
Removing the Reliance on Perimeters for Security
using Network Views

Iffat Anjum
NC State University
Raleigh, NC, USA

Daniel Kostecki
Northeastern University

Boston, MA, USA

Ethan Leba
Northeastern University

Boston, MA, USA

Jessica Sokal
Northeastern University

Boston, MA, USA

Rajit Bharambe
NC State University
Raleigh, NC, USA

William Enck
NC State University
Raleigh, NC, USA

Cristina Nita-Rotaru
Northeastern University

Boston, MA, USA

Bradley Reaves
NC State University
Raleigh, NC, USA

ABSTRACT
Traditional enterprise security relies on network perimeters to
define and enforce network security policies. Emerging application-
focused Zero Trust architectures attempt to address this long-
standing challenge by moving business applications to the cloud
and performing enhanced identity and access control checks within
a web gateway. However, these solutions ignore the security needs
of workstations, development servers, and device management in-
terfaces. In this work, we proposeNetwork Views (abbrev. NetViews)
for least-privilege network access control where each host has a
different, limited view of the other hosts and services within a net-
work. We present an SDN-based design and demonstrate that our
implementation has network latency and throughput comparable
to baseline reactive forwarding. We further provide an optimization
for multi-connection flows that significantly reduces both redun-
dant access control checks and forwarding state storage in switches.
As such, NetViews provides a practical primitive for removing the
reliance on security perimeters within enterprise networks.

CCS CONCEPTS
• Networks→ Network manageability; • Security and privacy
→ Network security.

KEYWORDS
enterprise network security, zero trust architectures, software-
defined networking, least-privilege

ACM Reference Format:
Iffat Anjum, Daniel Kostecki, Ethan Leba, Jessica Sokal, Rajit Bharambe,
William Enck, Cristina Nita-Rotaru, and Bradley Reaves. 2022. Removing the
Reliance on Perimeters for Security using Network Views. In Proceedings
of the 27th ACM Symposium on Access Control Models and Technologies
(SACMAT) (SACMAT ’22), June 8–10, 2022, New York, NY, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3532105.3535029

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’22, June 8–10, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9357-7/22/06. . . $15.00
https://doi.org/10.1145/3532105.3535029

1 INTRODUCTION
Enterprise networks traditionally rely on perimeters for defense.
Perimeters provide boundaries both at the WAN access edge as well
as at critical points within the network. However, this moat-and-
gate approach for network access control has not aged well as the
functional needs of enterprise networks have evolved. This lack of
defense-in-depth enables both ransomware and advanced persistent
threat (APT) adversaries to advance towards critical targets inside
the network (e.g., Solorigate [20], NotPetya [4]).

Zero Trust architectures (e.g., NIST SP 800-207 [57]) remove the
reliance on network perimeters for defense. The Zero Trust model
promoted by Google’s BeyondCorp [68] and the recent US White-
house memo M-22-09 [55] focuses on applications, removing the
network from consideration altogether. In this idealized environ-
ment, a cloud-based web application gateway authenticates users,
the accessing device, and uses behavior analytics to determine if
the request should be forwarded to the target web application.

However, even if business applications can be moved into the
cloud, on-premeses networks cannot be ignored. Enterprise net-
works often contain on-premises development servers, file servers,
and device management interfaces. Furthermore, both Solorigate
and NotPetya spread using network services commonly left open
on workstations, motivating stronger defenses within networks.
Indeed, both SP 800-207 andM-22-09 note the potential need for log-
ical micro-segmentation as an isolation strategy. However, micro-
segmentation does not solve the root of the problem. Rather, it
exposes the complex communications needs of real networks, re-
quiring network engineers to continually redefine new network
boundaries and firewall rules between them. In contrast, we argue
that networks should define defense at the granularity of individual
devices, embracing the communication needs of those devices and
extending the existing flexible and dynamic enterprise role- and
attribute-based policies into the network.

The technology needed to achieve this vision exists and is com-
mercially available. Software Defined Networking (SDN) technolo-
gies such as OpenFlow [42] and P4 [7] provide opportunities to
create flexible and reactive policies. However, prior work has fo-
cused primarily on enforcement mechanisms, identifying novel
ways of using forwarding rules to improve performance (e.g., Flow-
Tags [16], PSI [71], Alpaca [32], Kinetic [35]). Proposals that do
consider access control (e.g., Ethane [11], FML [26], Alpaca [32])
do not capture the dynamicity and scalability requirements of en-
terprise environments.

https://doi.org/10.1145/3532105.3535029
https://doi.org/10.1145/3532105.3535029

In this paper, we propose Network Views (NetViews for short)
as an abstraction and model for access control within enterprise
networks that provides a fine-grained least-privilege network ac-
cess control. In this model, each host has a different “view” of what
other hosts and services exist in the network. We designed and built
a prototype of NetViews and find that even on a heavily loaded net-
work, both new and established flows have latency and throughput
comparable to baseline reactive forwarding. Our security analysis
on a concrete reference topology demonstrates the effectiveness of
NetViews in reducing reachability, improving overall security.

We make the following contributions in this paper.
• We propose an access control model supporting the NetViews
abstraction. The model is based on NIST’s Next Generation
Access Control (NGAC) policy language [19] and allows
flexible management of network connectivity.

• We design and implement NetViews as an SDN application.
NetViews leverages ONOS’s Intent [22] framework for ef-
ficient management of forwarding rules in switches. Our
Mininet-based performance evaluation using three represen-
tative topologies shows latency and throughput comparable
to baseline reactive forwarding.

• We provide a multi-connection optimization that significantly
reduces redundant access control policy checks and forwarding
state in switches. We show that a 5-tuple flow definition (𝑠𝑖𝑝 ,
𝑠𝑝𝑜𝑟𝑡 , 𝑑𝑖𝑝 , 𝑑𝑝𝑜𝑟𝑡 , 𝑝𝑟𝑜𝑡𝑜) of access control is unnecessarily
strict, and that allowing any 𝑠𝑝𝑜𝑟𝑡 does not sacrifice security.
This optimization significantly reduces the tertiary content
addressable memory (TCAM) requirements for switches.

Note that throughout the paper we assume the enterprise net-
work has been fully provisioned with a reactive SDN technology
such as OpenFlow. However, a full deployment is not necessary in
practice. Brockelsby andDutta [8] recently found that most network
traffic in access switches in university networks is north-south. In
doing so, they show that legacy switches with VLAN capabilities
can be used to isolate all traffic in the access switch layer, forcing
it to a more capable distribution switch with SDN capabilities. We
leave the exploration of such architectures to future work.

Availability: The source code for our NetViews implementation is
available at https://github.com/netviews/ss-netviews.

2 MOTIVATION
The goal of Zero Trust is to “prevent unauthorized access to data
and services coupled with making the access control enforcement as
granular as possible” [57]. Emerging application-focused solutions
such as BeyondCorp [68] move business applications to the cloud
and place them behind web gateways that perform enhanced iden-
tity and access control checks. However, such application-focused
solutions ignore the workstations, development servers, and device
management interfaces that remain in the on-premises network.
Figure 1 shows an example enterprise network consisting of several
floors of a building. Consider a traditional network architecture
where the dashed boxes represent coarse security domains, where
firewalls enforce access control at the perimeter of each domain.

Organizations struggle with the growing threats of ransomware
and APT attacks, where the attacker initially gains access to a
single host. The attacker then is able to move freely within the

Internet

Server Farm

E-mail

DNS

printer1

IPphone1
LAN1 PC1

HR Floor

PC2

PC3

server1
server2

M1

L1L2

L4

AP1
AP2

Developer Floor

PC5 AP3

Inside
Outside

Figure 1: Example Enterprise Network

perimeter until it finds a host that is allowed to connect to a host
in a different perimeter. It progressively moves across the network
until it achieves its goal of accessing high-value information and
resources like customer data or code repositories.

NotPetya, a malware attack that dominated the year 2017 [4, 13],
took advantage of the lack of least privilege policy and granular
enforcement. NotPetya propagated through a combination of vul-
nerabilities in the Microsoft SMB service running on specific TCP
ports (tcp/139, tcp/445) as well as compromised user credentials.
These stolen credentials gave the attacker additional authority to
exploit other reachable hosts via the vulnerable file and network
information sharing service. Later, in the 2020 Solorigate event
[20, 44], attackers used a remote PowerShell (tcp/5985, tcp/5986),
which is often enabled on the hosts to allow administrators to scale
administration tasks. However, due to of the lack of the least privi-
lege policy within the network, those remote PowerShell commands
could originate from anywhere in the network, not necessarily from
machines associated with specific network administrators. These
examples demonstrate the need for a new network access control
abstraction to severely limit or slow down lateral movement. In both
cases, the specific network ports on hosts were left open for admin-
istrative purposes. While host-based firewalls could theoretically
limit access by IP address, managing those in mass deployments is
complicated and error-prone. In contrast, a network-centric enforce-
ment of fine-grained, least-privilege policies would significantly
reduce the attack surface.

Enforcing fine-grained, least-privilege network connections be-
tween hosts requires a corresponding access control policy. Existing
methods of specifying firewalls will not scale to the tens of thou-
sands of potential connections between clients and server ports.
Furthermore, the policy will constantly change as personnel roles
and organizational objectives are updated over time. Consider a
developer, Alice, who sits on the developer floor (Figure 1) working
from L2 and needs access to Git on server2. Right before a meeting
with her manager, who is on the HR floor, Alice needs to print a
project report on printer1. Alice’s meeting went exceptionally well,
and she is promoted to a management position with a large office
on the HR floor. However, during the transition, Alice still needs
access to the Git server on server2 to finish a project, as well as to
be available to fix bugs until she can train a replacement. There can
be multiple users like Alice in the enterprise, which makes the over-
all security maintenance complex, and can lead to inconsistencies
among different perimeters.

https://github.com/netviews/ss-netviews

Threat Model and Assumptions: NetViews seeks to provide an
access control framework for enterprise environments (e.g., govern-
ment, university, military, corporate). We assume both insider (e.g.,
authenticated users, services) and external (e.g., exploited software,
IoT devices) attackers. The goal of attackers is to compromise de-
vices, exfiltrate data, or disrupt enterprise services. Attackers may
compromise user passwords and multiple hosts, pivoting through
the network to accomplish their goals. Our trusted computing base
includes all implementation components of NetViews. We assume
the SDN infrastructure, including controller and switches, is se-
curely deployed (e.g., out-of-band or TLS-protected southbound
communication) and free of errors. We assume all installed SDN ap-
plications are benign and free of errors. We also assume appropriate
defenses are deployed to mitigate known DoS concerns for reactive
forwarding (e.g., PacketIn flooding). Finally, we assume the enter-
prise network has a secure and robust authentication mechanism
for users and services.

3 OVERVIEW
We seek to restrict the lateral movement used by APTs and ran-
somware by enhancing network environments with granular, least-
privilege access control of network flows between hosts. Achieving
this goal requires overcoming the following research challenges.

• Policy must apply to every network packet. Achieving com-
plete mediation of network traffic requires the ability to
inspect every packet sent by and received from every host.
Forcing traffic through choke-points induces unnecessary
latency and reduces network reliability.

• Policy enforcement must be fine-grained. At fine-granularity,
not all of the policy can be precomputed (e.g., client source
ports). Even if it could be precomputed, the policy size would
be too large to store in network switches.

• There is a semantic gap between networking primitives and
an enterprise’s organizational structure. The roles and duties
of employees change in response to organizational needs.
Network administrators should not be expected to manually
translate changes in roles into changes in firewall policy.

Reactive SDN architectures such as OpenFlow provide the ability
to perform complete mediation of all packets sent by and received
from every host without forcing traffic choke-points. In a reac-
tive setup, switches send PacketIn messages to a logically central
controller whenever they encounter a packet that does not match
an existing forwarding rule. The controller responds to a Packet-

In message with a FlowMod message, which tells the switch which
port to forward the packet to as well as a rule for matching future
packets. Thus, reactive SDN only incurs additional latency on the
first packet for the rule, and subsequent packets are forwarded
at line-speed. The need for additional PacketIn messages depends
on the granularity of the match rule, which can be coarse (e.g.,
based on a CIDR prefix or MAC address) or fine-grained (e.g., based
on a 5-tuple of source IP, source port, destination IP, destination
port, transport-layer protocol). Switches have a limited amount of
TCAM for storing flow rules, and old rules may be expunged if the
TCAM fills. Therefore, care must be taken when using fine-grained
forwarding rules.

NetViews
Controller

S1
[10.0.10.10]

P1
[10.0.0.13]

PC1
[10.0.0.10] PC2

[10.0.0.12]

Internet

Policy
Engine(4) Can Alice

connect via
tcp/22 to S1?

Identity Mapping
Service

(2) Get Identities:
 [10.0.0.10, 10.0.10.10]

(3) Identities:
 [10.0.0.10: host: PC1, user: Alice]
 [10.0.10.10: host: S1]

Policy Input

(6) Flow-rules
(1) New Flow:
[10.0.0.10, 30212,
 10.0.10.10, 22,
 tcp]

(5) Decision

Figure 2: Overview of NetViews design portraying the neces-
sary components and a possible interaction among them.

Prior work [11, 26, 49] has proposed reactive SDN for enforcing
access control of network flows between hosts. However, their
policy models are either non-existent or based on groups, which
cannot reflect the permission hierarchy and dynamic nature of an
enterprise [58, 59]. Alpaca [32] incorporates roles into IP address
assignments to enable efficient packet enforcement in forwarding
devices; however, the number and granularity of roles are limited. In
contrast, we adopt NIST’s NGACmodel [17, 19], which can describe
role (RBAC) and attribute (ABAC) based policy models, as well as a
range of dynamic policy features. We overcome the performance
limitations of prior fine-grained match rules by (1) building on top
of the Intent primitive in the ONOS SDN controller to proactively
send FlowMod messages to all switches on a forwarding path as
soon as the PacketIn message at the first switch is received; and
(2) using a multi-connection optimization that slightly expands the
match rule without sacrificing security. In doing so, we envision
an enterprise can simply extend their existing organization policy
into the network.

Figure 2 shows a high-level overview of the NetViews design
depicting the key logical components: (1) the NetViews controller,
(2) the identity mapping service, (3) the policy engine, and (4) an
SDN data plane with reactive forwarding. When the data plane
encounters an unknown flow, the NetViews controller receives the
event (Step 1). The NetViews controller then queries the identity
mapping service to translate flow IP addresses into the user and
host information referenced by the policy (Steps 2 and 3). Next,
the NetViews controller queries the policy engine using the de-
rived user and host, as well as the Layer-4 connection information,
e.g., tcp/22, (Step 4). If the policy decision is deny, then the flow
is dropped. However, if the policy decision is allow (Step 5), the
NetViews controller installs forwarding rules in all switches on the
determined path from the source to the destination (Step 6). For-
warding rules are defined for the network flows in both directions.

4 NETVIEWS POLICY MODEL
A key contribution of this paper is the integration of a flexible access
control policy model into a least-privilege network environment.
By building upon NIST’s NGAC, NetViews benefits from decades
of access control research. NGAC’s flexibility also allows NetViews
to integrate with enterprises currently using both role and attribute
based policies, assuming suitable tools to transform RBAC and
ABAC policies into an NGAC policy.

Existing policy models such as NGAC, RBAC, and ABAC assume
a traditional operating system environment. This section addresses

two key questions: (1) How should NGAC policy concepts capture
network primitives while bridging the semantics? And (2) What are
the semantics of an allow decision and also how should the networking
infrastructure respond to an allow decision?

4.1 Users, Objects, and Access Rights
The NGAC model [19] defines authorized users (𝑈), processes (𝑃),
objects (𝑂), user and object attributes (𝑈𝐴 and 𝑂𝐴), policy classes
(𝑃𝐶), operations (𝑂𝑝), and access rights (𝐴𝑅). A key question for
our work is how to encode these essential elements with network
access control concepts.

While the full NGAC policy model is too complex to describe
here, the goal of an NGAC policy is to determine if a user (𝑢 ∈
𝑈) has sufficient access rights (𝑎𝑟𝑠 ∈ 2𝐴𝑅1) for an object (𝑜 ∈ 𝑂).
Much of NGAC’s flexibility comes from its use of attributes (𝐴𝑇),
defining both user attributes (𝑈𝐴) and object attributes (𝑂𝐴), where
𝐴𝑇 = 𝑈𝐴 ∪𝑂𝐴. By definition, every object is considered an object
attribute (𝑂 ⊆ 𝑂𝐴). Users, objects, and attributes are assigned to
other attributes in a hierarchical fashion. For example, if a user 𝑢 ∈
𝑈 is assigned to a user attribute 𝑢𝑎 ∈ 𝑈𝐴, then 𝑢𝑎 is said to contain
𝑢. Semantically, 𝑢 will inherit all of the rights granted to 𝑢𝑎. Access
rights are granted via associations (𝑈𝐴 × 2𝐴𝑅1 ×𝐴𝑇) that specify a
user attribute has a specific set of access rights on a target attribute,
e.g., ⟨𝑢𝑎, 𝑎𝑟𝑠, 𝑎𝑡⟩. Finally, NGAC supports two additional types of
relations: user-based prohibitions can override access granted by an
association, and obligations are defined as event-response relations.
It is possible to have events trigger obligations and dynamically
update policy. Furthermore, the policy configuration can be set
up or updated manually by an administrator or through an event
processing module for a dynamic update.
Users:We primarily focus on user workstations. We assume that
each host on the network has at most one user at any given time, and
a single user entity can access the network from different hosts. This
assumption is realistic, even for shared workstations that require
users to login (e.g., via Active Directory), as the domain controller
can inform the network infrastructure which user is associated with
a host. For servers, we assume the use of per-user virtual machines,
in some cases, the “user” for the server may not be a physical
person but rather an abstract user to perform a task. Containers
could also be handled similarly, assuming proper bookkeeping by
the orchestration platform and perspective into the networking
primitives (e.g., IP addresses) within the container platform.

NetViews decides whether or not an IP packet should be for-
warded. This decision must be based on the network flow 5-tuple
information available in the packet. Given the expressiveness of
NGAC, the assignment of users and user attributes to other user
attributes can capture the relationships between IP addresses, hosts,
and real users. Therefore, we mapped NGAC’s definition of 𝑢𝑠𝑒𝑟
with the real ⟨𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒⟩ pair and used a separate identity map-
ping service to translate the network flow 5-tuple to the ⟨𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒⟩
pair. However, changing the device does not change a user’s role; it
can only introduce some extra capabilities or restrictions. For this
reason, we decided to maintain a unique user identifier for each
user and consider it as a first-hop user attribute.
Objects and Access Rights: Given the identity mapping service,
NGAC objects could be hosts or TCP ports on a host. TCP ports map

Department

local

HR-U DEV-U

alice B C

⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ ⟨𝐴𝑙𝑖𝑐𝑒, 𝑃𝐶1⟩ ⟨𝐵, 𝑃𝐶2⟩ ⟨𝐶, 𝑃𝐶3⟩

SF HR DEV

domain mail printer server remote-cpu

DNS Email printer1 server1 pc3

udp/53
arp

tcp/25
tcp/993
arp

tcp/22
arp

tcp/515
arp

tcp/22

Figure 3: NetViews policy example with four user-device
pairs (blue) and five resource or objects (yellow). Downward
blue arcs denote associations and their corresponding rights
(e.g., tcp/22). The upward red arc denotes a prohibition and
the restricted rights.

to server applications, which could be suitable objects. Hosts could
then be object attributes that contain the TCP port objects. However,
this design is incompatible with aspects of network operation. For
example, it does not naturally capture how to control access to
ARP, which is a prerequisite for most IPv4 flows. Since our goal
is to define a model for visibility, it is more natural to map NGAC
objects to server hosts and manage TCP/UDP ports, ICMP, and ARP
as NGAC access rights.
Example NetViews Policy Scenario: Figure 3 depicts a small
example NetViews policy for the network topology in Figure 1.
The policy includes a single policy class, a set of users 𝑈 , and a
set of objects 𝑂 . The policy also shows a set of user attributes
𝑈𝐴 = {u1, u2, u3, HR-U, DEV-U, local} and a set of object attributes
𝑂𝐴 = 𝑂 ∪ {domain, mail, printer, server, remote-cpu, SF, HR, DEV}.
The black lines with arrows depict assignmentswhich correspond to
the notion of containment. For the object side of the policy, attribute
containment indicates that access rights are given to a set of objects.

The figure depicts associations as downward blue arcs labeled
with a set of access rights. Recall that an association ⟨𝑢𝑎, 𝑎𝑟𝑠, 𝑎𝑡⟩
specifies that all users contained by user attribute 𝑢𝑎 have access
rights 𝑎𝑟𝑠 for all policy elements contained by 𝑎𝑡 . The figure also
depicts prohibitions as upward red arcs labeled with a set of ac-
cess rights. There are several different types of NGAC prohibitions
that provide flexibility in how the original set of access rights is
restricted. Interested readers are referred to the NGAC specifica-
tion [19] for more details.
NetViews Policy Language and Maintenance: NetViews lever-
ages NGAC’s existing language and policy specification tools. The
policy configuration can be set up or updated manually by an ad-
ministrator or through an event processing module for a dynamic
update. The events can trigger obligations and in turn dynamically
update the policy. NGAC follows an administrative policy model
consisting of administrative policy elements (e.g., admin rights, as-
sociations, prohibition, obligations, and routines). We exclude these
administrative aspects for simplicity. Currently, both JSON and GUI-
based graph specification is available. As the NGAC project evolves,
NetViews will continue to benefit from new features and usability
enhancements. In current setup, an administrator needs to identify

subjects, access rights, and objects and write the specifications for
generating a meaningful policy.

4.2 NetViews Identity Mapping Service
NetViews requires an external service to map the network packet
5-tuple information to real user-devices and server hosts. Usually
the identity mapping is relatively static with respect to the rate
of IP packets traversing the network. Therefore, identity mapping
updates are not on the critical path for access control decisions.

NetViews’s identity mapping service must coordinate with the
identity services used by the enterprise. The most straightforward
scenario is traditional enterprise network environments that use
static DHCP to allocate IP addresses to known hosts. They also rely
on MAC address-based allow lists to prevent MAC address spoofing.
In environments that use 802.1x [31], the identity mapping ser-
vice needs to coordinate with the authenticator and authentication
server (e.g., RADIUS) to determine the policy user that corresponds
with the supplicant. Additional security protection against IP and
MAC address spoofing can be provided by enhanced solutions such
as SECUREBINDER [29]. For environments with shared hosts that
authenticate via a domain controller (e.g., Microsoft Active Direc-
tory), the identity mapping service can coordinate with the domain
controller to associate hosts with the currently logged-in user.

Finally, when the mapping between IP address and policy iden-
tity is dynamic, the NetViews controller should be notified when a
mapping is invalidated (e.g., logout). Ideally, logout events should
cause the NetViews controller to remove corresponding forward-
ing rules. However, given sufficiently short forwarding rule idle
timeouts (e.g., the ONOS default is 10s), allowing the rules to expire
will provide sufficient security in most deployments.

4.3 Access Control Semantics
Unlike in OS access control, where enforcement is needed just in
one direction of the communication (for example, enforcing access
control on a process reading a file), network access control must
allow network flows in both directions for successful network com-
munication. Specifically, stateless firewalls (also known as stateless
firewall filters and access control lists) must define rules that allow
flows in both directions. They consider each packet in isolation,
using Layer 3 and 4 header flags to differentiate the first packet in a
connection from the reply traffic. In contrast, stateful firewalls only
define rules for connection initiation and then track the connection
to allow all subsequent packets in both directions. Stateful firewalls
are generally viewed as more secure and have replaced nearly all
stateless firewalls. The primary benefit of stateful firewalls is that
they prevent many types of network scanning commonly used for
reconnaissance before an attack, e.g., ACK scanning.
NetViews Enforcement Semantics: NetViews assumes an SDN
network configured with reactive forwarding.When a client 𝑐 sends
its first packet to a server 𝑠 , the NetViews policy is consulted. If the
packet is allowed, the NetViews SDN controller installs forwarding
rules that match the 5-tuple network flows for both directions.1
These forwarding rules are installed in all switches on the path
between 𝑐 and 𝑠 . We note that NetViews relies on the underlying

1As discussed in Section 5, determining the forwarding rule for reply traffic for non-
TCP packets requires some consideration.

NetViews Application

ONOS Controller

Flow Manager
Module

Identity Mapping
Module

Policy Engine
Module

(1) Packet-In

(3) Source /
Destination
addresses

(5) [src, dst,
 proto:port]

(8) Flow-Mods

(2) Packet-In (7) Intent-rules

(6) Allow / Deny

(4) Source /
Destination
Identities

Figure 4: NetViews prototype implementation.

SDN controller (e.g., ONOS) and installed forwarding applications
to determine the specific forwarding path.

Unlike stateful firewalls, NetViews does not track TCP connec-
tion state. However, installing 5-tuple matching forwarding rules
for both directions provides equivalent security. The server 𝑠 can-
not send a packet to the client 𝑐 before 𝑐 initiates the connection.
Switches on the forwarding path simply could not deliver the packet.
Furthermore, for the above semantics, 𝑠 can only send packets to
the specific TCP port on 𝑐 that initiated the connection. It can do so
only for the lifetime of the forwarding rule, which will timeout after
a predefined period (e.g., 10 seconds). Similarly, a malicious host
𝑚 on the network cannot send packets to any other host without
consulting the NetViews SDN controller.
Multi-ConnectionOptimization: SDN switches cannot efficiently
manage a large number of forwarding rules. In an OpenFlow-based
network, installing FlowMod rules for each 5-tuple flow may over-
flow the TCAM in the switches, causing increased PacketIn events
and significantly degrading network performance. However, we
observe that the above enforcement semantics are more strict than
required. Instead of matching the specific client TCP port, NetViews
can install forwarding rules that match any client TCP port. This
change will significantly reduce the number of required forwarding
rules for application protocols such as HTTP that require clients to
make many TCP connections to the same server and port.

We observe that this performance optimization (not matching
5-tuple) does not have a significant negative impact on security.
The only hosts that can exploit the more permissive forwarding
rules are hosts to which connections have already been permitted.
Furthermore, with reasonable forwarding rule timeouts, the risk
is further reduced. Thus, NetViews’s goal of controlling network
visibility and preventing reconnaissance through network scanning
is still achieved. In summary, the perimeter-less and least-privilege
nature of NetViews eliminates the need for stateful tracking to
prevent reconnaissance via network scanning.

5 NETVIEWS IMPLEMENTATION
Our NetViews prototype implementation is built as an SDN ap-
plication on top of ONOS version 2.3.0. It does not require any
modification to the ONOS controller, which simplifies code main-
tenance and allows deployments into existing ONOS installations.
As shown in Figure 4, the NetViews application consists of three
logical components: the flow manager, the policy engine, and the
identity mapper. While our implementation combines all function-
ality in one application, alternative implementations could easily
decouple the three components to enhance scalability.

5.1 Flow Manager
OpenFlow reactive forwarding applications receive PacketIn events
whenever a switch receives a packet that does not match any of
its forwarding rules. The PacketIn event contains packet header
information, including the Layer 2, 3, and 4 protocol types and
identifiers. Forwarding applications commonly respond to PacketI-

n events by sending FlowMod messages to the originating switch. A
FlowMod message contains a set of match criteria (e.g., source and
destination IP) and an action (e.g., forward out physical port 3). The
switch uses the FlowMod message to update its forwarding rules.

Since the entire forwarding path can be determined at the time
of the first PacketIn from the switch closest to the source, it is ineffi-
cient to wait for the PacketIn events from the subsequent switches
on the forwarding path. As such, an SDN forwarding application
can avoid additional delays for delivering the first packet by proac-
tively sending FlowMod messages to the subsequent switches in
hope of preventing additional PacketIn events. However, managing
many different FlowMod rules for many switches can become very
complex. To ease the development of applications, ONOS provides
a forwarding primitive called an Intent [1], which provides a one
big switch abstraction similar to Pyretic [46]. An ONOS Intent [1]
defines match rules. ONOS compiles an Intent and manages all of
the FlowMod messages for individual switches. Our implementation
relies on ONOS’s existing forwarding path algorithm.
Identifying Reverse Flow: For each authorization, NetViews in-
stalls one Intent for each direction of network traffic. Identifying
the reverse flow for TCP connections is straightforward, as the TCP
port information is symmetric. However, not all protocols use sym-
metric identifiers. For example, ICMP packets use type information
(e.g., ECHO, REPLY) to indicate the direction of the flow. Since most
firewalls drop nearly all ICMP types, NetViews currently only han-
dles ICMP Ping messages, defining a match rule for REPLY for the
reverse flow. In contrast, ARP packets must be handled differently.
While ARP packets do not contain an IP header, they do include
the source and destination IP address in the protocol address in-
formation. However, ARP spoofing attacks could allow an attacker
to circumvent the policy. Fortunately, SDN controllers can miti-
gate ARP spoofing using a proxy ARP approach. That is, NetViews
maintains a mapping between IP addresses and MAC addresses
(e.g., from static DHCP configuration). When NetViews receives
a PacketIn for an ARP request at the first switch, it consults the
mapping and performs an access control check to determine if the
ARP request is allowed by the policy.
Intent Installation: The Intent installation implementation was
more subtle than initially expected. ONOS’s Intent framework uses
a TrafficSelector object that identifies a subset of network traffic
based on packet header fields and patterns. The framework then
compiles the Intent into a set of FlowRule objects that are installed
to switches on the path. A reactive Intent application creates Intents
in response to PacketIn events. While the Intent is being compiled
and installed, a similar PacketIn may occur. In order to avoid creat-
ing duplicate Intents, Intent applications deterministically create
an Intent key based on packet characteristics. When a PacketIn

that matches the key of an Intent pending installation, a PacketOut

message is returned. A PacketOut message instructs the switch to

forward a given packet but not update its forwarding rules. Many
PacketIn events may occur before the Intent is fully installed.

We began by modeling ONOS’s sample Intent reactive forward-
ing (ifwd) application. However, there are significant differences.
First, ifwd only requires one Intent, because it matches packets
using an empty TrafficSelector. In contrast, NetViews uses a non-
empty TrafficSelector to match Layer 3 and 4 information and
hence needs Intents for both directions.

The second key difference involves the creation of the Intent key
and has subtle implications on handling PacketIn events that occur
for the reverse flow. ifwd defines its Intent key by concatenating the
device IDs in lexicographical order. As such, PacketIn events for
the reverse flow will match the Intent key. In contrast, NetViews
requires two Intents with fine-grained keys. The Intent key for the
forward direction is defined by concatenating the source IP, source
MAC, destination IP, destination MAC, protocol, and destination
port. The Intent key for the reverse direction reorders these values,
predicting the order of the reverse flow. The Intent key for the
reverse flow also appends the value “RETURN” to distinguish it from
a new flow, which would require an access control check. To quickly
identify reverse flows, NetViews implements a local cache of return
keys, releasing the packet with a PacketOut on cache hit.

Finally, theONOS Intent framework does not support idle-timeout
for the Intent itself. As a result, whenever a particular flow rule
expires after an idle-timeout period (default, 10 seconds), the Intent
API reinstalls the flow rule. Therefore, NetViews stores a times-
tamp for each installed Intent. It uses a separate thread to deactivate
Intents after a pre-specified period (10 seconds in our implemen-
tation). Note that Intent deactivation does not trigger flow rules
expiration, and therefore the packets will continue to be forwarded
without consulting the NetViews controller as long as the client-
server communication continues.

Note that both the ONOS Intent and FlowMod timeouts are an ad-
ministrative trade-off between security and performance. A shorter
idle-timeout will result in greater PacketIn events. A longer idle-
timeout provides a compromised account or malicious insider more
opportunity to connect to network resources. However, for most
scenarios a timeout on the order of seconds is reasonable. For ex-
ample, removing the access of a fired employee requires a policy
administrator to manually change the policy, an action that may
take on the order of tens of minutes in a typical organization.

5.2 Policy Engine
The policy engine module is based on the reference implementa-
tion of NGAC [30]. Specifically, we used the policy-machine-core

project, which provides core components of the NIST Policy Ma-
chine. It includes APIs to manage NGAC Graphs (we use the JSON
interface), query the access state of a graph, and explain why a
user has permissions on a particular resource. There are four main
packages in the core library: the Policy Information Point (PIP),
the Policy Administration Point (PAP), the Event Processing Point
(EPP), and the Policy Decision Point (PDP). The PIP package pro-
vides the necessary interfaces (and in-memory implementations)
for managing an NGAC graph, prohibitions, and obligations. A com-
bination of the PAP and PDP allows NetViews to request permission
decisions using user identity, object identity, and permission-type.

5.3 Identity Mapping Service
Our NetViews implementation assumes a static identity mapping
managed via a configuration file that is auto-generated after manual
administrative actions. This scenario corresponds to static DHCP
assignments, which are used by many enterprises and universi-
ties. The identity mapping module loads a simple configuration
file to populate a data structure that maps a ⟨𝐼𝑃,𝑀𝐴𝐶⟩ pair to a
unique ⟨𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒⟩ pair for users and a unique 𝐼𝐷 for servers. As
discussed in Section 4.2, more dynamic scenarios that use 802.1x
authentication (e.g., WPA Enterprise) requires a communication
interface with RADIUS and DHCP servers. To minimize first-packet
latency in dynamic scenarios, identity maps should be cached lo-
cally and invalidated on DHCP release. We leave the implementa-
tion of a dynamic identity mapping service to future work.

6 SECURITY ANALYSIS
NetViews significantly reduces an attacker’s ability to move later-
ally within a network, even if it has compromised user credentials.
This section provides a concrete demonstration of this benefit using
our reference topology in Figure 1. Specifically, we use reachability-
based attack graphs proposed by Lippmann et al. [40, 62] to validate
network defense [53]. These works use firewall configuration and
host vulnerability information to build attack graphs that describe
how far an attacker can progress through a network. Our anal-
ysis assumes all hosts are vulnerable, which corresponds to the
motivating NotPetya and Solorigate attacks described in Section 2.

Lippmann et al. [40] define three key concepts. First, a reacha-
bility matrix 𝑅 is defined using outbound interfaces on all hosts 𝑖
as rows and all active hosts 𝑗 as columns. 𝑅 [𝑖, 𝑗] is 𝑡𝑟𝑢𝑒 if a logical
connection is possible between source 𝑖 and destination 𝑗 ; other-
wise, 𝑅 [𝑖, 𝑗] is 𝑓 𝑎𝑙𝑠𝑒 . Second, an attack graph is a directed graph
𝐺 = (𝑉 , 𝐸) that shows how far attackers can progress through a net-
work by successively compromising exposed and vulnerable hosts.
The vertices 𝑉 represent network hosts. For hosts 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , there
exists an edge (𝑣𝑖 , 𝑣 𝑗) when host 𝑣𝑖 can make a logical connection
to 𝑣 𝑗 . Finally, a predictive attack graph is a directed acyclic graph
(DAG) rooted at a specific source host (assumed to be compromised)
of interest. A new edge/host pair is added only if this pair is not
already attached to the root of the graph or to any node along the
path from the root to the current source node. The predictive attack
graph is constructed using a breadth-first search traversal of the
reachability matrix from the host of interest, only adding a new
edge if the target host is not already included.
Analysis setup: Using the reference topology in Figure 1, we
defined a NetViews policy and a corresponding traditional stateful
firewall policy assuming the network segments shown in the figure.
These policies are available in our online appendix [51]. Given the
size of the topology, we hand-generated the reachability matrix,
which is not uncommon [40, 62]. We then wrote a script to generate
a predictive attack graph from the reachability matrix following
Lippmann et al.’s algorithm [40]. We generated predictive attack
graphs for each host for each of the two policy models.
Results: Figure 5 shows an example of the substantial reduction
in the predictive attack graph for NetViews over a traditional seg-
mented network policy enforcement with firewalls. While this
figure demonstrates the qualitative benefit of NetViews, it does not

server2:h13L1:h14

Segmented firewall policy

pc2:h11pc3:h10

server1:h12

printer1:h3

e-mail:h1

dns:h2

server2:h13

printer1:h3

e-mail:h1

dns:h2

L2:h15

LAN1-1:h6

LAN1-2:h7

LAN1-3:h8

LAN1-4:h9

pc1:h5

server2:h13 server1:h12

pc2:h11

server2:h13

server1:h12

pc3:h10

L2:h15

LAN1-2:h7

LAN1-3:h8
LAN1-4:h9

pc1:h5

L2:h15

LAN1-1:h6
LAN1-3:h8

LAN1-4:h9

pc1:h5

L2:h15

LAN1-1:h6 LAN1-2:h7
LAN1-4:h9

pc1:h5

L2:h15

LAN1-1:h6
LAN1-3:h8

LAN1-2:h7

pc1:h5

L2:h15

LAN1-1:h6
LAN1-3:h8

LAN1-4:h9

LAN1-2:h5

pc2:h11
pc3:h10

dns:h2 server2:h13
server1:h12

e-mail:h1

LAN-1-2:h7

LAN1-1:h6
LAN1-3:h8

LAN1-4:h9
pc1:h5

server3:h4

server3:h4

server3:h4

server3:h4

server3:h4
server3:h4

server3:h4

L1:h14

Netviews policy

server2:h13 server1:h12 server2:h13

server1:h12

Figure 5: Attack graph visualizing possible reconnaissance
and lateral movement from a compromised host. The graph
depicts how far an attacker compromising user 𝐴𝑙𝑖𝑐𝑒 can
progress within the reference network from Figure 1.

Table 1: Number of hosts reachable in hop-counts 1 to 5 for
the reference topology (Figure 1) based on policy type

Policy Type hop-count server1 server2 server3

NetViews 1 3 2 6
2 2 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Segmented 1 4 4 8
Firewall 2 9 9 10

3 9 9 10
4 9 9 10
5 9 9 10

quantitatively describe the overall benefit to the network. Table 1
focuses on the reachability of the three high-value servers in the
reference topology (Figure 1). The table enumerates the number of
hosts that can reach the server for a specific “hop-count.” That is, a
hop-count of one indicates hosts can access the server directly. A
hop-count of two indicates a host has to compromise one other host
before accessing the server. The table shows the number of hosts
for hop-counts up to five. Notably, NetViews nearly eliminates the
value of lateral movement for an attacker. The table does show
that server1 has two hosts with a hop-count of two. These links
results because SSH access is allowed to a development host pc3.
Thus, the benefit of a NetViews is dependent on the policy, which
is to be expected. However, NetViews offers significant potential to
drastically reduce lateral movement.

7 PERFORMANCE EVALUATION
This section evaluates the performance of NetViews and the Policy
Engine, answering the following questions.

Q1 How does NetViews compare with other ONOS forwarding
applications in terms of latency and throughput?

Q2 How does NetViews scale with the number of flows?
Q3 How does the Policy Engine scale for more complex policies

(and topologies)?

s7

s2

s3

s1

s6s5s4 s8 s10s9 s11 s12

oz1a oz6aoz5a oz7aoz3aoz2aoz1b oz7boz6boz5boz4boz3boz2b

(c) Samford Backbone Network (Hosts and servers are assigned randomly with the leaf nodes)

server2

h1

server1

s1

s2

s4

s3

s8

s9

s7

s5

s6

s10

s11

s12h2 h3

h5 h4 h7h6

h8

h9

h10h11

(a) Reference Enterprise Topology

server2

h1

server1

s10

s8

s9

s7

s3s2

s1 s4

s6 s5h2

h4h3server3 server4

server5

server6

server7

server8

(c) Cisco Enterprise Network

Figure 6: Evaluation Topologies

Table 2: Description of Evaluation Topologies

Topology Devices Switches Details

Reference 13 12 Topology from Figure 1

Cisco [71] 12 10 Cisco enterprise network

MiniStanford [71] 100 25 Stanford backbone network

7.1 Experimental Setup
We consider three example enterprise network topologies, measur-
ing network performance of three ONOS applications.

• Baseline (fwd): This scenario uses the ONOS Reactive For-
warding application (org.onosproject.fwd) available with
the ONOS distribution. The application will receive a Pack-

etIn request, allow all communication between source and
destination, and install corresponding Flow Rules. We con-
sider this scenario as it is the most basic way to maintain
networking functionality in an SDN environment without
any policy enforcement.

• Intent Forwarding (ifwd): This scenario uses the Intent
Forwarding application provided by the ONOS sample li-
brary. It also allows all communication between source and
destination on receiving a PacketIn request and installs cor-
responding Intents.

• NetViews implementation (NetViews): This scenario is
our implementation, and includes all the system components
discussed in Section 5 (see Figure 4).

Table 2 summarizes our three representative enterprise topolo-
gies showed in Figure 6. The Reference topology was introduced
in Figure 1; we used this simple topology to introduce NetViews
design parameters. The Cisco and MiniStanford were previously
used in other evaluations (e.g., PSI [71], HeaderSpaceAnalysis [34],
Resonance [49]) and represent topologies provided by Cisco and
Stanford, respectively. Each link in the topology is Gigabit Ethernet.

We implemented each of these topologies in Mininet [65]. Each
measurement was taken on a Ubuntu 20.04 LTS (Linux Kernel 5.4.0)
VM in QEMU with 16 Cores and 32 GB of RAM. These VMs are
spawned from a server with 2 Intel Xeon Silver 4114 CPUs (20
physical cores at 2.20 GHz).

To evaluate throughput, we used the standard tool iPerf3 [15]
(version 3.7). This approach allows us to test network throughput
under maximum load (all hosts connected to all servers), as well
as scale the amount of connections by increasing the number of
parallel streams for our scalability analysis. To evaluate latency
(initial packet, and excluding the initial packet) we use MTR [9]

ONOS
fwd

ONOS
ifwd

NetViews
1880

1885

1890

1895

1900

1905

1910

1915

1920

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

(a) Cisco

ONOS
fwd

ONOS
ifwd

NetViews
1880

1885

1890

1895

1900

1905

1910

1915

1920

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

(b) Reference

ONOS
fwd

ONOS
ifwd
A

NetViews
62000

62500

63000

63500

64000

64500

65000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

(c) MiniStanford

Figure 7: Aggregate throughput for different topologies
(scales differ for readability)

Cisco Reference Ministanford
Topology

0

5

10

15

20

25

La
te

nc
y

(m
s)

fwd
ifwd
NetViews

(a) Average initial packet latency

Cisco Reference Ministanford
Topology

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te

nc
y

(m
s)

fwd
ifwd
NetViews

(b) Average 𝑛𝑡ℎ-packet latency

Figure 8: Average latency for different topologies (scales dif-
fer for readability)

(version 0.93). As the complexity of policy does not impact perfor-
mance, we use a policy that allows all connections. Each experiment
lasts 60 seconds and is repeated 50 times. We present results as an
arithmetic mean over these 50 runs.

7.2 Performance Overhead
Our principal concern in this section is to determine the overhead
introduced by NetViews compared with baseline ONOS applica-
tions. Because each network is unique and there is no “typical”
level of traffic, we choose to compare throughput in the worst case
scenario, where all “subject” hosts are attempting to send as much
data as possible to the “object” servers in each topology simultane-
ously. To evaluate the marginal latency of adding new flows to the
network all “subject” hosts start MTR pings to the “object” servers
sequentially, with 1 second between each new flow.

7.2.1 Throughput. We compared the average throughput of NetViews
to baseline ONOS apps. Because the throughput seen by any indi-
vidual host is a function of topology and transport layer fairness,
we characterize the total aggregate throughput of each topology by
summing the throughput of all individual flows.

Figure 7 shows boxplots indicating the distribution of observed
throughputs for each experiment run for each combination of ONOS
app and topology. While each topology sees a different magnitude
of throughput, there is considerable overlap between the three
applications. Specifically, in the Cisco and Reference topologies,
the median NetViews throughput falls well within the the inter-
quartile range of the baseline cases and the change in medians is

1 10 50
Connections per Session

0

1000

2000

3000

4000

5000

6000

7000

Fl
o
w

 R
u
le

s

w/ Optimization

w/o Optimization

(a) Cisco

1 10 50
Connections per Session

0

1000

2000

3000

4000

5000

6000

7000

Fl
o
w

 R
u
le

s

w/ Optimization

w/o Optimization

(b) Reference

Connections per Session

(c) MiniStanford

Figure 9: Number of Flow Rules in switches for NetViews with and without the optimization (scales differ for readability)

well under 1%. Moreover, in the scaled MiniStanford topology, we
find the median aggregate throughput to be well above that of the
fwd baseline application, and within approximately 200 Mbps of
the ifwd baseline application. In Figure 7a the median aggregate
throughput hovers between 1905 and 1908 Mbps. In Figure 7b the
median aggregate throughput falls right around 1900 and 1905Mbps.
Finally, in Figure 7c the median aggregate throughput for ifwd and
NetViews falls between 63550 and 63750 Mbps, while for fwd it sits
around 62900Mbps. We conclude that NetViews does not show any
significant throughput overhead over the fwd or ifwd applications.

7.2.2 Latency. SDN reactive-forwarding applications experience a
greater latency for the first packet. Thus, we evaluate both initial
latency (i.e., the latency of packets causing PacketIn events) and
𝑛𝑡ℎ-packet latency, (i.e., the latency of all subsequent packets). We
ensure a clean start (no Intents and no Flow Rules already installed)
at the beginning of the experiments to ensure we capture PacketIn

events in each measurement.
Figure 8 shows that NetViews has acceptable latency compared

to ifwd for both the initial and 𝑛𝑡ℎ-packet. Figure 8a shows our
initial packet latency results. In the Cisco topology we see a 3.286
ms (44.5%) latency increase for NetViews compared to ifwd, in the
Reference topology a 2.687 ms (31.4%), and in the MiniStanford
topology a 6.868 ms (73.5%) increase. Both ifwd and NetViews out-
perform fwd. Figure 8b shows our𝑛𝑡ℎ-packet latency results. For the
Cisco topology we see a negligible difference in latency (<0.01%),
in the Reference topology a 0.0058 ms (2.59%) increase, and in the
MiniStanford topology a 0.0007 ms (0.3%) decrease.

7.3 Multi-Connection Optimization
The multi-connection optimization reduces the number of PacketIn
events and hence the number Flow Rules stored in the TCAM of
switches. It provides the greatest benefit when clients establish
many connections to a server as part of the same session. Specifi-
cally, for each connection in the session, the client uses a different
ephemeral source port to the same server port. To characterize
the benefit of the optimization, we emulate sessions with different
numbers of parallel connections, measuring the resulting number
of Flow Rules with and without the optimization. In Figure 9, the
x-axis shows the number of parallel connections for the session,
and the y-axis shows the average number of Flow Rules installed

in switches for different topologies. The boxplots illustrate the dis-
tribution of Flow Rule counts across all switches in each topology.

The first set of boxes in all three figures depicts the scenario with
no parallel connections, which results in policy enforcement based
on 5-tuple packet information without the optimization. There is no
match on the client port with the optimization (to allow ephemeral
client ports). Even without parallel connections, the number of
flow rules is higher without optimization. For example, in the case
of the Cisco topology in Figure 9a, the median number of flows
for the setting without optimization is 172. In contrast, with the
optimization, that number goes down to 116.

The boxplots for 10 and 50 connections per session demonstrate
where we expect the overhead reduction of the multi-connection
optimization. The boxplot for the Cisco topology shows that for
ten connections per session, the median number of Flow Rules

per switch without the optimization increases to 772 from 172. In
contrast, with the optimization, it remains at 116. Finally, with
50 connections per session, the number of Flow Rules per switch
without optimization is 2,916, while with optimization, it remains at
116. A similar trend emerges for the other topologies. These results
demonstrate that the multi-connection optimization can result in
significantly fewer Flow Rules.

7.4 Performance of Policy Engine
To understand the impact of the Policy Engine on the overall
NetViews overhead, we analyzed the response time of policy-machine-
core using random policy graphs as in [5, 43]. We used the graph
generation algorithm from Basnet et al. [5].

We let the number of user and object nodes be defined from node
count 𝑛, 𝑢 = 𝛼 × 𝑛 and 𝑜 = (1 − 𝛼) × 𝑛. For each pair of ⟨𝑢𝑖 , 𝑜𝑖 ⟩, we
first created two separate single-rooted binary tree structures using
only user attribute 𝑢𝑎 and object attribute 𝑜𝑎 nodes, respectively.
The number of 𝑢𝑎 and 𝑜𝑎 nodes depend on the predefined policy
tree height ℎ. For each tree with height ℎ, we generate 2ℎ+1 − 1
number of 𝑜𝑎 and 𝑢𝑎 nodes. After the tree creation, the 𝑢𝑖 node is
made the new root of the user attribute tree and𝑜𝑖 of object attribute
tree. These trees represent the assignment relation of the policy
graph. The aforementioned user attribute tree and object attribute
tree of pair ⟨𝑢𝑖 , 𝑜𝑖 ⟩ is connected using the association relations, or
edges, as shown in Figure 2 of our online appendix [51]. The idea of
separate operation node creation from Basnet et al. [5] is omitted

1K 3K 5K 7K 9K 11K 13K 15K 17K 19K 20K
Number of nodes (User and Objects)

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e

De
la

y
(

s)
height

1
2
3
4
5

Figure 10: Average response time of policy-machine-core
using random policy graphs

in our algorithm to reduce the graph generation cost. We map
each leaf level 𝑢𝑎 node to each leaf level 𝑜𝑎 node, thus creating a
total of |𝑢𝑎𝑙𝑒𝑎𝑓 | × |𝑜𝑎𝑙𝑒𝑎𝑓 | association arcs. We have used a set of 𝛿
permissions, and assigned each association arc with a permission
label picked randomly from 𝛿 .

For this analysis, we generated access control graphs that varied
in size from 4,000 to 1,280,000 vertexes (𝑢, 𝑜 , 𝑢𝑎, and 𝑜𝑎 nodes) for
different heights of the policy graph. However, the user (𝑢), object
(𝑜) and height ℎ are the main controlling parameters in our graph
generation algorithm. As reported in Figure 10, we varied the total
number of 𝑢 and 𝑜 nodes from 1,000 to 20,000 nodes (𝛼 = 0.6),
and ℎ from 1 to 5 for each amount of total nodes. We considered
a small permission set of 𝛿 = 10 for measuring the decision time
analysis. For each policy graph, we randomly picked 2000 permis-
sion requests from the set 𝛿 , and logged decision fetching delay
from policy-machine-core. The average decision fetching delay is
reported in micro-seconds.

Figure 10 indicates that the height of the policy graph is the main
contributory factor to the decision delay. However, overall average
delay is minimal, even for the 20,000 node (𝑢 and 𝑜) benchmark,
with 1,280,000 graph vertexes (𝑢, 𝑜 , 𝑢𝑎, and 𝑜𝑎). The delay ranges
from approximately 100 𝜇s for height of one and 1250 𝜇s for height
of five. Therefore, the policy engine does not significantly affect
overall operational performance of an enterprise network.

8 DISCUSSION AND FUTUREWORK
Scalability:We showed negligible overheads for latency and through-
put on test networks from the literature, indicating our approach
will scale equivalently to standard Intent Forwarding. We are lim-
ited, however, by publicly available datasets and topologies to test
more extensive networks. The policy engine can exist either within
the NetViews application or as an external server. If the policy
engine is external, NetViews should implement a caching proto-
col within the SDN application. The external policy engine server
should invalidate the cache when the policy changes. Additionally,
ONOS supports multiple distributed SDN controllers to enhance
scalability. We leave the investigation of policy cache management
and multiple controllers to future work.
Policy Generation andMaintenance:NGAC can express a range
of access control models, including both RBAC and ABAC, which
are extensively used by enterprises for non-network access control.

An administrator’s first step for creating a policy is identifying
subjects, access rights, and objects. Our current policy must be
specified manually. We anticipate the development of tools to help
automate the process. For example, a tool could extract policy from
an enterprise’s existing Active Directory installation. Our current
implementation also requires the policy engine to reload the policy
whenever there is a policy change. This is reasonable, because
policy changes are infrequent relative to policy queries. In future
work, we are exploring how to handle ephemeral and dynamic
policy changes using NGAC’s obligation primitive.
Deployment and Scope: NetViews seeks to provide access control
within an enterprise’s on-premises network environment. As en-
terprises move business applications into the cloud, an application-
based Zero Trust model such as BeyondCorp may be more appro-
priate to protect those applications. That said, NetViews can also
provide value within a cloud network environment; this is a topic of
future work. As discussed in Section 2, even if an enterprise moves
all of their business applications to the cloud, they still require
enhanced protections for their on-premises network environment.
NetViews needs to be adapted to a given enterprise environment.
For example, as noted in Section 5 our current implementation
requires adopters to coordinate with 802.1x infrastructure. An en-
terprise network also may not be fully SDN-capable. While SDN-
capable access switches and WiFi access points are ideal, legacy
switches with VLAN capabilities can be used to isolate traffic at
the access switch layer. Similar capabilities can be achieved by con-
figuring WiFi access points to use isolation mode. In both cases,
network traffic is shunted up to an SDN-capable distribution switch.
However, even without changes to access switch and access point
configuration, NetViews can provide meaningful value as it will
opportunistically mediate any traffic that reaches the distribution
switch. Such a deployment would still providing better security
than existing perimeter-based defenses, even if it allows small pock-
ets of unmediated network traffic. This approach also provides a
path for incremental deployment.

9 RELATEDWORK
Access Control Frameworks: Access control systems most com-
monly seek to achieve least privilege, where every program and
user of the system should operate using the least set of privileges
necessary to complete a corresponding task [60]. To simplify net-
work management challenges, many systems and proposals (e.g.,
Ethane [11], FML [26]) have used group-based policy definition,
which is mostly static and fails to represent enterprise configu-
rations [58, 59]. Role-Based Access Control (RBAC) [59] assigns
permissions to roles to simplify policy management and models
users’ functional rules within an organization. However, traditional
RBAC is less suitable when multiple features of users and devices
are required for access control decisions [14]. To address this limi-
tation, attribute-based access control (ABAC) [28] provides logical,
fine-grained, and context-aware access control. Several extensions
of ABAC, including NGAC [19] and XACML [18], have been pro-
posed and used mainly to manage file-based resources and web
services. We are unaware of existing commercial or research access
control solutions that provide a unified and granular solution for
modern-day network security [49, 68].

Network Access Control: Historically, both the external and the
internal perimeter of an enterprise network was secured by fire-
walls [12, 23]. However, firewalls are hard to configure and main-
tain, particularly in scenarios with multiple domains or layers to
secure [41, 69]. Furthermore, commercial next-generation firewalls
are just firewalls with NIPS (Network Intrusion Prevention Sys-
tem) [52]. Modern enterprise network operation, access control, and
security are currently maintained through different ad-hoc mecha-
nisms: by building Layer-2 or Layer-3 boundaries within local net-
works (e.g., VLAN [63], subnets); through special-purpose devices
to control packet flow (e.g., NIDS [6, 64] or Middleboxes [16, 71]);
and hypervisor based systems that combine different state-of-the-
art technologies (e.g., SDN) to provide isolation (e.g., FlowVisor [61],
PSI [71], micro-segmentation [25, 37, 48]).

While prior work [11, 21, 35, 49, 71] provides dynamic policy
enforcement (sometimes as a secondary feature), it has limited
or nonexistent policy models. Alpaca [32] incorporates roles into
IP address assignments to enable efficient packet enforcement in
forwarding devices; however the resulting number of roles is lim-
ited and it constrains IP address assignment. NEUTRON [67] and
SPRT [33] consider least-privilege access control within a network;
however, their contributions are focused on creating and testing
access control policies and hence are complementary to NetViews.
NEUTRON and SPRT also assume traditional network segmenta-
tion or micro-segmentation for firewall placement while integrating
OpenFlow as future work. Finally, several systems [27, 36] have
proposed incorporating the dynamic context from the enterprise
network to create context-aware access control. Such context can be
incorporated into future enhancements of NetViews using multiple
policy classes supported by NGAC.
Software Defined Networking (SDN): SDN has the potential
to address many operational and security challenges in enterprise
networks [39]. Along with new programmable switch architec-
tures (e.g., P4 [7]), several high-level network programming lan-
guages (e.g., Frenetic [21], NetCore [45]), create opportunities in
usability and functionalities. SDN has shown the potential to re-
place conventional security systems [70], simplify policy enforce-
ment [24, 56], ensure information flow control [54], enable de-
ceptive defense [3], and provide a software defined perimeter or
connectivity [25, 38, 47, 50]. Finally, research has identified at-
tacks against SDN technologies and proposed corresponding de-
fenses [10, 66, 72, 73].

10 CONCLUSION
While application-based Zero Trust architectures help enterprises
secure their business applications by moving them to the cloud,
they ignore the importance of securing the on-premises network
environment that remains. This paper has introduced a novel para-
digm for enterprise network security called Network Views where
each host has a different “view” of what other hosts and services
exist in the network. This fine-grained least-privilege approach
to network access control can significantly reduce lateral move-
ment by attackers, even if user credentials have been compromised.
NetViews builds on NIST’s Next Generation Access Control to pro-
vide a dynamic and scalable policy model that supports the needs
of large enterprises. We propose a multi-connection optimization

that eliminates unnecessary first-packet latencies and significantly
reduces TCAM requirements for SDN switches. Our NetViews im-
plementation has latency and throughput comparable to reactive
forwarding baselines. The source code of NetViews implementation
is available in Git [2]. As such, NetViews provides a practical prim-
itive for dissolving security perimeters within enterprise networks.

Acknowledgements: This work was supported in part by ONR
grant N00014-20-1-2696. Any findings and opinions expressed in
this material are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES
[1] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, and M. Namane. 2018.

Benchmarking the ONOS Intent Interfaces to Ease 5G Service Management. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM).

[2] Iffat Anjum. 2021. Single Site Netviews. GitHub. https://github.com/netviews/ss-
netviews.

[3] Iffat Anjum, Mu Zhu, Isaac Polinsky, William Enck, Michael K. Reiter, and Munin-
dar P. Singh. 2021. Role-Based Deception in Enterprise Networks. In Proceedings
of the ACM Conference on Data and Application Security and Privacy (CODASPY).

[4] MITRE ATT&CK. 2019. NotPetya. https://attack.mitre.org/software/S0368/.
[5] R. Basnet, S. Mukherjee, V. M. Pagadala, and I. Ray. 2018. An efficient implementa-

tion of next generation access control for the mobile health cloud. In Proceedings
of the International Conference on Fog and Mobile Edge Computing (FMEC).

[6] Noam Ben-Asher and Cleotilde Gonzalez. 2015. Effects of cyber security knowl-
edge on attack detection. Computers in Human Behavior 48 (2015).

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
ACM SIGCOMM Computer Communication Review 44, 3 (July 2014).

[8] William Brockelsby and Rudra Dutta. 2021. Traffic Analysis in Support of Hybrid
SDN Campus Architectures for Enhanced Cybersecurity. In Proceedings of the
Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN).

[9] BitWizard B.V. 1997. MTR. BitWizard. http://www.bitwizard.nl/mtr/.
[10] Jiahao Cao, Renjie Xie, Kun Sun, Qi Li, Guofei Gu, and Mingwei Xu. 2020. When

Match Fields Do Not Need to Match: Buffered Packets Hijacking in SDN. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[11] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. 2007. Ethane: Taking Control of the Enterprise. In Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM).

[12] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. 2003. Firewalls and
Internet Security: Repelling the Wily Hacker. Addison-Wesley Professional.

[13] Department of Homehald Security CISA. 2017. Petya Ransomware. Alert (TA17-
181A). https://us-cert.cisa.gov/ncas/alerts/TA17-181A.

[14] E. Coyne and T. R. Weil. 2013. ABAC and RBAC: Scalable, Flexible, and Auditable
Access Management. IT Professional 15, 03 (May 2013).

[15] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, and Kaustubh Prabhu. 2015.
iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.

[16] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.
Mogul. 2014. Enforcing Network-Wide Policies in the Presence of Dynamic
Middlebox Actions using FlowTags. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[17] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. 2011. The Policy Ma-
chine: A novel architecture and framework for access control policy specification
and enforcement. JOURNAL of Systems Architecture 57, 4 (2011).

[18] David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu. 2016.
Extensible Access Control Markup Language (XACML) and Next Generation
Access Control (NGAC). In Proceedings of the ACM International Workshop on
Attribute Based Access Control (ABAC).

[19] David F Ferraiolo, Larry Feldman, and Gregory AWitte. 2016. Exploring the next
generation of access control methodologies. NIST. https://www.nist.gov/publica
tions/exploring-next-generation-access-control-methodologies.

[20] FireEye. 2020. Highly Evasive Attacker Leverages SolarWinds Supply Chain
to Compromise Multiple Global Victims With SUNBURST Backdoor. THREAT
RESEARCH. https://www.fireeye.com/blog/threat-research/2020/12/evasive-
attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-
backdoor.html.

[21] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming
Language. ACM SIGPLAN Notices 46, 9 (Sep. 2011).

[22] Open Networking Foundation. 2018. Intent Framework. ONOS. https://wiki.ono
sproject.org/display/ONOS/Intent+Framework.

https://github.com/netviews/ss-netviews
https://github.com/netviews/ss-netviews
https://attack.mitre.org/software/S0368/
http://www.bitwizard.nl/mtr/
https://us-cert.cisa.gov/ncas/alerts/TA17-181A
https://iperf.fr/
https://www.nist.gov/publications/exploring-next-generation-access-control-methodologies
https://www.nist.gov/publications/exploring-next-generation-access-control-methodologies
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework

[23] M. G. Gouda and X. . A. Liu. 2004. Firewall design: consistency, completeness,
and compactness. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS).

[24] Sanket Goutam, William Enck, and Bradley Reaves. 2019. Hestia: Simple Least
Privilege Network Policies for Smart Homes. In Proceedings of the Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec).

[25] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. 2012. Splendid
Isolation: A Slice Abstraction for Software-Defined Networks. In Proceedings of
the First Workshop on Hot Topics in Software Defined Networks (HotSDN).

[26] Timothy L. Hinrichs, N. Gude, M. Casado, John C. Mitchell, and S. Shenker. 2009.
Practical declarative network management. In Proceedings of the ACM Workshop
on Research on Enterprise Networking (WREN).

[27] Sungmin Hong, R. Baykov, Lei Xu, Srinath Nadimpalli, and G. Gu. 2016. To-
wards SDN-Defined Programmable BYOD (Bring Your Own Device) Security. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[28] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas. 2015. Attribute-Based Access
Control. Computer 48, 2 (Feb 2015).

[29] Samuel Jero, William Koch, Richard Skowyra, Hamed Okhravi, Cristina Nita-
Rotaru, and David Bigelow. 2017. Identifier Binding Attacks and Defenses in
Software-Defined Networks. In Proceedings of the USENIX Security Symposium.

[30] Akash Shah Joshua Roberts. 2019. Policy Machine Core. GitHub. https:
//github.com/PM-Master/policy-machine-core.

[31] Jyh-Cheng Chen and Yu-Ping Wang. 2005. Extensible authentication protocol
(EAP) and IEEE 802.1x: tutorial and empirical experience. IEEE Communications
Magazine 43, 12 (2005).

[32] N. Kang, O. Rottenstreich, S. G. Rao, and J. Rexford. 2017. Alpaca: Compact
Network Policies With Attribute-Encoded Addresses. IEEE/ACM Transactions on
Networking 25, 3 (June 2017).

[33] Charalampos Katsis, Fabrizio Cicala, Dan Thomsen, Nathan Ringo, and Elisa
Bertino. 2021. Can I Reach You? Do I Need To? New Semantics in Security Policy
Specification and Testing. In Proceedings of the ACM Symposium on Access Control
Models and Technologies (SACMAT).

[34] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[35] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. 2015. Kinetic: Verifiable Dynamic Network Control. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[36] Hyojoon Kim, A. Voellmy, Sam Burnett, N. Feamster, and R. Clark. 2012. Lithium:
Event-Driven Network Control. Georgia Tech Library. https://smartech.gatech.
edu/handle/1853/43377.

[37] Shashi Kiran. 2015. Data-Center: Micro-segmentation: Enhancing Security and
Operational Simplicity with Cisco ACI. CISCO. https://blogs.cisco.com/datacent
er/microsegmentation.

[38] Jonghoon Kwon, Taeho Lee, Claude Hahni, and Adrian Perrig. 2020. SVLAN:
Secure & Scalable Network Virtualization. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[39] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann.
2014. Panopticon: Reaping the Benefits of Incremental SDN Deployment in
Enterprise Networks. In Proceedings of the USENIX Annual Technical Conference.

[40] Richard Lippmann, Kyle Ingols, Chris Scott, Keith Piwowarski, Kendra
Kratkiewicz, Mike Artz, and Robert Cunningham. 2006. Validating and Restor-
ing Defense in Depth Using Attack Graphs. In Proceedings of the IEEE Military
Communications conference (MILCOM).

[41] A. Mayer, A. Wool, and E. Ziskind. 2000. Fang: a firewall analysis engine. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[42] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (April 2008).

[43] Peter Mell, James M. Shook, and Serban Gavrila. 2016. Restricting Insider Access
Through Efficient Implementation of Multi-Policy Access Control Systems. In
Proceedings of the ACM CCS International Workshop on Managing Insider Security
Threats (MIST).

[44] Microsoft 365 Defender Research Team. 2020. Analyzing Solorigate, the com-
promised DLL file that started a sophisticated cyberattack, and how Microsoft
Defender helps protect customers. Microsoft Threat Intelligence Center (MSTIC).
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-
the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-
microsoft-defender-helps-protect/.

[45] Christopher Monsanto, Nate Foster, Rob Harrison, and David P. Walker. 2012. A
compiler and run-time system for network programming languages. In Proceed-
ings of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL).

[46] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software-Defined Networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[47] A. Moubayed, A. Refaey, and A. Shami. 2019. Software-Defined Perimeter (SDP):
State of the Art Secure Solution for Modern Networks. IEEE Network 33, 5 (Sep.
2019).

[48] Muhammad Mujib and Riri Fitri Sari. 2020. Design of implementation of a
zero trust approach to network micro-segmentation. International JOURNAL of
Advanced Science and Technology 29, 7 (apr 2020).

[49] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. 2009. Reso-
nance: Dynamic Access Control for Enterprise Networks. In Proceedings of the
ACM Workshop on Research on Enterprise Networking (WREN).

[50] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. 2009. Reso-
nance: Dynamic Access Control for Enterprise Networks. In Proceedings of the
ACM Workshop on Research on Enterprise Networking (WREN).

[51] Netviews2022. 2021. Netviews Online Appendix. https://gist.github.com/Netvie
ws2022/67d5265a19039e4f8c4d1733f0c02751.

[52] K. Neupane, R. Haddad, and L. Chen. 2018. Next Generation Firewall for Network
Security: A Survey. In Proceedings of the SoutheastCon (SECON).

[53] David M. Nicol and Vikas Mallapura. 2014. Modeling and analysis of stepping
stone attacks. In Proceedings of the Winter Simulation Conference (WSC).

[54] Tj OConnor,William Enck,W.Michael Petullo, andAkash Verma. 2018. PivotWall:
SDN-Based Information Flow Control. In Proceedings of the Symposium on SDN
Research (SOSR).

[55] Executive Office of the President. 2022. Moving the U.S. Government Toward Zero
Trust Cybersecurity Principles. Memorandum. https://www.whitehouse.gov/wp-
content/uploads/2022/01/M-22-09.pdf.

[56] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Proceedings of the ACM SIGCOMM (SIGCOMM).

[57] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. 2019. Zero trust
architecture. National Institute of Standards and Technology. https://csrc.nist.go
v/publications/detail/sp/800-207/final.

[58] Ravi Sandhu. 1996. Roles versus Groups. In Proceedings of the ACM Workshop on
Role-Based Access Control (RBAC).

[59] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. 1996. Role-based
access control models. Computer 29, 2 (1996).

[60] F. B. Schneider. 2003. Least privilege and more [computer security]. IEEE Security
& Privacy 1, 5 (2003).

[61] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Flajslik, Nikhil
Handigol, Te-Yuan Huang, Peyman Kazemian, Masayoshi Kobayashi, Jad Naous,
and et al. 2010. Carving Research Slices out of Your Production Networks with
OpenFlow. SIGCOMM Comput. Commun. Rev. 40, 1 (Jan. 2010).

[62] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. 2002. Automated
generation and analysis of attack graphs. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P).

[63] K. Sripanidkulchai, C. Issariyapat, and K. Meesublak. 2008. Inference of network-
wide VLAN usage in small enterprise networks. In Proceedings of the IEEE INFO-
COM Workshops.

[64] R. Talpade, G. Kim, and S. Khurana. 1999. NOMAD: traffic-based network moni-
toring framework for anomaly detection. In Proceedings of the IEEE International
Symposium on Computers and Communications.

[65] Mininet Team. 2018. Mininet An Instant Virtual Network on your Laptop (or
other PC). http://mininet.org/.

[66] Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid. 2016. Reigns to the Cloud:
Compromising Cloud Systems via the Data Plane. CoRR abs/1610.08717 (2016).

[67] Dan Thomsen and Elisa Bertino. 2018. Network Policy Enforcement Using
Transactions: The NEUTRONApproach. In Proceedings of the ACM on Symposium
on Access Control Models and Technologies (SACMAT).

[68] Rory Ward and Betsy Beyer. 2014. BeyondCorp: A New Approach to Enterprise
Security. ;login: 39, 6 (2014).

[69] A. Wool. 2004. A quantitative study of firewall configuration errors. Computer
37, 6 (2004).

[70] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin,
and Zonghua Zhang. 2015. Enabling security functions with SDN: A feasibility
study. Computer Networks 85 (2015).

[71] Tianlong Yu, Seyed Fayaz, Michael Collins, Vyas Sekar, and Srinivasan Seshan.
2017. PSI: Precise Security Instrumentation for Enterprise Networks. In Proceed-
ings of the Network and Distributed System Security Symposium (NDSS).

[72] Menghao Zhang, G. Li, ShichengWang, Chang Liu, Ang Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and Jianping Wu. 2020. Poseidon: Mitigating VOLUMEtric DDoS Attacks
with Programmable Switches. In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[73] Menghao Zhang, Guanyu Li, Lei Xu, Jun Bi, Guofei Gu, and Jiasong Bai. 2018.
Control Plane Reflection Attacks in SDNs: New Attacks and Countermeasures.
In Proceedings of the Research in Attacks, Intrusions, and Defenses.

https://github.com/PM-Master/policy-machine-core
https://github.com/PM-Master/policy-machine-core
https://smartech.gatech.edu/handle/1853/43377
https://smartech.gatech.edu/handle/1853/43377
https://blogs.cisco.com/datacenter/microsegmentation
https://blogs.cisco.com/datacenter/microsegmentation
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://gist.github.com/Netviews2022/67d5265a19039e4f8c4d1733f0c02751
https://gist.github.com/Netviews2022/67d5265a19039e4f8c4d1733f0c02751
 https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
 https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://csrc.nist.gov/publications/detail/sp/800-207/final
http://mininet.org/

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 NetViews Policy Model
	4.1 Users, Objects, and Access Rights
	4.2 NetViews Identity Mapping Service
	4.3 Access Control Semantics

	5 NetViews Implementation
	5.1 Flow Manager
	5.2 Policy Engine
	5.3 Identity Mapping Service

	6 Security Analysis
	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Performance Overhead
	7.3 Multi-Connection Optimization
	7.4 Performance of Policy Engine

	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	References

