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ABSTRACT
Users have begun downloading an increasingly large number of
mobile phone applications in response to advancements in hand-
sets and wireless networks. The increased number of applications
results in a greater chance of installing Trojans and similar mal-
ware. In this paper, we propose the Kirin security service for An-
droid, which performs lightweight certification of applications to
mitigate malware at install time. Kirin certification uses security
rules, which are templates designed to conservatively match unde-
sirable properties in security configuration bundled with applica-
tions. We use a variant of security requirements engineering tech-
niques to perform an in-depth security analysis of Android to pro-
duce a set of rules that match malware characteristics. In a sam-
ple of 311 of the most popular applications downloaded from the
official Android Market, Kirin and our rules found 5 applications
that implement dangerous functionality and therefore should be in-
stalled with extreme caution. Upon close inspection, another five
applications asserted dangerous rights, but were within the scope
of reasonable functional needs. These results indicate that security
configuration bundled with Android applications provides practical
means of detecting malware.
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1. INTRODUCTION
Mobile phones have emerged as a topic du jour for security re-

search; however, the domain itself is still settling. Telecommu-
nications technology is constantly evolving. It recently reached a
critical mass with the widespread adoption of third generation (3G)
wireless communication and handsets with advanced microproces-
sors. These capabilities provide the foundation for a new (and much
anticipated) computing environment teeming with opportunity. En-
trepreneurs have heavily invested in the mobile phone application
market, with small fortunes seemingly made overnight. However,
this windfall is not without consequence. The current mixture of in-
formation and accessibility provided by mobile phone applications
seeds emerging business and social lifestyles, but it also opens op-
portunity to profit from users’ misfortune.

To date, mobile phone malware has been primarily destructive
and “proof-of-concept.” However, Trojans such as Viver [19], which
send SMS messages to premium rate numbers, indicate a change in
malware motivations. Many expect mobile phone malware to be-
gin following PC-based malware trends of fulfilling financial mo-
tivations [28]. Users are becoming more comfortable downloading
and running mobile phone software. As this inevitably increases,
so does the potential for user-installed malware.

The most effective phone malware mitigation strategy to date has
been to ensure only approved software can be installed. Here, a cer-
tification authority (e.g., SymbianSigned, or Apple) devotes mas-
sive resources towards source code inspection. This technique can
prevent both malware and general software misuse. For instance,
software desired by the end user may be restricted by the service
provider (e.g., VoIP and “Bluetooth tethering” applications). How-
ever, manual certification is imperfect. Malware authors have al-
ready succeeded in socially engineering approval [22]. In such
cases, authorities must resort to standard revocation techniques.

We seek to mitigate malware and other software misuse on mo-
bile phones without burdensome certification processes for each
application. Instead, we perform lightweight certification at time
of install using a set of predefined security rules. These rules de-
cide whether or not the security configuration bundled with an ap-
plication is safe. We focus our efforts on the Google-led Android
platform, because it: 1) bundles useful security information with
applications, 2) has been adopted by major US and European ser-
vice providers, and 3) is open source.

In this paper, we propose the Kirin1 security service for Android.
Kirin provides practical lightweight certification of applications at
install time. Achieving a practical solution requires overcoming
multiple challenges. First, certifying applications based on security
configuration requires a clear specification of undesirable proper-

1Kirin is the Japanese animal-god that protects the just and pun-
ishes the wicked.



ties. We turn to the field of security requirements engineering to
design a process for identifying Kirin security rules. However, lim-
itations of existing security enforcement in Android makes practi-
cal rules difficult to define. Second, we define a security language
to encode these rules and formally define its semantics. Third, we
design and implement the Kirin security service within the Android
framework.

Kirin’s practicality hinges on its ability to express security rules
that simultaneously prevent malware and allow legitimate software.
Adapting techniques from the requirements engineering, we con-
struct detailed security rules to mitigate malware from an analysis
of applications, phone stakeholders, and systems interfaces. We
evaluate these rules against a subset of popular applications in the
Android Market. Of the 311 evaluated applications spanning 16
categories, 10 were found to assert dangerous permissions. Of
those 10, 5 were shown to be potentially malicious and therefore
should be installed on a personal cell phone with extreme cau-
tion. The remaining 5 asserted rights that were dangerous, but were
within the scope of reasonable functional needs (based on applica-
tion descriptions). Note that this analysis flagged about 1.6% ap-
plications at install time as potentially dangerous. Thus, we show
that even with conservative security policy, less than 1 in 50 appli-
cations needed any kind of involvement by phone users.

Kirin provides a practical approach towards mitigating malware
and general software misuse in Android. In the design and evalua-
tion of Kirin, this paper makes the following contributions:

• We provide a methodology for retrofitting security requirements
in Android. As a secondary consequence of following our method-
ology, we identified multiple vulnerabilities in Android, includ-
ing flaws affecting core functionality such as SMS and voice.

• We provide a practical method of performing lightweight certifi-
cation of applications at install time. This benefits the Android
community, as the Android Market currently does not perform
rigorous certification.

• We provide practical rules to mitigate malware. These rules are
constructed purely from security configuration available in ap-
plication package manifests.

The remainder of this paper proceeds as follows. Section 2 overviews
the Kirin security service and software installer. Section 3 provides
background information on mobile phone malware and the Android
OS. Section 4 presents our rule identification process and sample
security rules. Section 5 describes the Kirin Security Language
and formally defines its semantics. Section 6 describes Kirin’s im-
plementation. Section 7 evaluates Kirin’s practicality. Section 8
presents discovered vulnerabilities. Section 9 discusses related work.
Section 10 concludes.

2. KIRIN OVERVIEW
The overwhelming number of existing malware requires manual

installation by the user. While Bluetooth has provided the most
effective distribution mechanism [28], as bulk data plans become
more popular, so will SMS and email-based social engineering.
Recently, Yxe [20] propagated via URLs sent in SMS messages.
While application stores help control mass application distribution,
it is not a complete solution. Few (if any) existing phone malware
exploits code vulnerabilities, but rather relies on user confirmation
to gain privileges at installation.

Android’s existing security framework restricts permission as-
signment to an application in two ways: user confirmation and
signatures by developer keys. These permissions are referred to

Android Application Installer

Kirin 
Security 
Service

New 
Application

Pass/
Fail

(1) Attempt
 Installation (2) (3)

Kirin 
Security 
Rules

Optional Extension

Display risk ratings 
to the user and 

prompt for override.
(4)

Figure 1: Kirin based software installer

as “dangerous” and “signature” permissions, respectively (as dis-
cussed in Section 3.2). Android uses “signature” permissions to
prevent third-party applications from inflicting harm to the phone’s
trusted computing base.

The Open Handset Alliance (Android’s founding entity) pro-
claims the mantra, “all applications are created equal.” This philos-
ophy promotes innovation and allows manufacturers to customize
handsets. However, in production environments, all applications
are not created equal. Malware is the simplest counterexample.
Once a phone is deployed, its trusted computing base should re-
main fixed and must be protected. “Signature” permissions pro-
tect particularly dangerous functionality. However, there is a trade-
off when deciding if permission should be “dangerous” or “sig-
nature.” Initial Android-based production phones such as the T-
Mobile G1 are marketed towards both consumers and developers.
Without its applications, Android has no clear competitive advan-
tage. Google frequently chose the “feature-conservative” (as op-
posed to “security-conservative”) route and assigned permissions
as “dangerous.” However, some of these permissions may be con-
sidered “too dangerous” for a production environment. For exam-
ple, one permission allows an application to debug others. Other
times it is combinations of permissions that result in undesirable
scenarios (discussed further in Section 4).

Kirin supplements Android’s existing security framework by pro-
viding a method to customize security for production environments.
In Android, every application has a corresponding security policy.
Kirin conservatively certifies an application based on its policy con-
figuration. Certification is based on security rules. The rules rep-
resent templates of undesirable security properties. Alone, these
properties do not necessarily indicate malicious potential; however,
as we describe in Section 4, specific combinations allow malfea-
sance. For example, an application that can start on boot, read ge-
ographic location, and access the Internet is potentially a tracker
installed as premeditated spyware (a class of malware discussed in
Section 3.1). It is often difficult for users to translate between indi-
vidual properties and real risks. Kirin provides a means of defining
dangerous combinations and automating analysis at install time.

Figure 1 depicts the Kirin based software installer. The installer
first extracts security configuration from the target package man-
ifest. Next, the Kirin security service evaluates the configuration
against a collection of security rules. If the configuration fails to
pass all rules, the installer has two choices. The more secure choice
is to reject the application. Alternatively, Kirin can be enhanced
with a user interface to override analysis results. Clearly this op-
tion is less secure for users who install applications without un-
derstanding warnings. However, we see Kirin’s analysis results as
valuable input for a rating system similar to PrivacyBird [7] (Priva-
cyBird is a web browser plug-in that helps the user understand the
privacy risk associated with a specific website by interpreting its
P3P policy). Such an enhancement for Android’s installer provides
a distinct advantage over the existing method of user approval. Cur-
rently, the user is shown a list of all requested potentially dangerous
permissions. A Kirin based rating system allows the user to make



a more informed decision. Such a rating system requires careful
investigation to ensure usability. This paper focuses specifically on
identifying potential harmful configurations and leaves the rating
system for future work.

3. BACKGROUND INFORMATION
Kirin relies on well constructed security rules to be effective.

Defining security rules for Kirin requires a thorough understand-
ing of threats and existing protection mechanisms. This section
begins by discussing past mobile phone malware and projects clas-
sifications for future phone malware based on trends seen on PCs.
We then provide an overview of Android’s application and security
frameworks.

3.1 Mobile Phone Threats
The first mobile phone virus was observed in 2004. While Cabir [12]

carries a benign payload, it demonstrated the effectiveness of Blue-
tooth as a propagation vector. The most notable outbreak was at
the 2005 World Championships in Athletics [21]. More interest-
ingly, Cabir did not exploit any vulnerabilities. It operated entirely
within the security parameters of both its infected host (Symbian
OS) and Bluetooth. Instead, it leveraged flaws in the user interface.
While a victim is in range, Cabir continually sends file transfer
requests. When the user chooses “no,” another request promptly
appears, frustrating the user who subsequently answers “yes” re-
peatedly in an effort to use the phone [28].

Cabir was followed by a series of viruses and Trojans target-
ing the Symbian Series 60 platform, each increasing in complex-
ity and features. Based on Cabir, Lasco [16] additionally infects
all available software package (SIS) files residing on the phone on
the assumption that the user might share them. Commwarrior [14]
added MMS propagation in addition to Bluetooth. Early variants of
Commwarrior attempt to replicate via Bluetooth between 8am and
midnight (when the user is mobile) and via MMS between mid-
night and 7am (when the user will not see error messages resulting
from sending an MMS to non-mobile devices). Originally mas-
querading as a theme manager, the Skulls [18] Trojan provided one
of the first destructive payloads. When installed, Skulls writes non-
functioning versions of all applications to the c: drive, overriding
identically named files in the firmware ROM z: drive. All ap-
plications are rendered useless and their icons are replaced with a
skull and crossbones. Other Trojans, e.g., Drever [15], fight back
by disabling Antivirus software. The Cardblock [13] Trojan em-
beds itself within a pirated copy of InstantSis (a utility to extract
SIS software packages from a phone). However, Cardblock sets a
random password on the phone’s removable memory card, making
the user’s data inaccessible.

To date, most phone malware has been either “proof-of-concept”
or destructive, a characteristic often noted as resembling early PC
malware. Recent PC malware more commonly scavenges for valu-
able information (e.g., passwords, address books) or joins a bot-
net [42]. The latter frequently enables denial of service (DoS)-
based extortion. It is strongly believed that mobile phone malware
will move in similar directions [8, 28]. In fact, Pbstealer [17] al-
ready sends a user’s address book to nearby Bluetooth devices, and
Viver [19] sends SMS messages to premium-rate numbers, provid-
ing the malware writer with direct monetary income.

Mobile phone literature has categorized phone malware from dif-
ferent perspectives. Guo et al. [25] consider categories of resulting
network attacks. Cheng et al. [6] derive models based on infec-
tion vector (e.g., Bluetooth vs. MMS). However, we find a taxon-
omy based on an attacker’s motivations [8] to be the most useful
when designing security rules for Kirin. We foresee the following

motivations seeding future malware (the list is not intended to be
exhaustive):

• Proof-of-concept: Such malware often emerges as new infection
vectors are explored by malware writers and frequently have un-
intended consequences. For example, Cabir demonstrated Bluetooth-
based distribution and inadvertently drained device batteries. Ad-
ditionally, as non-Symbian phones gain stronger user bases (Sym-
bian market share dropped 21% between August 2008 and Febru-
ary 2009 [1] in response to the iPhone), proof-of-concept mal-
ware will emerge for these platforms.

• Destructive: Malware such as Skulls and Cardblock (described
above) were designed with destructive motivations. While we
believe malware with monetary incentives will overtake destruc-
tive malware, it will continue for the time being. Future mal-
ware may infect more than just the integrity of the phone. Cur-
rent phone operating systems and applications heavily depend
on cloud computing for storage and reliable backup. If malware,
for example, deletes entries from the phone’s address book, the
data loss will propagate on the next cloud synchronization and
subsequently affect all of the user’s computing devices.

• Premeditated spyware: FlexiSPY (www.flexispy.com) is
marketed as a tool to “catch cheating spouses” and is available
for Symbian, Windows Mobile, and BlackBerry. It provides lo-
cation tracking, and remote listening. While malware variants
exist, the software itself exhibits malware-like behavior and will
likely be used for industrial espionage, amongst other purposes.
Such malware may be downloaded and installed directly by the
adversary, e.g., when the user leaves the phone on a table.

• Direct payoff: Viver (described above) directly compensates the
malware’s author by sending messages to premium SMS num-
bers. We will undoubtedly see similar malware appearing more
frequently. Such attacks impact both the end-user and the provider.
Customers will contest the additional fees, leaving the provider
with the expense. Any mechanism providing direct payment to
a third party is a potential attack vector. For example, Apple’s
iPhone OS 3.0 has in-application content sales [3].

• Information scavengers: Web-based malware currently scours
PCs for valuable address books and login credentials (e.g., user-
names, passwords, and cookies for two-factor authentication for
bank websites) [42]. Mobile phones are much more organized
then their PC counterparts, making them better targets for such
malware [8]. For example, most phone operating systems in-
clude an API allowing all applications to directly access the ad-
dress book.

• Ad-ware: Today’s Internet revenue model is based upon adver-
tisements. The mobile phone market is no different, with many
developers receiving compensation through in-application ad-
vertisements. We expect malware to take advantage of notifi-
cation mechanisms (e.g., the Notification Manager in Android);
however, their classification as malware will be controversial.
Ad-ware on mobile phones is potentially more invasive than PC
counterparts, because the mobile phone variant will use geo-
graphic location and potentially Bluetooth communication [8].

• Botnet: A significant portion of current malware activity results
in a PC’s membership into a botnet. Many anticipate the intro-
duction of mobile phones into botnets, even coining the term
mobot (mobile bot) [23]. Traynor predicts the existence of a
mobile botnet in 2009 [24]. The goal of mobile botnets will
most likely be similar to those of existing botnets (e.g., provid-
ing means of DoS and spam distribution); however, the targets

www.flexispy.com
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will change. Core telephony equipment is expected to be sub-
ject to DoS by phones, and mobot-originated SMS spam will
remove the economic disincentive for spammers, making SMS
spam much more frequent and wide spread. Finally, the phone
functionality will be used. For example, telemarketers could use
automated dialers from mobots to distribute advertisements, cre-
ating “voice-spam” [46].

3.2 The Android Operating System
Android is an operating system for mobile phones. However, it

is better described as a middleware running on top of embedded
Linux. The underlying Linux internals have been customized to
provide strong isolation and contain exploitation. Each application
is written in Java and runs as a process with a unique UNIX user
identity. This design choice minimizes the effects of a buffer over-
flows. For example, a vulnerability in web browser libraries [29]
allowed an exploit to take control of the web browser, but the sys-
tem and all other applications remained unaffected.

All inter-application communication passes through Android’s
middleware (with a few exceptions). In the remainder of this sec-
tion, we describe how the middleware operates and enforces secu-
rity. For brevity, we concentrate on the concepts and details neces-
sary to understand Kirin. Enck et al. [11] provide a more detailed
description of Android’s security model with helpful examples.

3.2.1 Application Structure
The Android middleware defines four types of inter-process com-

munication (IPC).2 The types of IPC directly correspond to the four
types of components that make up applications. Generally, IPC
takes the form of an “Intent message”. Intents are either addressed
directly to a component using the application’s unique namespace,
or more commonly, to an “action string.” Developers specify “In-
tent filters” based on action strings for components to automatically
start on corresponding events. Figure 2 depicts typical IPC between
components that potentially crosses applications.

• An Activity component interfaces with the physical user via the
touchscreen and keypad. Applications commonly contain many
Activities, one for each “screen” presented to the user. The in-
terface progression is a sequence of one Activity “starting” an-
other, possibly expecting a return value. Only one Activity on
the phone has input and processing focus at a time.

• A Service component provides background processing that con-
tinues even after its application loses focus. Services also define
arbitrary interfaces for remote procedure call (RPC), including

2Unless otherwise specified, we use “IPC” to refer to the IPC types
specifically defined by the Android middleware, which is distinct
from the underlying Linux IPC.

method execution and callbacks, which can only be called after
the service has been “bound”.

• A Content Provider component is a database-like mechanism for
sharing data with other applications. The interface does not use
Intents, but rather is addressed via a “content URI.” It supports
standard SQL-like queries, e.g., SELECT, UPDATE, INSERT,
through which components in other applications can retrieve and
store data according to the Content Provider’s schema (e.g., an
address book).

• A Broadcast Receiver component is an asynchronous event mail-
box for Intent messages “broadcasted” to an action string. An-
droid defines many standard action strings corresponding to sys-
tem events (e.g., the system has booted). Developers often define
their own action strings.

Every application package includes a manifest file. The mani-
fest specifies all components in an application, including their types
and Intent filters. Note that Android allows applications to dynami-
cally create Broadcast Receivers that do not appear in the manifest.
However, these components cannot be used to automatically start
an application, as the application must be running to register them.
The manifest also includes security information, discussed next.

3.2.2 Security Enforcement
Android’s middleware mediates IPC based on permission labels

using a user space reference monitor [2]. For the most part, security
decisions are statically defined by the applications’ package man-
ifests. Security policy in the package manifest primarily consists
of 1) permission labels used (requested) by the application, and 2)
a permission label to restrict access to each component. When an
application is installed, Android decides whether or not to grant (as-
sign) the permissions requested by the application. Once installed,
this security policy cannot change.

Permission labels map the ability for an application to perform
IPC to the restriction of IPC at the target interface. Security pol-
icy decisions occur on the granularity of applications. Put simply,
an application may initiate IPC with a component in another (or
the same) application if it has been assigned the permission label
specified to restrict access to the target component IPC interface.
Permission labels are also used to restrict access to certain library
APIs. For instance, there is a permission label that is required for
an application to access the Internet. Android defines many permis-
sion labels to protect libraries and components in core applications.
However, applications can define their own.

There are many subtleties when working with Android security
policy. First, not all policy is specified in the manifest file. The API
for broadcasting Intents optionally allows the developer to specify a
permission label to restrict which applications may receive it. This
provides an access control check in the reverse direction. Addi-
tionally, the Android API includes a method to arbitrarily insert a
reference monitor hook anywhere in an application. This feature is
primarily used to provide differentiated access to RPC interfaces in
a Service component. Second, the developer is not forced to spec-
ify a permission label to restrict access to a component. If no label
is specified, there is no restriction (i.e., default allow). Third, com-
ponents can be made “private,” precluding them from access by
other applications. The developer need not worry about specifying
permission labels to restrict access to private components. Fourth,
developers can specify separate permission labels to restrict access
to the read and write interfaces of a Content Provider component.
Fifth, developers can create “Pending Intent” objects that can be
passed to other applications. That application can fill in both data
and address fields in the Intent message. When the Pending In-
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tent is sent to the target component, it does so with the permissions
granted to the original application. Sixth, in certain situations, an
application can delegate its access to subparts (e.g., records) of a
Content Provider. These last two subtleties add discretion to an
otherwise mandatory access control (MAC) system.

Most of Android’s core functionality is implemented as separate
applications. For instance, the “Phone” application provides voice
call functionality, and the “MMS” application provides a user inter-
face for sending and receiving SMS and MMS messages. Android
protects these applications in the same way third-party develop-
ers protect their applications. We include these core applications
when discussing Android’s trusted computing base (TCB). A final
subtlety of Android’s security framework relates to how applica-
tions are granted the permission labels they request. There are three
main “protection levels” for permission labels: a “normal” permis-
sion is granted to any application that requests it; a “dangerous”
permission is only granted after user approval at install-time; and
a “signature” permission is only granted to applications signed by
the same developer key as the application defining the permission
label. This last protection level is integral in ensuring third-party
applications do not gain access affecting the TCB’s integrity.

4. KIRIN SECURITY RULES
The malware threats and the Android architecture introduced in

the previous sections serve as the background for developing Kirin
security rules to detect potentially dangerous application configu-
rations. To ensure the security of a phone, we need a clear defini-
tion of a secure phone. Specifically, we seek to define the condi-
tions that an application must satisfy for a phone to be considered
safe. To define this concept for Android, we turn to the field of se-
curity requirements engineering, which is an off-shoot of require-
ments engineering and security engineering. The former is a well-
known fundamental component of software engineering in which
business goals are integrated with the design. The latter focuses on
the threats facing a specific system.

Security requirements engineering is based upon three basic con-
cepts. 1) functional requirements define how a system is supposed
to operate in normal environment. For instance, when a web browser
requests a page from a web server, the web server returns the data
corresponding to that file. 2) assets are “. . . entities that someone
places value upon” [31]. The webpage is an asset in the previous
example. 3) security requirements are “. . . constraints on functional
requirements to protect the assets from threats” [26]. For example,
the webpage sent by the web server must be identical to the web-
page received by the client (i.e., integrity).

The security requirements engineering process is generally sys-
tematic; however, it requires a certain level of human interaction.
Many techniques have been proposed, including SQUARE [5, 34],
SREP [35, 36], CLASP [40], misuse cases [33, 47], and security
patterns [27, 45, 48]. Related implementations have seen great
success in practice, e.g., Microsoft uses the Security Development
Lifecycle (SDL) for the development of their software that must
withstand attacks [32], and Oracle has developed OSSA for the se-
cure software development of their products [41].

Commonly, security requirements engineering begins by creat-
ing functional requirements. This usually involves interviewing
stakeholders [5]. Next, the functional requirements are translated
into a visual representation to describe relationships between ele-
ments. Popular representations include use cases [47] and context
diagrams using problem frames [37, 26]. Based on these require-
ments, assets are identified. Finally, each asset is considered with
respect to high level security goals (e.g., confidentiality, integrity,
and availability). The results are the security requirements.
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(4) Specify Security 
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Security Enforcement 
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Stakeholder Concerns 
(e.g., malware)
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(5) Determine Security 
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Figure 3: Procedure for requirements identification

Unfortunately, we cannot directly utilize these existing techniques
because they are designed to supplement system and software de-
velopment. Conversely, we wish to retrofit security requirements
on an existing design. There is no clearly defined usage model or
functional requirements specification associated with the Android
platform or the applications. Hence, we provide an adapted proce-
dure for identifying security requirements for Android. The result-
ing requirements directly serve as Kirin security rules.

4.1 Identifying Security Requirements
We use existing security requirements engineering techniques as

a reference for identifying dangerous application configurations in
Android. Figure 3 depicts our procedure, which consists of five
main activities.

Step 1: Identify Assets.
Instead of identifying assets from functional requirements, we

extract them from the features on the Android platform. Google
has identified many assets already in the form of permission labels
protecting resources. Moreover, as the broadcasted Intent messages
(e.g. those sent by the system) impact both platform and application
operation, they are assets. Lastly, all components (Activities, etc.)
of system applications are assets. While they are not necessarily
protected by permission labels, many applications call upon them
to operate.

As an example, Android defines the RECORD_AUDIO permis-
sion to protect its audio recorder. Here, we consider the asset to
be microphone input, as it records the user’s voice during phone
conversations. Android also defines permissions for making phone
calls and observing when the phone state changes. Hence, call ac-
tivity is an asset.

Step 2: Identify Functional Requirements.
Next, we carefully study each asset to specify corresponding

functional descriptions. These descriptions indicate how the as-
set interacts with the rest of the phone and third-party applications.
This step is vital to our design, because both assets and functional
descriptions are necessary to investigate realistic threats.

Continuing the assets identified above, when the user receives
an incoming call, the system broadcasts an Intent to the PHONE_
STATE action string. It also notifies any applications that have
registered a PhoneStateListener with the system. The same
notifications are sent on outgoing call. Another Intent to the NEW_
OUTGOING_CALL action string is also broadcasted. Furthermore,
this additional broadcast uses the “ordered” option, which serializes
the broadcast and allows any recipient to cancel it. If this occurs,
subsequent Broadcast Receivers will not receive the Intent mes-

RECORD_AUDIO
PHONE_STATE
PHONE_STATE
PhoneStateListener
NEW_OUTGOING_CALL
NEW_OUTGOING_CALL


sage. This feature allows, for example, an application to redirect
international calls to the number for a calling card. Finally, audio
can be recorded using the MediaRecorder API.

Step 3: Determine Assets Security Goals and Threats.
In general, security requirements engineering considers high level

security goals such as confidentiality, integrity, and availability. For
each asset, we must determine which (if not all) goals are appro-
priate. Next, we consider how the functional requirements can be
abused with respect to the remaining security goals. Abuse cases
that violate the security goals provide threat descriptions. We use
the malware motivations described in Section 3.1 to motivate our
threats. Note that defining threat descriptions sometimes requires a
level of creativity. However, trained security experts will find most
threats straightforward after defining the functional requirements.

Continuing our example, we focus on the confidentiality of the
microphone input and phone state notifications. These goals are
abused if a malware records audio during voice call and transmits
it over the Internet (i.e., premeditated spyware). The corresponding
threat description becomes, “spyware can breach the user’s privacy
by detecting the phone call activity, recording the conversation, and
sending it to the adversary via the Internet.”

Step 4: Develop Asset’s Security Requirements.
Next, we define security requirements from the threat descrip-

tions. Recall from our earlier discussion, security requirements are
constraints on functional requirements. That is, they specify who
can exercise functionality or conditions under which functionality
may occur. Frequently, this process consists of determining which
sets of functionality are required to compromise a threat. The re-
quirement is the security rule that restricts the ability for this func-
tionality to be exercised in concert.

We observe that the eavesdropper requires a) notification of an
incoming or outgoing call, b) the ability to record audio, and c)
access to the Internet. Therefore, our security requirement, which
acts as Kirin security rule, becomes, “an application must not be
able to receive phone state, record audio, and access the Internet.”

Step 5: Determine Security Mechanism Limitations.
Our final step caters to the practical limitations of our intended

enforcement mechanism. Our goal is to identify potentially dan-
gerous configurations at install time. Therefore, we cannot ensure
runtime support beyond what Android already provides. Addition-
ally, we are limited to the information available in an application
package manifest. For both these reasons, we must refine our list of
security requirements (i.e., Kirin security rules). Some rules may
simply not be enforceable. For instance, we cannot ensure only
a fixed number of SMS messages are sent during some time pe-
riod [30], because Android does not support history-based policies.
Security rules must also be translated to be expressed in terms of
the security configuration available in the package manifest. This
usually consists of identifying the permission labels used to protect
functionality. Finally, as shown in Figure 3, the iteration between
Steps 4 and 5 is required to adjust the rules to work within our lim-
itations. Additionally, security rules can be subdivided to be more
straightforward.

The permission labels corresponding to the restricted functional-
ity in our running example include READ_PHONE_STATE, PROCESS_
OUTGOING_CALLS, RECORD_AUDIO, and INTERNET. Further-
more, we subdivide our security rule to remove the disjunctive logic
resulting from multiple ways for the eavesdropper to be notified of
voice call activity. Hence, we create the following adjusted se-
curity rules: a) “an application must not have the READ_PHONE_

STATE, RECORD_AUDIO, and INTERNET permissions.” and the
nearly identical b) “an application must not have the PROCESS_
OUTGOING_CALLS, RECORD_AUDIO, and INTERNET permis-
sions.”

4.2 Sample Malware Mitigation Rules
The remainder of this section discusses Kirin security rules we

developed following our 5-step methodology. For readability and
ease of exposition, we have enumerated the precise security rules
in Figure 4. We refer to the rules by the indicated numbers for the
remainder of the paper. We loosely categorize Kirin security rules
by their complexity.

4.2.1 Single Permission Security Rules
Recall that a number of Android’s “dangerous” permissions may

be “too dangerous” for some production environments. We dis-
covered several such permission labels. For instance, the SET_
DEBUG_APP permission “. . . allows an application to turn on de-
bugging for another application.” (according to available documen-
tation). The corresponding API is “hidden” in the most recent SDK
environment (at the time of writing, version 1.1r1). The hidden
APIs are not accessible by third-party applications but only by sys-
tem applications. However, hidden APIs are no substitute for secu-
rity. A malware author can simply download Android’s source code
and build an SDK that includes the API. The malware then, for in-
stance, can disable anti-virus software. Rule 1 ensures third party
applications do not have the SET_DEBUG_APP permission. Simi-
lar rules can be made for other permission labels protecting hidden
APIs (e.g., Bluetooth APIs not yet considered mature enough for
general use).

4.2.2 Multiple Permission Security Rules
Voice and location eavesdropping malware requires permissions

to record audio and access location information. However, legit-
imate applications use these permissions as well. Therefore, we
must define rules with respect to multiple permissions. To do this,
we consider the minimal set of functionality required to compro-
mise a threat. Rules 2 and 3 protect against the voice call eaves-
dropper used as a running example in Section 4.1. Similarly, Rules 4
and 5 protect against a location tracker. In this case, the malware
starts executing on boot. In these security rules, we assume the mal-
ware starts on boot by defining a Broadcast Receiver to receive the
BOOT_COMPLETE action string. Note that the RECEIVE_BOOT_
COMPLETE permission label protecting this broadcast is a “nor-
mal” permission (and hence is always granted). However, the per-
mission label provides valuable insight into the functional require-
ments of an application. In general, Kirin security rules are more
expressible as the number of available permission labels increases.

Rules 6 and 7 consider malware’s interaction with SMS. Rule 6
protects against malware hiding or otherwise tampering with in-
coming SMS messages. For example, SMS can be used as a con-
trol channel for the malware. However, the malware author does
not want to alert the user, therefore immediately after an SMS is
received from a specific sender, the SMS Content Provider is mod-
ified. In practice, we found that our sample malware could not
remove the SMS notification from the phone’s status bar. How-
ever, we were able to modify the contents of the SMS message in
the Content Provider. While we could not hide the control mes-
sage completely, we were able to change the message to appear as
spam. Alternatively, a similar attack could ensure the user never
receives SMS messages from a specific sender, for instance PayPal
or a financial institution. Such services often provide out-of-band
transaction confirmations. Blocking an SMS message from this
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(1) An application must not have the SET_DEBUG_APP permission label.

(2) An application must not have PHONE_STATE, RECORD_AUDIO, and INTERNET permission labels.

(3) An application must not have PROCESS_OUTGOING_CALL, RECORD_AUDIO, and INTERNET permission labels.

(4) An application must not have ACCESS_FINE_LOCATION, INTERNET, and RECEIVE_BOOT_COMPLETE permission labels.

(5) An application must not have ACCESS_COARSE_LOCATION, INTERNET, and RECEIVE_BOOT_COMPLETE permission labels.

(6) An application must not have RECEIVE_SMS and WRITE_SMS permission labels.

(7) An application must not have SEND_SMS and WRITE_SMS permission labels.

(8) An application must not have INSTALL_SHORTCUT and UNINSTALL_SHORTCUT permission labels.

(9) An application must not have the SET_PREFERRED_APPLICATION permission label and receive Intents for the CALL action string.

Figure 4: Sample Kirin security rules to mitigate malware

sender could hide other activity performed by the malware. While
this attack is also limited by notifications in the status bar, again,
the message contents can be transformed as spam.

Rule 7 mitigates mobile bots sending SMS spam. Similar to
Rule 6, this rule ensures the malware cannot remove traces of its
activity. While Rule 7 does not prevent the SMS spam messages
from being sent, it increases the probability that the user becomes
aware of the activity.

Finally, Rule 8 makes use of the duality of some permission la-
bels. Android defines separate permissions for installing and unin-
stalling shortcuts on the phone’s home screen. This rule ensures
that a third-party application cannot have both. If an application
has both, it can redirect the shortcuts for frequently used applica-
tions to a malicious one. For instance, the shortcut for the web
browser could be redirected to an identically appearing application
that harvests passwords.

4.2.3 Permission and Interface Security Rules
Permissions alone are not always enough to characterize mal-

ware behavior. Rule 9 provides an example of a rule considering
both a permission and an action string. This specific rule prevents
malware from replacing the default voice call dialer application
without the user’s knowledge. Normally, if Android detects two
or more applications contain Activities to handle an Intent mes-
sage, the user is prompted which application to use. This interface
also allows the user to set the current selection as default. However,
if an application has the SET_PREFERRED_APPLICATION per-
mission label, it can set the default without the user’s knowledge.
Google marks this permission as “dangerous”; however, users may
not fully understand the security implications of granting it. Rule 9
combines this permission with the existence of an Intent filter re-
ceiving the CALL action string. Hence, we can allow a third-party
application to obtain the permission as long as it does not also han-
dle voice calls. Similar rules can be constructed for other action
strings handled by the trusted computing base.

5. KIRIN SECURITY LANGUAGE
We now describe the Kirin Security Language (KSL) to encode

security rules for the Kirin security service. Kirin uses an applica-
tion’s package manifest as input. The rules identified in Section 4
only require knowledge of the permission labels requested by an
application and the action strings used in Intent filters. This section
defines the KSL syntax and formally defines its semantics.

5.1 KSL Syntax
Figure 5 defines the Kirin Security Language in BNF notation.

A KSL rule-set consists of a list of rules. A rule indicates com-
binations of permission labels and action strings that should not be

〈rule-set〉 ::= 〈rule〉 | 〈rule〉 〈rule-set〉 (1)
〈rule〉 ::= “restrict” 〈restrict-list〉 (2)

〈restrict-list〉 ::= 〈restrict〉 | 〈restrict〉 “and” 〈restrict-list〉 (3)
〈restrict〉 ::= “permission [” 〈const-list〉 “]” |

“receive [” 〈const-list〉 “]” (4)
〈const-list〉 ::= 〈const〉 | 〈const〉 “,” 〈const-list〉 (5)

〈const〉 ::= “’”[A-Za-z0-9_.]+“’” (6)

Figure 5: KSL syntax in BNF.

used by third-party applications. Each rule begins with the keyword
“restrict”. The remainder of the rule is the conjunction of sets
of permissions and action strings received. Each set is denoted as
either “permission” or “receive”, respectively.

5.2 KSL Semantics
We now define a simple logic to represent a set of rules written

in KSL. Let R be set of all rules expressible in KSL. Let P be
the set of possible permission labels and A be the set of possible
action strings used by Activities, Services, and Broadcast Receivers
to receive Intents. Then, each rule ri ∈ R is a tuple (2P , 2A).3

We use the notation ri = (Pi, Ai) to refer to a specific subset of
permission labels and action strings for rule ri, where Pi ∈ 2P and
Ai ∈ 2A.

Let R ⊆ R correspond to a set of KSL rules. We construct R
from the KSL rules as follows. For each 〈rule〉i, let Pi be the union
of all sets of “permission” restrictions, and let Ai be the union
of all sets of “receive” restrictions. Then, create ri = (Pi, Ai)
and place it in R. The set R directly corresponds to the set of KSL
rules and can be formed in time linear to the size of the KSL rule
set (proof by inspection).

Next we define a configuration based on package manifest con-
tents. Let C be the set of all possible configurations extracted from
a package manifest. We need only capture the set of permission
labels used by the application and the action strings used by its Ac-
tivities, Services, and Broadcast Receivers. Note that the package
manifest does not specify action strings used by dynamic Broadcast
Receivers; however, we use this fact to our advantage (as discussed
in Section 7). We define configuration c ∈ C as a tuple (2P , 2A).
We use the notation ct = (Pt, At) to refer to a specific subset of
permission labels and action strings used by a target application t,
where Pt ∈ 2P and At ∈ 2A.

3We use the standard notation 2X represent the power set of a set
X , which is the set of all subsets including ∅.

SET_PREFERRED_APPLICATION
CALL


We now define the semantics of a set of KSL rules. Let fail :
C × R → {true, false} be a function to test if an application
configuration fails a KSL rule. Let ct be the configuration for target
application t and ri be a rule. Then, we define fail(ct, ri) as:

(Pt, At) = ct, (Pi, Ai) = ri, Pi ⊆ Pt ∧Ai ⊆ At

Clearly, fail(·) operates in time linear to the input, as a hash table
can provide constant time set membership checks.

Let FR : C → R be a function returning the set of all rules in
R ∈ 2R for which an application configuration fails:

FR(ct) = {ri|ri ∈ R, fail(ct, ri)}

Then, we say the configuration ct passes a given KSL rule-set R if
FR(ct) = ∅. Note that FR(ct) operates in time linear to the size of
ct and R. Finally, the set FR(ct) can be returned to the application
installer to indicate which rules failed. This information facilitates
the optional user override extension described in Section 2.

6. KIRIN SECURITY SERVICE
For flexibility, Kirin is designed as a security service running on

the mobile phone. The existing software installer interfaces directly
with the security service. This approach follows Android’s design
principle of allowing applications to be replaced based on manu-
facturer and consumer interests. More specifically, a new installer
can also use Kirin.

We implemented Kirin as an Android application. The primary
functionality exists within a Service component that exports an
RPC interface used by the software installer. This service reads
KSL rules from a configuration file. At install time, the installer
passes the file path to the package archive (.apk file) to the RPC in-
terface. Then, Kirin parses the package to extract the security con-
figuration stored in the package manifest. The PackageManager
and PackageParser APIs provide the necessary information.
The configuration is then evaluated against the KSL rules. Finally,
the passed/failed result is returned to the installer with the list of the
violated rules. Note that Kirin service does not access any critical
resources of the platform hence does not require any permissions.

7. EVALUATION
Practical security rules must both mitigate malware and allow

legitimate applications to be installed. Section 4 argued that our
sample security rules can detect specific types of malware. How-
ever, Kirin’s certification technique conservatively detects danger-
ous functionality, and may reject legitimate applications. In this
section, we evaluate our sample security rules against real applica-
tions from the Android Market. While the Android Market does
not perform rigorous certification, we initially assume it does not
contain malware. Any application not passing a security rule re-
quires further investigation. Overall, we found very few applica-
tions where this was the case. On one occasion, we found a rule
could be refined to reduce this number further.

Our sample set consisted of a snapshot of a subset of popular ap-
plications available in the Android Market in late January 2009. We
downloaded the top 20 applications from each of the 16 categories,
producing a total of 311 applications (one category only had 11 ap-
plications). We used Kirin to extract the appropriate information
from each package manifest and ran the FR(·) algorithm described
in Section 5.

7.1 Empirical Results
Our analysis tested all 311 applications against the security rules

listed in Figure 4. Of the 311 applications, only 12 failed to pass

Table 1: Applications failing Rule 2
Application Description
Walki Talkie
Push to Talk

Walkie-Talkie style voice communication.

Shazam Utility to identify music tracks.

Inauguration
Report

Collaborative journalism application.

all 9 security rules. Of these, 3 applications failed Rule 2 and 9
applications failed Rules 4 and 5. These failure sets were disjoint,
and no applications failed the other six rules.

Table 1 lists the applications that fail Rule 2. Recall that Rule 2
defends against a malicious eavesdropper by failing any applica-
tion that can read phone state, record audio, and access the Inter-
net. However, none of the applications listed in Table 1 exhibit
eavesdropper-like characteristics. Considering the purpose of each
application, it is clear why they require the ability to record audio
and access the Internet. We initially speculated that the applica-
tions stop recording upon an incoming call. However, this was not
the case. We disproved our speculation for Shazam and Inaugu-
ration Report and were unable to determine a solid reason for the
permission label’s existence, as no source code was available.

After realizing that simultaneous access to phone state and audio
recording is in fact beneficial (i.e., to stop recording on incoming
call), we decided to refine Rule 2. Our goal is to protect against
an eavesdropper that automatically records a voice call on either
incoming or outgoing call. Recall that there are two ways to obtain
the phone state: 1) register a Broadcast Receiver for the PHONE_
STATE action string, and 2) register a PhoneStateListener
with the system. If a static Broadcast Receiver is used for the
former case, the application is automatically started on incoming
and outgoing call. The latter case requires the application to be
already started, e.g., by the user, or on boot. We need only con-
sider cases where it is started automatically. Using this informa-
tion, we split Rule 2 into two new security rules. Each appends an
additional condition. The first appends a restriction on receiving
the PHONE_STATE action string. Note that since Kirin only uses
Broadcast Receivers defined in the package manifest, we will not
detect dynamic Broadcast Receivers that cannot be used to auto-
matically start the application. The second rule appends the boot
complete permission label used for Rule 4. Rerunning the applica-
tions against our new set of security rules, we found that only the
Walkie Talkie application failed our rules, thus reducing the num-
ber of failed applications to 10.

Table 2 lists the applications that fail Rules 4 and 5. Recall that
these security rules detect applications that start on boot and access
location information and the Internet. The goal of these rules is to
prevent location tracking software. Of the nine applications listed
in Table 2, the first five provide functionality that directly contrast
with the rule’s goal. In fact, Kirin correctly identified both Accu-
Tracking and GPS Tracker as dangerous. Both Loopt and Twidroid
are popular social networking applications; however, they do in fact
provide potentially dangerous functionality, as they can be config-
ured to automatically start on boot without the user’s knowledge.
Finally, Pintail is designed to report the phone’s location in re-
sponse to an SMS message with the correct password. While this
may be initiated by the user, it may also be used by an adversary to
track the user. Again, Kirin correctly identified potentially danger-
ous functionality.

The remaining four applications in Table 2 result from the lim-
itations in Kirin’s input. That is, Kirin cannot inspect how an ap-
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PHONE_STATE
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PHONE_STATE


Table 2: Applications failing Rule 4 and 5
Application Description
AccuTracking Client for real-time GPS tracking service

(AccuTracking).

GPS Tracker∗ Client for real-time GPS tracking service
(InstaMapper).

Loopt Geosocial networking application that
shares location with friends.

Twidroid Twitter client that optionally allows au-
tomatic location tweets.

Pintail Reports the phone location in response to
SMS message.

WeatherBug Weather application with automatic
weather alerts.

Homes Classifieds application to aid in buying
or renting houses.

T-Mobile Hotspot Utility to discover nearby nearby T-
Mobile WiFi hotspots.

Power Manager Utility to automatically manage radios
and screen brightness.

* Did not fail Rule 5

plication uses information. In the previous cases, the location in-
formation was used to track the user. However, for these applica-
tions, the location information is used to supplement Internet data
retrieval. Both WeatherBug and Homes use the phone’s location to
filter information from a website. Additionally, there is little corre-
lation between location and the ability to start on boot. On the other
hand, the T-Mobile Hotspot WiFi finder provides useful functional-
ity by starting on boot and notifying the user when the phone is near
such wireless networks. However, in all three of these cases, we do
not believe access to “fine” location is required; location with re-
spect to a cellular tower is enough to determine a city or even a city
block. Removing this permission would allow the applications to
pass Rule 4. Finally, we were unable to determine why Power Man-
ager required location information. We initially thought it switched
power profiles based on location, but did not find an option.

In summary, 12 of the 311 applications did not pass our initial
security rules. We reduced this to 10 after revisiting our security
requirements engineering process to better specify the rules. This
is the nature of security requirements engineering, which an on-
going process of discovery. Of the remaining 10, Kirin correctly
identified potentially dangerous functionality in 5 of the applica-
tions, which should be installed with extreme caution. The remain-
ing five applications assert a dangerous configuration of permis-
sions, but were used within reasonable functional needs based on
application descriptions. Therefore, Kirin’s conservative certifica-
tion technique only requires user involvement for approximately
1.6% of applications (according to our sample set). From this, we
observe that Kirin can be very effective at practically mitigating
malware.

7.2 Mitigating Malware
We have shown that Kirin can practically mitigate certain types

of malware. However, Kirin is not a complete solution for malware
protection. We constructed practical security by considering dif-
ferent malicious motivations. Some motivations are more difficult
to practically detect with Kirin. Malware of destructive or proof-
of-concept origins may only require one permission label to carry

out its goals. For example, malware might intend to remove all
contacts from the phone’s address book. Kirin cannot simply deny
all third-party applications the ability to write to the address book.
Such a rule would fail for an application that merges Web-based
address books (e.g., Facebook).

Kirin is more valuable in defending against complex attacks re-
quiring multiple functionalities. We discussed a number of rules
that defend against premeditated spyware. Rule 8 defends against
shortcut replacement, which can be used by information scavengers
to trick the user into using a malicious Web browser. Furthermore,
Rule 6 can help hide financial transactions that might result from
obtained usernames and passwords. Kirin can also help mitigate
the effects of botnets. For example, Rule 7 does not let an applica-
tion hide outbound SMS spam. This requirement can also be used
to help a user become aware of SMS sent to premium numbers (i.e.,
direct payoff malware). However, Kirin could be more effective if
Android’s permission labels distinguished between sending SMS
messages to contacts in the address book verses arbitrary numbers.

Kirin’s usefulness to defend against ad-ware is unclear. Many
applications are supported by advertisements. However, applica-
tions that continually pester the user are undesirable. Android does
not define permissions to protect notification mechanisms (e.g., the
status bar), but even with such permissions, there are many legiti-
mate reasons for using notifications. Despite this, in best case, the
user can identify the offending application and uninstall it.

Finally, Kirin’s expressibility is restricted by the policy that An-
droid enforces. Android policy itself is static and does not support
runtime logic. Therefore, it cannot enforce that no more than 10
SMS messages are sent per hour [30]. However, this is a limitation
of Android and not Kirin.

8. DISCOVERED VULNERABILITIES
The process of retrofitting security requirements for Android had

secondary effects. In addition to identifying rules for Kirin, we
discovered a number of configuration and implementation flaws.
Step 1 identifies assets. However, not all assets are protected by
permissions. In particular, in early versions of our analysis dis-
covered that the Intent message broadcasted by the system to the
SMS_RECEIVED action string was not protected. Hence, any ap-
plication can create a forged SMS that appears to have come from
the cellular network. Upon notifying Google of the problem, the
new permission BROADCAST_SMS_RECEIVED has been created
and protects the system broadcast as of Android version 1.1. We
also discovered an unprotected Activity component in the phone
application that allows a malicious application to make phone calls
without having the CALL_PHONE permission. This configuration
flaw has also been fixed. As we continued our investigation with the
most recent version of Android (v1.1r1), we discovered a number
of APIs do not check permissions as prescribed in the documen-
tation. All of these flaws show the value in defining security re-
quirements. Kirin relies on Android to enforce security at runtime.
Ensuring the security of a phone requires a complete solution, of
which Kirin is only part.

9. RELATED WORK
The best defense for mobile phone malware is still unclear. Most

likely, it requires a combination of solutions. Operating systems
protections have been improving. The usability flaw allowing Cabir
to effectively propagate has been fixed, and Symbian 3rd Edition
uses Symbian Signed (www.symbiansigned.com), which en-
sures some amount of software vetting before an application can
be installed. While, arguably, Symbian Signed only provides weak
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security (socially engineered signatures have occurred [22]), it pro-
vides more protection than previous platform versions. Unfortu-
nately, some users disable it.

Anti-virus software provides a second layer of defense against
malware. F-Secure (www.f-secure.com) is one of many secu-
rity solution providers for Symbian and Windows Mobile. How-
ever, like PC anti-virus software, protection is reactive and de-
pends on updated virus signatures. Behavior signatures [4] consid-
ering temporal patterns of malicious behavior also show promise
and may defend against malware variants with different binary sig-
natures. Similar to behavior signatures, multiple network-based
anomaly detection systems have been proposed [6, 44]. These sys-
tems report phone activity (e.g., SMS and Bluetooth usage) and
runtime features (e.g., CPU and memory usage) to a central server
that performs statistical anomaly analysis to detect mobile phone
malware epidemics.

Preventative techniques have also been proposed. Muthukumaran
et al. [38] extend Openmoko with SELinux policies to isolate un-
trusted software. Zhang et al. [49] incorporate trusted computing
and SELinux into mobile phones. Security-by-contract [9] retrofits
Microsoft’s compact .NET platform by associating an application
with a “contract” of declared functionality. If the application devi-
ates from the contractual policy, the runtime environment interrupts
execution. Kirin supplements Android’s existing security infras-
tructure. It infers application functionality from security configu-
ration available in the package manifest. While Android’s runtime
security enforcement is less expressive than security-by-contract,
it is significantly lighter-weight, and Kirin provides no additional
runtime overhead.

Outside the domain of mobile phones, others have looked at cer-
tifying applications containing security configuration. Rueda et
al. [43] extract security policy from Jif applications and test com-
pliance with SELinux policy. Similarly, proof carry code [39] pro-
vides a mechanism for a platform to check if an application behaves
in an expected way.

10. CONCLUSION
As users become more comfortable downloading software for

mobile phones, malware targeting phones will increase. Kirin pro-
vides lightweight certification at install time that does not require
burdensome code inspection for each application. We have shown
that Kirin can express meaningful security rules to mitigate mal-
ware. Furthermore, we have shown that Kirin’s conservative certi-
fication technique rarely identifies reasonable use of asserted rights
as potentially dangerous. This indicates that Kirin requires minimal
user interaction in practice. Future work will continue to the secu-
rity requirements engineering process to discover additional rules
to defend against malware.

This work is simply the first step in a longer journey towards
realizing practical mobile phone security. We plan to extend our
analysis of security configuration included in package manifests by
enhancing the development environment to ensure applications are
distributed with proper protections.
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