person_ht (60), medication_name (18), person_age (17), blood_pressure (10), drug_dosage (9), heart_rate (8), blood_type (8), com-
pany_name (7), body_mass_index (7), loan_info (6), family_member_name (5), job_title (4), blood_glucose (4), prescription_num (3), education_info
(3), demographic_info (3), birthplace (2), bank_acct (2), SSN (1), service_provider (1), serial_num (1), school_name (1), marital_status (1), insur-
ance_policy_num (1), gmail_passwd (1), doctor_email_id (1)

Libraries & Demo 13 Largest(5)* passwd (5), username_or_email (4), person_name (3)
Outliers(18) person_name (12), username_or_email (10), passwd (10), location (10), phone_num (8), credit_card (6), device_id (3), DOB (3), person_age (2), SSN

(1), loan_info (1), gender (1), education_info (1)

Media & Video 48 Largest (49)* username_or_email (49), passwd (49)
Outliers (179) passwd (146), person_name (82), username_or_email (80), location (48), phone_num (45), credit_card (35), DOB (21), gender (9), loan_info (8),

wi�_passwd (6), mac_addr (4), ftp_passwd (3), wi�_ssid (2), twitter_passwd (2), smtp_passwd (2), device_id (2), company_name (2), social_media_url
(1), medication_name (1)

Medical 88 Largest (87)* username_or_email (87), phone_num (87), passwd (87), location (87), person_name (87), DOB (87), credit_card (87)
Outliers (258) username_or_email (196), person_name (160), passwd (155), phone_num (133), location (109), credit_card (68), loan_info (49), gender (32), medica-

tion_name (27), DOB (22), person_age (21), person_wt (15), person_ht (12), blood_pressure (10), drug_dosage (9), prescription_num (6), heart_rate
(6), family_member_name (5), family_contact_phone (4), body_mass_index (3), blood_type (3), blood_glucose (2), twitter_passwd (1), SSN (1), se-
rial_num (1), marital_status (1), insurance_policy_num (1), doctor_email_id (1), device_id (1), company_name (1)

Music & Audio 45 Largest (138)* username_or_email (138), passwd (138)
Outliers (246) person_name (156), username_or_email (152), passwd (134), location (97), phone_num (84), credit_card (59), DOB (43), loan_info (24), gender (21),

company_name (12), vehicle_info (1), twitter_passwd (1), school_name (1), person_age (1), mac_addr (1), id_num (1), device_manufac_info (1)

News & Magazines 60 Largest (163)* username_or_email (163), passwd (163)
Outliers (429) username_or_email (341), passwd (309), person_name (281), location (219), phone_num (161), credit_card (145), company_name (113), DOB (38),

gender (30), loan_info (14), bank_acct (5), service_provider (4), person_age (4), lic_plate (4), twitter_passwd (2), school_name (2), political_a�l (2),
job_title (2), id_num (2), demographic_info (2)

Personalization 27 Largest (134)* username_or_email (134), phone_num (134)
Outliers (93) username_or_email (59), passwd (58), person_name (52), phone_num (41), location (39), DOB (27), credit_card (27), gender (7), loan_info (2), vehi-

cle_vin (1), vehicle_info (1), serial_num (1), salary (1), lic_plate (1), device_id (1), birthplace (1), bank_info (1)

Productivity 108 Largest (95)* username_or_email (95), passwd (95)
Outliers (417) username_or_email (276), passwd (262), person_name (254), location (199), phone_num (178), credit_card (74), DOB (48), loan_info (46), vehicle_info

(43), company_name (43), gender (19), job_title (12), salary (11), insurance_policy_num (7), driver_lic_num (7), lic_plate (6), vehicle_vin (5), SSN
(4), person_age (4), marital_status (4), bank_info (4), bank_acct (4), serial_num (3), person_ht (3), device_id (3), twitter_passwd (2), sim_card (2),
school_name (2), person_wt (2), gmail_passwd (2), wi�_passwd (1), vehicle_reg (1), student_id (1), religion (1), nq_account_passwd (1), mac_addr
(1), gritsafe_passwd (1), family_contact_phone (1), blood_type (1)

Shopping 81 Largest (108)* password (108), username_or_email_address (72), full_name (72), phone_number (36), location_info (36), loan_info (36), credit_card_info (36)
Outliers (214) username_or_email_address (148), location_info (132), password (115), full_name (110), phone_number (98), credit_card_info (73), date_of_birth

(26), gender (21), bank_account_info (20), bank_info (17), company_name (15), person_age (5), loan_info (3), vehicle_info (2), twitter_password
(2), person_weight (2), person_height (2), vehicle_vin (1), tax_id (1), service_provider (1), school_name (1), native_language (1), marital_status (1),
license_plate (1), issue_date (1), �ight_number (1), family_member_name (1)

Social 108 Largest (84)* username_or_email (84), passwd (84)
Outliers (420) username_or_email (312), passwd (290), person_name (260), location (208), phone_num (188), DOB (110), credit_card (85), gender (68), person_age

(23), loan_info (22), job_title (12), school_name (7), company_name (6), marital_status (4), education_info (4), twitter_passwd (3), blood_type (2),
vehicle_info (1), serial_num (1), person_wt (1), �ight_num (1), family_member_name (1), family_contact_phone (1), citizenship (1)

Tools 109 Largest (157)* username_or_email_address (157), password (157), location_info (157), full_name (157), credit_card_info (157), phone_number (156), date_of_birth
(155)

Outliers (634) password (317), username_or_email_address (301), location_info (219), phone_number (189), full_name (168), credit_card_info (51), date_of_birth
(35), gender (28), loan_info (13), company_name (13), person_weight (11), mac_address (10), bank_account_info (10), person_height (9), per-
son_age (6), wi�_password (5), serial_number (5), school_name (5), device_id (5), wi�_ssid (4), salary (4), vehicle_info (3), job_title (3), id_number
(3), gmail_password (3), driver_license_number (3), service_provider (2), mother_birth_place (2), license_plate (2), twitter_password (1), so-
cial_security_number (1), smtp_password (1), medication_name (1), marital_status (1), insurance_policy_number (1), house_�nancial_info (1),
ftp_password (1), education_info (1), drug_dosage (1), driver_id (1), class_name (1), citizenship (1)

Transportation 89 Largest (35)* location (35)
Outliers (244) username_or_email (185), person_name (152), passwd (147), location (141), phone_num (140), credit_card (71), bank_acct (23), vehicle_info (20),

loan_info (13), �ight_num (13), DOB (13), company_name (11), gender (7), vehicle_vin (6), insurance_policy_num (5), driver_lic_num (5), device_id
(5), lic_plate (3), job_title (3), school_name (2), person_wt (2), person_ht (2), bank_info (2), vehicle_reg (1), twitter_passwd (1), service_provider (1),
guardian_email (1), family_member_name (1), family_contact_phone (1), driver_id (1)

Travel & Local 108 Largest (111)* location (111)
Outliers (806) username_or_email (653), passwd (598), person_name (515), location (495), phone_num (371), credit_card (299), gender (129), DOB (115), loan_info

(92), company_name (20), �ight_num (13), SSN (9), vehicle_info (7), person_age (5), bank_acct (4), service_provider (3), twitter_passwd (2), id_num
(2), driver_lic_num (2), driver_id (2), citizenship (2), school_name (1), person_wt (1), person_ht (1), native_language (1), lic_plate (1), job_title (1),
demographic_info (1), bank_info (1)

Weather 20 Largest (40) location (40)
Outliers (51) username_or_email (38), location (34), passwd (30), person_name (17), phone_num (9), mac_addr (2), DOB (2), credit_card (2), company_name (1)
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