
MAST: Triage for Market-scale Mobile Malware Analysis

Saurabh Chakradeo, Bradley Reaves,

Patrick Traynor

School of Computer Science

Georgia Institute of Technology

Atlanta, GA, USA

{schakradeo, brad.reaves}@gatech.edu,

traynor@cc.gatech.edu

William Enck

Department of Computer Science

North Carolina State University

Raleigh, NC, USA

enck@cs.ncsu.edu

ABSTRACT
Malware is a pressing concern for mobile application market oper-
ators. While current mitigation techniques are keeping pace with
the relatively infrequent presence of malicious code, the rapidly in-
creasing rate of application development makes manual and resource-
intensive automated analysis costly at market-scale. To address this
resource imbalance, we present the Mobile Application Security
Triage (MAST) architecture, a tool that helps to direct scarce mal-
ware analysis resources towards the applications with the greatest
potential to exhibit malicious behavior. MAST analyzes attributes
extracted from just the application package using Multiple Corre-
spondence Analysis (MCA), a statistical method that measures the
correlation between multiple categorical (i.e., qualitative) data. We
train MAST using over 15,000 applications from Google Play and
a dataset of 732 known-malicious applications. We then use MAST
to perform triage on three third-party markets of different size and
malware composition—36,710 applications in total. Our experi-
ments show that MAST is both effective and performant. Using
MAST ordered ranking, malware-analysis tools can find 95% of
malware at the cost of analyzing 13% of the non-malicious ap-
plications on average across multiple markets, and MAST triage
processes markets in less than a quarter of the time required to per-
form signature detection. More importantly, we show that success-
ful triage can dramatically reduce the costs of removing malicious
applications from markets.

Keywords
Mobile application security, Triage, Multiple correspondence anal-
ysis

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive soft-
ware

1. INTRODUCTION
Application markets have simplified the process of finding and

installing software on smartphones, creating an efficient channel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’13, April 17–19, 2013, Budapest, Hungary.
Copyright 2013 ACM 978-1-4503-1998-0/13/04 ...$15.00.

between developers and end users [4, 8, 21, 51]. Unfortunately,
they have also provided attackers with an easy point of entry into
mobile devices in the form of vulnerable and malicious applica-
tions [13, 25–27, 32, 34, 35]. Some markets have responded thus
far with a variety of proactive and reactive approaches to this prob-
lem (e.g., Apple’s manual analysis and Google’s Bouncer [31]).
Though these approaches have thus far minimized the amount of
malware that appears on their respective markets, many alterna-
tive Android markets [3,20,49] still remain completely unprotected
against malware. Also, the time and monetary cost as well as the
need for in-depth inspection of the applications will rise as mal-
ware takes greater lengths to avoid detection, and the number of
new samples to analyze continues to increase as developers create
new and update existing applications. To continue to be effective
and work within malware detection budgets, market providers, an-
tivirus companies, and independent researchers must then, more
than ever, strategically spend manual effort and computationally
expensive program analysis.

Mobile application security is not the first discipline to wrestle
with a mismatch of resources and duties. Medical facilities regu-
larly perform triage, or the prioritization of limited resources based
on the perceived condition of each individual within the population
of patients. Triage is neither diagnosis nor treatment. Rather, it al-
lows medical personnel to immediately deal with patients with the
greatest obvious needs while delaying or dismissing treatment for
others. Developing such perception and prioritization in the mo-
bile application space, where most applications are in fact benign,
would allow scarce resources to be dedicated to the investigation of
applications that have the greatest potential to be dangerous.

In this paper, we present the Mobile Application Security Triage
(MAST) infrastructure. MAST develops a perception of suspicion
for applications through the use of Multiple Correspondence Anal-
ysis (MCA) [1], a technique used in the social sciences to deter-
mine the statistical correlation between multiple categorical (i.e.,
qualitative) data. In particular, we develop a “questionnaire” for
Android applications that looks for strong relationships between
declared indicators of application functionality (e.g., permissions,
intent filters, the presence of native code, etc.) given the key insight
that these declared indicators are required for malware to perform
its malicious functionality. Effectively, MAST operates under the
assumption that the configurations of declared indicators of legiti-
mate app are distinct from malware, which MCA identifies as out-
liers in a population.

Our methodology is developed using over 15,000 applications
from Google Play [21], the Contagio mobile malware repository [43]
and malicious applications found by Zhou et al. [53]. We then ap-
ply MAST to three third-party application markets: Anzhi (28,760
apps) [3], Ndoo (4,324 apps) [39], and SoftAndroid (3,626 apps) [49].

Our results show that MAST dramatically reduces the effort spent
on non-malicious applications. Using MAST, existing detection
tools can identify on average 95% of malware in third-party mar-
kets at the cost of analyzing 13% of the non-malicious applications
in them. As a side-effect of performing this triage, we discovered
widespread misuse of the Android default application signing key,
appearing in 1,672 applications across the Android Market sample,
the malware dataset, and the three third-party markets.

We make the following contributions:
• Develop the MCA-based MAST Architecture: As the rate

with which mobile apps are added to markets increases, per-
forming deep security analysis of those apps will become a
“big data” problem. We develop an infrastructure for direct-
ing scarce analysis resources to address this problem. MAST
uses MCA to rank applications with a degree of suspicion.
Although implemented for Android, this architecture is reusable
in any system in which required qualitative declarations of
application functionality are available, and is extensible to
accommodate new classes of malicious applications.

• Analyze multiple third-party Android markets: We train
and evaluate the effectiveness of MAST using a corpus of
more than 50,000 Android applications from a range of dif-
ferent markets. Even with the diversity in size and malware
population of these markets, MAST effectively triages mali-
cious apps—on average 95% of malware present in the mar-
ket can be detected at the cost of analyzing 13% of the non-
malicious applications.

• Generate rankings faster than any lightweight analysis:
MAST is designed to direct resource intensive operations
(e.g., manual analysis), so generating these rankings requires
less time than even the most lightweight analysis tools. Specif-
ically, our MAST infrastructure ranks applications more than
4 times faster than signature detection.

MAST is a comprehensive yet lightweight mechanism for iden-
tifying malware in Android. Prior work has used rules or simple
statistical measures to detect malware [16, 19, 22, 54], while more
advanced analyses [44, 47] have reported worse or comparable ef-
ficacy, while failing to characterize their efficiency and efficacy on
markets with actual threats. The MAST architecture is fundamen-
tally more flexible and robust than a rule-based filtering scheme,
and this paper is the first to demonstrate that advanced techniques
can be useful in practice.

Finally, MAST is not designed as a replacement for manual anal-
ysis (e.g., as in Apple’s App Store) or automated malware detection
tools (e.g., Google’s Bouncer [31]). Rather, MAST provides a rank-
ordered list over which additional, more heavyweight, techniques
can be applied. Alternative Android markets, that have human re-
sources to manually analyze only a small subset of applications, can
use MAST to decide which applications deserve the most attention.
In the case that markets want to scan all the applications, MAST
can aid in deciding which applications require deep, costly analy-
sis and which ones require just a cursory anti-virus scan. The ne-
cessity of properly allocating malware analysis resources is going
to become evident as smartphone malware authors start adopting
techniques such as polymorphic and obfuscated code and malware
researchers respond with complex static and dynamic analysis tech-
niques. The goal of MAST is to robustly direct malware analysis
resources in a manner that is not dependent on any one character-
istic and is thereby more resilient to the “hide-and-seek” games of
malware authors. Such an approach is valuable not only to large
market operators with extensive resources, but also to smaller mar-
kets and even academic and industry researchers as well.

2. RELATED WORK
Application markets currently rely on both proactive and reac-

tive mechanisms for dealing with mobile malware. The proac-
tive approach typically relies on the use of automated tools to de-
tect vulnerabilities. Simple approaches are evadable [38, 42], and
complex analyses can become unsustainable as the complexity and
number of applications requiring certification grows. Worse still,
many proactive analyses require human intervention [37], making
them fundamentally unsuitable at market scale. Malicious applica-
tions have already exploited this fact and have been seen in mul-
tiple markets [25–27, 29]. Reactive approaches recognize this and
attempt to recover from such infections. Market controlled “kill-
switches” [7, 10] allow malicious apps to be removed post infec-
tion; however, significant damage may have already been done.

Various techniques have been proposed to improve security by
reducing vulnerabilities in applications [12, 15, 18] and creating
stronger detection mechanisms for malware and grayware [13, 15,
16, 23, 55]. Traditional antivirus products [33, 40] use known mal-
ware signatures to detect malicious applications; however, they fail
to capture new threats. Enck et al. [14] use taint-tracking to de-
tect information flow between sources of private information (e.g.
IMEI, phone number) and external data sinks (e.g. internet, SMS).
High-level run-time behavior [9] and power [28,30] have also been
explored for malware detection. However, when automating dy-
namic analysis, it is nontrivial and costly to ensure complete cov-
erage to trigger malicious payloads.

A number of efforts rely on Android permissions to determine
the maliciousness of applications. Kirin [16] uses static, conjunc-
tive rule sets to define possible malicious behaviors and warn the
user at install time. Barrera et al. [6] use self-organizing maps to an-
alyze permission usage patterns in applications. Felt et al. [19] use
permission counts and a comparison of individual permissions to
reason about malicious applications. However, all these approaches
suffer from high false positive rates and are fundamentally lim-
ited by their inability to fully analyze the correlation between high
dimensional data associated with applications. DroidRanger [54]
and RiskRanker [22] are closer in spirit to MAST. DroidRanger’s
permission-based filtering had a false positive rate of 40%, after
which Zhou et al. [54] had to manually analyze and then add checks
for specific Android intents and native code to reduce the false pos-
itive rates. Further, DroidRanger does not provide a generalized
easily reproducible methodology for selecting such “expert” fea-
tures. RiskRanker, despite its name, only performs classification
into three categories: high, medium, and low risk. Apps are clas-
sified as high-risk if they match vulnerability-specific signatures
(e.g., root exploits), and medium-risk if they use SMS without a
code-path to an onClick() callback. MAST improves upon both
DroidRanger and RiskRanker by providing a statistical foundation
for allocating valuable malware analysis resources based on 208
behavioral features.

The closest research to MAST is concurrent and independent
work done by Sarma et al. [47] and Peng et al. [44]. These works
test several techniques (but not MCA) over application permissions
to provide rankings of relative risks to users. Peng et al. show su-
perior results to Sarma et al. Their goals include low user warning
rates and developer accessibility; by contrast, MAST uses not only
permissions, but application intents and the presence of native code
to determine suspicion for analysts. It is a strict design goal in [44]
that developers understand how to reduce their risk; MAST does
not need this property because it is targeted to analysts, not devel-
opers. However, our results are better representative of triage in
practice because we test against third party markets with malware
that are unrelated to our training data. Peng et al. train and test

Table 1: A Sample Restaurant Data Set for MCA
Restaurant Cost Parking Attire Ages Delivery Television

R1 High Valet Formal 18+ No No
R2 Med Valet Formal All No No
R3 Med Lot Casual 18+ No Yes
R4 Med Valet Casual 18+ No Yes
R5 Med Valet Casual All No No
R6 Low Lot Casual All Yes No
R7 Low Lot Casual All No No

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Cost - High

Attire - Formal

TV - No

Attire - Casual

Cost - Low

Delivery - Yes Parking - Valet

Delivery - No

Cost - Med

Age - 18+

TV - Yes

Parking - Lot

Age - All

Sophisticated

Simple

More Convenient Less Convenient

(a) Correlations between restaurant properties (column similarity)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

R1

R2

R5

R3

R4

R6
R7

Upscale Restaurants

Average Restaurants

Dive Bars

Fast Food Restaurants

(b) Similar restaurants clustered together (row similarity)
Figure 1: Output of MCA for the example restaurant data

using only the official Google Android market and external mal-
ware datasets. We also provide measurement of our run time per-
formance to show that MAST is practical for smaller markets and
individual researchers.

Scalability and effective analysis of correlation between multi-
ple attributes are important factors to consider when selecting such
“expert” features. Finding these has been a problem in PC malware
analysis as well. McBoost [45] uses n-gram analysis and Multi-
Layer Perceptron on executable heuristics to detect packed code.
ForeCast [41] predicts the information gain of analyzing an exe-
cutable using a modified linear classifier fed with static executable
features and behavioral features from dynamic analysis. BitShred
[24] uses feature hashing and co-clustering to enable fast extrac-
tion of information from malware samples. However, though these
techniques perform well for PC malware, they are not built to han-
dle the nominal categorical data available from mobile applications.
On the contrary, Multiple Correspondence Analysis (MCA) [1] is
designed to analyze the correlation between multiple categorical
attributes. Hence, we design MAST to leverage MCA and provide
a lightweight triage technique to narrow down the search space of
applications for resource-intensive analyses.

3. MCA BACKGROUND
Multiple Correspondence Analysis (MCA) is an analysis tech-

nique used to illuminate the relationships in a dataset with categor-

ical variables. We believe this technique to be more appropriate
than generic machine learning techniques (e.g., SVM1) as MCA is
specifically designed to deal with the categorical data that describes
apps. To help the reader understand MCA and gain an intuition for
why we use it, we describe an example MCA applied to restaurants
and then provide a high-level description of how MCA works. A
more rigorous description of MCA is provided in the appendix.

3.1 Example Analysis
Table 1 shows the results of a questionnaire given to seven hy-

pothetical restaurants. In MCA terminology, each restaurant is an
“individual”, the categorical variables that describe a restaurant are
“questions,” the values of questions for a given individual are “an-
swers,” and the set of questions is termed a “questionnaire.” These
terms derive from MCA’s chief application in the social sciences.

For a given dataset, MCA maps each individual and answer into
a set of coordinates in “principal axes.” Principal axes condense
the information contained in the data sets so that the majority of
the information is reflected in only a few axes. The individuals’
coordinates in principal axes are scaled in magnitude to reflect how
unique their answers are and placed so that the variance of indi-
viduals’ positions in an axis is maximized. Answers’ coordinates
in principal axes are scaled and placed based on the individuals
that give a particular answer. Related individuals and questions are
plotted near each other in the space of principal axes.

Figure 1a and Figure 1b show plots of the answers (characteris-
tics of the restaurants) and the first two principal axes of individuals
(restaurants) resulting from the MCA analysis of the data. The left
side of Figure 1a shows that low-cost restaurants often offer deliv-
ery and are family-friendly; the presence of delivery towards the
outside of the plot indicates that it is an unusual feature of a restau-
rant, while restaurants with casual attire tend to be more common.
Likewise, high-cost restaurants are less common, and are strongly
correlated with formal attire in this sample (found in the top right
corner of Figure 1a). From inspection of Figure 1b, restaurant R1
is a clear outlier as the most unique restaurant in the set.

Principal axes can act as indicators of “hidden variables” that
better describe the collection of answers given by an individual.
One common interpretation technique in an MCA analysis is to
attempt to describe the principal axes of the resulting plot to de-
termine these hidden variables. This can only be done by a hu-
man analyst, as the description can be highly subjective. In Figure
1a we have provided an interpretation of the axes. While we dis-
play restaurants and their characteristics in separate plots for clarity,
both restaurants and characteristics are plotted on the same scales
on the same principal axes, so an interpretation of an axis in one
plot is valid for the other plot. The horizontal axis in the plots re-
flects convenience; restaurants and characteristics to the left of the
vertical axis tend to be cheaper and more accessible, while those to
the right of the axis tend to require more effort to enjoy. The verti-
cal axis in the plot reflects ambiance; restaurants and characteristics
below the horizontal axis tend to be simpler, while those above the
horizontal axis tend to more sophisticated. Axis descriptions come
from consideration of both restaurants and characteristics and their
locations with respect to the principal axes. Thus, we finally are
able to say that restaurants R1 is an “upscale restaurant,” R2 and
R5 are “average restaurants,” R3 and R4 are “dive bars,” and R6
and R7 would be best classified as “inexpensive fast-food restau-
rants”. This classification is illustrated in Figure 1b.

An alternative to attempting to describe the axes is to compute a
distance from the mean point for each individual; this approach is
1In fact, Sarma et al. [47] use SVM and are less effective at ranking
malware than MAST.

used by MAST to avoid the need for semantic description. Had we
computed a distance from the center for each restaurant, it would
be apparent without examining the plots that R1 is the most unique.

3.2 Informal Description of MCA
This section describes the mathematics of MCA in more general

terms, and it follows from and is inspired by Le Roux et al. [46].
First, we consider a set of individuals described by their answers to
N questions. If there were only two questions, (N = 2), all indi-
viduals could be plotted in a two-dimensional plane based on values
of these questions. Similarly, individuals described by three ques-
tions could be plotted as a “cloud” of points in three-dimensional
space. In the case of four or more questions, similar constructions
exist for higher dimensions, even if these are hard to visualize.

If one needed to compress the information of the cloud, one
could project the cloud into only a few dimensions. A projection
can be conceptualized as the shadow that a cloud would cast onto a
lower-dimensional space. For example, a three-dimensional cloud
of points illuminated from above the cloud would cast a shadow
onto a plane. Similarly, that plane can be treated as cloud and pro-
jected onto a single line; conceptually, this is like looking at only
the x-coordinates of points in a plane.

Given a cloud with large N , certain dimensions frequently pro-
vide more insight about the data than others. Often, questions are
redundant or strongly correlated, and they only hide more interest-
ing data. A problem in analyzing a large cloud is that the interesting
dimensions may not be known a priori. In fact, this may be the goal
of the analysis. To address this problem, MCA transforms a cloud
from a nominal set of N -dimensional coordinates into principal co-
ordinates. Principal coordinates describe a coordinate frame where
the first dimension is guaranteed to show more information than the
second dimension, the second to show more information than the
third, and so on. These new dimensions are termed principal axes,
and coordinates in these axes are termed principal coordinates. Be-
cause a majority of the information will be in the first few principal
axes, only the first principal axes will need analysis.

MCA uses two insights for transforming a cloud into principal
coordinates: a) scaling less-common values to be more distinct than
more-common values and b) variance of the data. The process of
transforming a cloud from its natural coordinates into principal co-
ordinates (coordinates in terms of the principal axes) consists of
two logical steps. In the first step, MCA scales each coordinate in
each nominal axis by the probability of the coordinate value being
chosen by an individual. This first step skews the shape of the cloud
so that uncommon values are further from the origin than common
values. The second step starts by projecting the cloud onto a sin-
gle line. MCA then rotates the cloud in N -dimensions until the
variance of the projection along the line is maximized. This line
becomes the first principal axis. Next, MCA defines a new axis or-
thogonal to the first, and rotates the cloud in (N � 1)-dimensions
to maximize the variance on the new axis while keeping the vari-
ance on the first axis unchanged. MCA continues this process until
N principal axes are defined. Once all axes are defined, MCA de-
scribes all points in the cloud in terms of coordinates of each of the
principal axes. By construction, the principal axes are in order of
decreasing variance.

The result of MCA is a new set of coordinates in N principal
axes. These allow for a selection of the most important principal
axes to be plotted, analyzed, and interpreted.

4. METHODOLOGY
MAST uses MCA to rank applications. The resulting ranking

provides an ordering of relative suspicion. Application security

teams can use the MAST ranking to effectively allocate scarce re-
sources (e.g., manual code reviews, automated static program anal-
ysis or dynamic analysis).

We develop the MAST architecture based loosely on the princi-
ples of boosting [48], a machine learning meta-algorithm. Boosting
aims to improve the accuracy of any learning algorithm by creat-
ing numerous rough and moderately accurate weak classifiers and
combining their results to get an accurate strong learner. Even
though the weak classifiers individually are not highly accurate,
the merging of their results generates an accurate “boosted” algo-
rithm. MAST creates these rough indicators of suspiciousness by
running MCA on multiple subsets of applications. For clarity, we
call each subset a “poll.” Polls are selected using characteristics of
malicious behavior, thereby allowing MCA to identify outliers for
that characteristic. Boosting weighs each weak rule depending on
its performance. MAST uses a binary weight system — the polls
we select have weight one, and all others have weight zero. MAST
then merges the results of the individual polls to determine a total
ranking that represents a relative degree of suspicion.

Figure 2 shows the MAST architecture. The first step (Sec-
tion 4.1) identifies application attributes that define interesting se-
curity properties. The second step (Section 4.3) combines related
sets of attributes to create MCA questions (Section 4.2). The third
step runs MCA over multiple polls to generate rough indicators of
suspicious behavior. The final merge step (Section 4.4) combines
these rough indicators to create an accurate MAST ranking of ap-
plication suspiciousness.

4.1 Attribute Identification
MAST is designed to be less costly than deep analysis tech-

niques. Therefore, attributes must be easy to obtain from the ap-
plication package (as opposed to the result of code recovery). We
look at Android’s package manifest and simple information about
files in the package. We chose not to use market-specific meta-
data such as categories, user ratings, and descriptions, because we
do not want to tie MAST to any specific market. That said, de-
ployments of MAST might wish to incorporate market metadata
as appropriate. We consider permissions, intent filters, native code
and presence of zip files.
Permissions: Android uses permissions to restrict access to secu-
rity sensitive operations (e.g., sending SMS messages, reading lo-
cation from GPS, and placing emergency calls). In order to access
these resources, the application’s developer must declare the cor-
responding permission in the manifest file. Permissions are only
granted at install-time and cannot be changed without upgrading
the application. There are several conditions under which permis-
sions are granted (e.g., based on package signatures). However, for
the purposes of this paper, the reader may assume all permissions
are granted if the user elects to install the application. Interested
readers are referred to prior discussions of Android security for
additional details [11, 17]. Finally, third-party application devel-
opers can define new permissions. MAST currently uses the 114
permissions defined by the Android framework; however, custom
permissions can be added if needed.
Intent Filters: Android uses intent messages for interprocess com-
munication (IPC). Intents provide interfaces to core platform func-
tionality as well as interactions between third-party applications.
Frequently, intents are addressed to “action strings.” Depending on
the type of intent, the Android middleware uses action strings to
notify applications of the event or resolve the best application for
the task. An application indicates in its manifest file the ability to
handle an intent by specifying an intent filter for a pre-agreed upon

Poll n

Poll 2

Quantification

... ...

Questionnaire
Completion

(disjunctions of
permissions, intents)

Attribute
Identification
(Permissions,
Intents, Native

code information)

Poll 1
MCA

MCA

MCA

Quantification

Quantification

MAST Ordering
(According to

suspiciousness)

Poll Selection
(Select subsets of

apps)
Merge Poll

Results

Figure 2: The MAST architecture: Building an analysis architecture using MCA

action string.2 Intent filters provide a pluggable architecture that
allows OEMs and third-party developers to customize the user ex-
perience. However, applications can also abuse this extensibility
by handling events and tasks in ways that harm the user. MAST
currently uses the 92 action strings defined by the Android frame-
work. Similar to permissions, this knowledge base can be trivially
extended. Finally, intent filters have an optional priority field that
influences the order in which Android delivers intents to applica-
tions. By defining a high priority intent filter, an application may
be able to cancel the intent before other applications receive it. We
classify an application’s intent filter for each action string as prior-
ity, default, or none. For the purposes of our evaluation, we con-
sider an intent filter to be priority if it specifies the priority field.
Native Code: Android applications are primarily written in Java;
however, the native development toolkit (NDK) allows third-party
application developers to include native libraries. While native li-
braries provide valuable performance benefits for computationally
bound applications (e.g., games), they also have been used by mal-
ware to exploit root vulnerabilities (e.g., DroidDream). We classify
an application based on whether or not it includes native libraries.
To identify native libraries, we search the .apk archive for files
with the native library magic number using libmagic. Note that
we make no attempt to identify downloaded libraries. Doing so
statically would require program analysis, which is computation-
ally too expensive for triage.
Zip Files: Android applications are distributed as .apk archive
files. Archiving reduces the amount of data that needs to be down-
loaded when installing an application. However, as no restrictions
are put on the type of data these application archives can contain,
they have been used to carry malicious payloads as zip files (e.g.,
BaseBridge carries an entire malicious application as its payload).
As a final attribute, we classify an application based on the pres-
ence or absence of zip files inside the main application archive. We
do not recursively analyze the contents of the zip file.

4.2 MCA Questionnaire
MAST carefully defines an MCA questionnaire to aid security

triage. We identified many different attributes: 114 permissions,
92 intent types (with and without priority), the existence of native
code, and the presence of zip files. Creating a question for each
attribute produces a very high dimensional categorical data set with
relatively limited interrelationships. In practice, this results in the
“being unique is common” phenomenon.

We considered two methods of combining attributes: conjunctive
questions and disjunctive questions. A conjunctive question is true
if an app has all attributes in a set. Similarly, a disjunctive question
is true if an app has at least one of the attributes in a set.

Enck et al. [16] define nine conjunctive questions for their Kirin
system. These questions (called rules) are the results of a mal-
2Dynamic broadcast receivers that define intent filters at runtime
are excluded as they require costly program analysis to retrieve.

ware oriented security requirements engineering of the Android
platform. As we show in Section 5, these rules do not perform
as well as the disjunctive questions used in MAST.

MAST uses disjunctive questions to collapse attributes into more
general descriptions of functionality. For example, when identify-
ing malware, it is often sufficient to know that an application has
permission to perform an SMS related operation as opposed to the
specific types of SMS operations. From the MCA perspective, a
disjunctive question increases the likelihood that two applications
have a property in common, and therefore clusters applications
based on their functionality.

The questionnaire consists of permission questions, intent filter
questions and native code and zip file questions. The questions
group attributes by functionality. Permission, native code, and zip
file questions are true or false questions. For example, the answer
to the “SMS” question is true if an application requests at least one
of the SMS-related permissions. In contrast, the intent filter ques-
tions have possible answers of “priority,” “default,” and “none.” An
answer of “priority” indicates that the application has at least one
intent filter for a listed action string that defines the priority field.
If the application does not have any matching priority intent filters,
but it does have an intent filter for one of the listed action strings,
the answer is “default.” Otherwise, the answer is “none.”

Table 5 in the Appendix shows our complete MCA Question-
naire. Four questions are not listed in Table 5: a generic permission
question, a generic intent filter question, the “contains native code”
question, and the “contains zip files” question. A generic question
simply groups unrelated attributes that we empirically found to be
less important. To avoid the additional “noise” resulting from creat-
ing an additional question for each attribute, we grouped them into
a single disjunctive question. Therefore, applications having one
of these attributes will have something in common. The generic
permission and intent filter questions simply contain all of the re-
maining permissions and action strings, respectively.

4.3 Poll Selection and Quantification
MAST runs MCA on multiple polls to create rough indicators of

malicious behavior. Each poll asks the MCA questionnaire to a spe-
cific subset of applications. Polls fill two purposes: 1) they group
related applications together so that uniqueness within the group is
more specific, and 2) they allow MAST to select which character-
istics are most effective in identifying current malware trends.

The polls used by MAST should reflect current malware trends,
and therefore could change as malware evolves. Furthermore, poll
selection characteristics are not necessarily the same as the charac-
teristics used for MCA questions. That said, all of our MCA ques-
tions are potential poll characteristics. However, we select only
those polls that reflect a certain inclination to malicious behavior.
The MAST polls selected by our training process described in Sec-
tion 5.3 are shown in Table 2.

Note that the application subsets defined by polls are intention-
ally not disjoint—an application that has both SMS and PACKAGE

Table 2: Characteristics used to define polls. Each poll defines a
subset of applications directed to MCA.

Characteristic Possible Malicious Behavior
SMS perms SMS trojans, SMS spam
PACKAGE perms Installing malicious apps, Uninstalling an-

tivirus apps
BOOT intent-filter
(default)

Spyware apps that want to autorun on startup

BOOT intent-filter
(priority)

Spyware apps that want to autorun before
anti-malware apps are started

Native code Native exploits (rage-against-the-cage)
Zip files Zipped payload containing malicious apps
COMM. intent-filter
(default)

Applications that use incoming calls or SMS
as activation triggers

COMM. intent-filter
(priority)

Applications that hide incoming calls or SMS
from users

permissions will be analyzed in two polls. When MAST merges the
MCA results for the selected polls, an application that exhibits mul-
tiple malware-requisite characteristics will thus stand out further in
the MAST ranking.

Finally, MAST quantifies the MCA results for each poll. Sec-
tion 3 demonstrated how MCA can be used as a visualization tool.
However, MCA can also be used to quantify the deviation of an ap-
plication from the norm. We quantify a ranking for each MCA by
calculating the �2 distance of each application from the barycenter
(point of commonality) of all apps in the analysis. This quantifica-
tion provides a poll score for each analyzed application.

4.4 Merging Poll Results
MAST merges the individual poll scores to create an accurate

MAST ranking. The merge must ensure: 1) results for one poll do
not overshadow another; 2) the number of apps in a poll is con-
sidered; and 3) the number of polls an application participates in
influences the total ordering. We now describe this merge process.
Normalization: Once each poll is ranked, MAST normalizes the
poll scores by scaling each poll i from domain [mini,maxi] to
domain [0, 1], where mini � 0.
Poll Size Scaling: To account for the number of applications in a
poll, MAST scales the normalized poll scores such that the smaller
the set of apps in a poll, the larger the contribution of the outlier
applications. For each poll, MAST scales the normalized poll score
using the subset of applications Ai ✓ A present in the poll:

[0, 1] ! [

✓
1� |Ai|

|A|

◆
, 1]

Combining and Sorting Results: Finally, to determine the over-
all ranking, MAST calculates a MAST score for each application
by summing its normalized and scaled poll scores. The greater the
number of subsets an application appears in, the larger its MAST
score, which reflects a higher degree of relative suspicion. Applica-
tions are then sorted by MAST score, producing the MAST ranking.

4.5 MAST Ranking
The final output of MAST is a list of applications ranked in order

of their dissimilarity to the population of other applications. Due to
poll selection, this list indicates a relative degree of suspicion. Ap-
plications ranked higher in the list are more likely to be malicious
than those appearing at the end. Thus, when performing triage,
investigation should start with the highest MAST ranking.

Note that it may then make sense to classify apps as being in a
“percentile of suspicion;” that is, if an app is within the top 1% of

apps in the MAST ranking, it could be said that that application is
within the top 1% of suspicious apps. An app can be defined as
suspicious if it exhibits behaviors common to malicious apps. We
caution that MAST is not Bayesian — MAST does not specify or
even imply the actual likelihood of maliciousness of any applica-
tion, even given a percentile of suspicion. It is certainly not the case
that an application in the first percentile of suspicion (1%) is 99%
likely to be malicious.

4.6 MAST Implementation
Our implementation of MAST consists of two main steps: ob-

taining metainformation from applications and processing that metain-
formation. A Python program unzips every application package,
checks all files for zip archives and native code, decompresses the
AndroidManifest.xml file, computes the questionnaire re-
sults, and writes that information to a “MAST table”. Table compu-
tation is the major bottleneck, but is fortunately trivially paralleliz-
able (though our implementation processes apps serially). Once the
questionnaire is complete, the table is read by a program written in
R, which is a popular language for statistical analysis that also has
an MCA library. The R program parses the MAST table, selects
apps based on polls, runs an MCA of every poll, quantifies the poll
results, then merges them to produce a final MAST ranking.

5. TRAINING MAST
MAST merges the MCA poll results that roughly indicate ma-

liciousness to magnify the malicious characteristics of malware.
These polls are directed at applications that exhibit specific charac-
teristics found in malware (but also benign applications). Choosing
which polls MAST should use requires careful consideration. From
a high level, we want to choose polls that cover the characteristics
of known malware, but we do not want to over-train MAST for any
specific malware type. At the same time, we want to select polls
for characteristics that are more common in malware than benign
applications. In this section, we describe our process of selecting
polls for MAST (previously discussed in Table 2).

5.1 Training Data
In order to train MAST, we created a simulated market. This

market consists of 14,888 popular free applications from Google
Play, 141 samples of known malware from the Contagio mobile
malware repository [43] as of October 2011 and 591 malware sam-
ples found by Zhou et al. [53]. Here, we assume the Android Mar-
ket applications are mostly benign, but keep in mind the potential
for malicious and questionable applications when training MAST.
Google Android Market: Properly training MAST requires a very
large set of benign applications. Manually downloading these ap-
plications on a phone is not an option, so we developed a stand-
alone snapshot tool using the unofficial Android Market API [2].
Our tool downloaded the majority of the top 500 free applications
within each of the 34 market categories. By selecting most popu-
lar applications, we maximize our chances of selecting benign ap-
plications. Our dataset, taken on January 20, 2012, included ap-
plications for the “T-Mobile” carrier, the “passion” device (Nexus
One), and Android API level 8 (Froyo) and below. Due to failed
downloads and categories that had fewer applications, our snap-
shot contains a total of 14,888 applications. This dataset represents
approximately 2.1% of the estimated over 700,000 applications in
Google Play [52]. Results of real-world triage in Section 6 show
that even 2.1% of the market is sufficient to accurately train MAST.
Combined malware training set: Our combined malware set of
732 applications includes malware samples that steal personal data

and receive commands from an attacker’s command and control
server, send SMS to premium numbers, place calls to premium
numbers, and/or otherwise spy on the user (including tracking the
user’s location). Some malware samples display more than one of
these malicious behaviors. Android malware authors often embed
the same exploit in multiple applications, which leads to the exis-
tence of malware families. In addition to malware, the malware set
contains several examples of grayware. Two grayware examples
include applications designed to spy on the SMS or GPS activity of
one’s spouse without his/her consent, and applications designed to
gain root access for the user. Because there are no guarantees that
these samples do not abuse their abilities for malicious purposes,
and because MAST is focused on triage for potentially malicious
behavior, we include the grayware in our training data set. Table 6
in the appendix presents the composition of the 732 samples in our
combined malware set.

5.2 Evaluation Metrics
MAST ranks a given set of applications according to their rel-

ative suspiciousness. This ordering indicates where malware re-
searchers should first allocate their resources. To measure the effec-
tiveness of MAST, we use receiver operating characteristic (ROC)
curves, which provide a plot of true positive (TP) and false posi-
tive (FP) rates with regard to a threshold parameter. In the case of
MAST, the threshold parameter is the top percentage of apps in the
MAST ranking that are scanned. The positives in the ROC curve
are the apps that are chosen to be scanned, with the true positive be-
ing the malicious ones and false positives being the non-malicious
ones.

When evaluating the performance of MAST, we compare three
triage techniques.

• No Triage: When no intelligent approach can be applied,
triage is equivalent to random guessing. We model the “no
triage” scenario by assuming the malicious applications are
uniformly distributed within a random ordering of the ap-
plications. The corresponding ROC curve is the line of no
discrimination and has a slope of one.

• Kirin-based Triage: Kirin [16] defines possible malicious be-
haviors using nine permission-based conjunctive rules. Two
rules are concerned with detecting SMS malware. Used as
a triage technique, malware researchers apply Kirin to cre-
ate two sets of applications: high priority and low priority.
The high priority set consists of applications that fail any of
the Kirin rules. We model Kirin-based triage by assuming
the malware binned in each set is uniformly distributed in
a random order. The corresponding ROC curve consists of
two slopes, indicating the division between the high and low
priority sets.

• MAST-based Triage: MAST provides an ordering for triage.
We use the MCA questionnaire defined in Section 4.

5.3 Selecting Polls
As discussed in Section 4.3, a poll is essentially a subset of ap-

plications that have similar functionality. The purpose of MAST
training is to select a combination of polls that individually act as
rough indicators of suspicious behavior and that improve the over-
all accuracy of the MAST ranking. As MAST questions are di-
rected towards functionality, each question and answer pair defines
a MAST poll. However, we narrowed down the set of possible
polls to those that contained at least 10% of the malware in our
training set. On the 15 polls that showed a weak correspondence
to malware, we ran a brute-force analysis to determine the optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST-based Triage
Kirin-based Triage

No Triage
Malware - BaseBridge

Malware - jSMSHider

Game - Button Football

Figure 7: Training data ROC curve (732 malapps in 15,620 apps)

combination of polls. Note that we did not need to run MAST com-
pletely for each experiment, but only the merging of the individual
poll results. Table 2 presents our final poll selection.

An interesting observation from our poll selection process is that
all the polls selected in our optimal combination show good indi-
vidual poll performance. Figure 3a shows that the SMS permission
poll alone ranks nearly 70% of the malware samples from our com-
bined malware training dataset with a false positive rate of 5%. The
package permission poll only includes approximately 30% of the
malware; however, it ranks that malware with a false positive rate
of 0.8%. However, as all polls with good individual performance
do not improve overall MAST performance, we can only use this
observation to further reduce the training search space of future
experiments by discarding polls with poor individual performance
(Figure 3c, 3d). Discarding polls with poor performance does not
affect the ability of MAST to detect new kinds of malware, as long
as we use a sufficient number of polls that are indicative of mali-
cious functionality. We validate the optimality of our poll count by
observing that MAST results tend to peak at poll sets having sizes
between 8 and 10 and drop as the number of polls is decreased or
increased.

5.4 Combining Polls
We previously claimed that: a) MCA classifies malware as out-

liers and, b) combining multiple polls reduces analysis effort. We
now prove these claims by tracking three applications as they are
processed by MAST: two malware samples (BaseBridge and jSMS-
Hider) and one randomly selected app, Button Football (a soccer
game app), that appeared in two polls. In these plots, the tracked
applications are highlighted with a black star.

Figure 4 tracks the BaseBridge malware sample in four polls:
SMS permissions, BOOT intent-filter (priority) poll, zip file poll,
and COMMUNICATION intent-filter (priority) poll. The crosshair
in the plot denotes the barycenter (i.e., point of commonality). The
BaseBridge sample is a clear outlier in each of the SMS, BOOT-
priority, zip file, and COMMUNICATION-priority polls. Being a
distinct outlier, the BaseBridge application is ranked 0.25%.

Figure 5 tracks the jSMSHider malware sample in two polls:
PACKAGE permissions and zip file filter. The sample is outside
the main cluster in the PACKAGE permission poll, but not far from
the barycenter in the zip file poll. In this case, combining the two
polls has a clear advantage for ranking the malware sample.

Figure 6 tracks Button Football, a soccer game application in the
two individual polls matching its characteristics: BOOT intent poll
and Native code poll. Here, Button Football is grouped in the main
clusters, contributing to its relatively lower MAST rank.

Finally, Figure 7 shows the ROC curve after combining our se-
lected polls. MAST ranks BaseBridge and jSMSHider malware
apps very high (0.25% and 4.4%). These results demonstrate how

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST poll
No Triage

(a) SMS Permission Poll

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.001
 0.002

 0.003
 0.004

 0.005
 0.006

 0.007
 0.008

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST poll
No Triage

(b) PACKAGE Permission Poll

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.002
 0.004

 0.006
 0.008

 0.01
 0.012

 0.014

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST poll
No Triage

(c) CALENDAR Perm. Poll

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 0 0.01
 0.02

 0.03
 0.04

 0.05
 0.06

 0.07

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST poll
No Triage

(d) ACCOUNT Permission Poll
Figure 3: Isolated Poll Performance. CALENDAR and ACCOUNT were not selected due to poor performance.

-5
-4
-3
-2
-1
 0
 1
 2
 3

-2 -1 0 1 2 3 4 5 6 7

(a) SMS Permission Poll

-4

-3

-2

-1

 0

 1

 2

-1 -0.5 0 0.5 1 1.5 2 2.5

(b) BOOT Intent (Priorty) Poll

-4

-3

-2

-1

 0

 1

 2

 3

-5 -4 -3 -2 -1 0 1

(c) Zip File Poll

-4

-3

-2

-1

 0

 1

 2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(d) COMM. Int. (Priority) Poll
Figure 4: Tracking BaseBridge malware (MAST rank: 0.25%)

-4

-3

-2

-1

 0

 1

 2

-4 -2 0 2 4 6 8 10

(a) PACKAGE Permission Poll

-4

-3

-2

-1

 0

 1

 2

 3

-5 -4 -3 -2 -1 0 1

(b) Zip File Poll
Figure 5: Tracking jSMSHider malapp (MAST rank: 4.4%)

-2
-1
 0
 1
 2
 3
 4
 5
 6

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

(a) Boot Intent (Default) Poll

-16
-14
-12
-10

-8
-6
-4
-2
 0
 2

-7 -6 -5 -4 -3 -2 -1 0 1 2

(b) Native Code Poll
Figure 6: Tracking Button Football (MAST rank: 9.7%)

the multiple polls aid in giving malware higher rankings. Button
Football has a lower ranking (9.7%), but is still within the top 10%
of applications to receive analysis. However, we note that Button
Football’s inclusion in the BOOT intent-filter default poll is inter-
esting for a game application. In the spirit of diagnosis after triage,
we analyzed the Button Football app to find that it uses AirPush, an
aggressive notification ad library. AirPush goes beyond in-app ads
by generating notifications that persuade users to download apps.
Further, it starts itself at boot, so the user can see ads even when
he is not using any application. The higher MAST ranking of But-
ton Soccer highlights that, from the point of view of MAST, the
distinction between undesirable and malicious behavior is thin.

Comparing the ROC curves for MAST-based triage, Kirin-based
triage, and no triage, the advantage of MAST is clear. MAST gath-
ers 90% of the malware samples while suffering a false positive rate
of just 6.5%. Furthermore, it collects 95% of the malware samples
at a false positive rate of just 11.2%. This result merely verifies
that our training process is sound. Section 6 provides a real-world
evaluation of MAST.

6. REAL MARKET TRIAGE
We now measure the effectiveness of MAST on real third-party

markets, which were not used for training.

6.1 Experimental Setup
We selected three application markets to evaluate MAST: Ndoo,

Anzhi, and Softandroid. All three make their apps available free of
charge online, therefore we were able to download all apps in each
market. All markets were found to host some amount of malware.

To validate MAST’s ability to highly rank malware, we need

a perception of which apps in a market are malicious. We stress
that this knowledge is not required for MAST to rank the applica-
tions in the market. We use two tools to identify malicious apps:
Androguard and Virus Total. Androguard is a well-known, open-
source project with volunteer-submitted definitions and provides a
lightweight signature-based malware detection tool. Our analysis
is based on the signature definitions from February 5, 2012. Virus
Total is an online service that scans submitted files with tens (of-
ten more than 40) of up-to-date commercial antivirus products and
provides the results from each AV product. Our markets were last
scanned by Virus Total on February 11, 2012.

Androguard has a low true positive rate as its malware signatures
are updated very slowly. On the other hand, some AV products
used in Virus Total have a high false positive rate. To overcome
these limitations, we use a hybrid approach that tags applications
as malware if either Androguard or at least three out of the “Top
5” AV products in Virus Total tag the application as malware. The
“Top 5” AV products (GData, Avast, Kaspersky, BitDefender, and
FSecure) were chosen based on their accuracy in the detection of
known malware samples. The distribution of the malware we dis-
covered in these markets is presented in Table 6 in the appendix.
Ndoo: The Ndoo market is a Chinese app market. On October 25,
2011, the market contained 4,324 apps. Of these apps, 26 were
considered malicious by Androguard or Virus Total. At the time
of data collection, Ndoo claimed that its “comprehensive software
testing & certification procedures contribute to the reputation of
[the] developer.” No further details were provided on its English
website about its security evaluation procedures.
Anzhi: Like Ndoo, Anzhi is a market catering to Chinese Android
users. Anzhi contains far more apps though: on January 31, 2012,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST-based Triage
Kirin-based Triage

No Triage

Figure 8: Softandroid ROC curve (5 malapps in 3,626 apps)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST-based Triage
Kirin-based Triage

No Triage

Figure 9: Ndoo ROC curve (26 malapps in 4,324 apps)

the market contained 28,760 apps. 166 of these were considered
malicious by Androguard or Virus Total (six of these were later
found to be false positives).
Softandroid: Softandroid is a Russian application market hosting
3,626 apps on February 7, 2012. VirusTotal or Androguard marked
six of these as malicious (one was later found to be a false positive).

6.2 MAST Results
Figures 8, 9, and 10 show ROC curves for the Softandroid, Ndoo,

and Anzhi markets, respectively.
As the SoftAndroid market contained only five instances of mal-

ware, its ROC curve is the easiest to analyze. Three of the apps
marked as malicious are within the top 5% of the MAST rankings.
The remaining two apps are within the top 11.2% of the MAST
rankings. For this market, MAST is able to highly rank all mali-
cious applications, even when no malicious applications violate a
Kirin rule. This validates the choice of disjunctive polls.

The Ndoo market contained 26 malicious apps. MAST ranks
25 of these – 96.1% – in the top 12.9% of the MAST rankings.
Half of these malicious apps are ranked in the top 7.5%, and the
highest-ranked malicious app is the 8th app in the rankings. While
Kirin ranks a majority of the malicious apps in this market, MAST
catches more and orders them earlier than Kirin.

The Anzhi market contained 160 malicious apps. 60% of these
were ranked in the first 2.1% of the market. 85% of the malicious
apps are located in the top 10% of the MAST rankings, and 95.5%
of the malicious apps are located in the top 25% of the rankings. As
with Softandroid, Kirin rules would have failed to rank the majority
of malicious apps in the Anzhi market.

We compare MAST’s ROC curves to those of Peng et al.’s best
technique, HMNB [44], using their area under the curve (AUC)
figures. The AUC of a ROC curve gives an overall indication of
quality of the curve. Peng et al. [44] cite an AUC of 0.9281 when
testing against market data that does not overlap with their testing
data, while the AUC for Anzhi, SoftAndroid, and Ndoo are 0.9362,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

MAST-based Triage
Kirin-based Triage

No Triage

Figure 10: Anzhi ROC curve (160 malapps in 28,760 apps)

0.9252, and 0.9207 respectively. (None of these markets have over-
lapping apps, according to the SHA-256 of their packages). These
results show that MAST provides comparable or better malware
triage than HMNB would. We emphasize that Peng et al. [44] test
on two snapshots of the Android market with malware from an ex-
ternal dataset added, while we test on real markets with malware
actually present in the market.

6.3 Performance Analysis
Because the purpose of a triage is to act as a fast first step to

optimize a later heavy analysis, we compare MAST and other anal-
ysis tools. All tests were run in a VirtualBox VM configured with
a single CPU and 2GB of memory with a 10GB virtual hard disk
running Ubuntu Linux 10.04 (Windows XP SP3 in the case of the
TrendMicro test). Market files were stored on the host’s 16TB 12-
drive RAID 6 array and accessed using VirtualBox shared folders3.
The host machine has 2 Intel E5620 Xeon quad-core processors
and 48 GB RAM and runs Debian Squeeze.

Table 3 provides a comparison of the time to run MAST com-
pared to heavier, more comprehensive methods. We note that MAST
is meant to complement these methods, not replace them. The com-
parison is made only to prove that MAST is light-weight enough
that the cost of using MAST is amortized by more efficient analysis
of apps. First, MAST performance numbers are provided for two
markets: Ndoo and Android. The runtime of MAST is overwhelm-
ingly bound by collecting attributes from each app; performing the
MCA for all polls requires less than 1% of the total time presented
in the table. MAST is comparable in time to Baksmali [5], a pop-
ular open-source disassembler for Dalvik bytecode. Disassembly
is a first minimum step for manual analysis, so it represents a rea-
sonable lower bound on manual analysis. Actual manual analysis
would of course take minutes or hours per application. MAST is
4.3 times faster than the command line version of TrendMicro Anti-
virus [50] used to perform signature detection over the Ndoo mar-
ket. On a selection of 23 randomly selected apps from the Google
market, ded [15] (a decompiler for Android applications) runs four
orders of magnitude slower than MAST.

For compute-intensive analyses of markets, MAST increases the
likelihood of identifying malicious apps in a reasonable amount of
time. Moreover the cost of MAST is so low compared to techniques
such as ded that the overhead of running MAST is negligible.

6.4 Post-triage Analysis
After having successfully performed triage, we made two in-

teresting observations by performing deeper analysis across sus-
picious applications from each of the markets.
3Virtual folders were found by microbenchmarks to be faster than
accessing from the virtual hard disk.

Table 3: Analysis Technique Timing Comparison
Tool Input Total Time Time/App

Baksmali Ndoo Market 24.63m 0.34s
MAST Ndoo Market 32.18m 0.45s
MAST Android Market 111.5m 0.45s

TrendMicro AV Ndoo Market 140.7m 1.95s
ded 23 Random Apps 487.7m 1272.29s

Table 4: Rampant use of the default key from the Android codebase
to sign applications across markets

Market Number of applications signed
using the default key

Google Play 11
Contagio + Malware 156

Softandroid 245
Ndoo 510
Anzhi 750

False positives in commercial antivirus tools: After the initial
evaluation of MAST, we found five applications in our malware
training set, six in Anzhi, and one in SoftAndroid that were clas-
sified as SMS trojans (HippoSMS and RogueSPPush) by antivirus
tools, yet were ranked poorly by MAST. Upon inspection, none
actually had SMS permissions, meaning that it could not exercise
any malicious code that might be present. In effect, these are false
positives.4. To verify this, we selected one of these apps (classi-
fied as RogueSPPush) for further manual analysis. We found that
this app did have the malicious RogueSPPush code, but was effec-
tively “dead” as it did not declare the SMS intent filter that exe-
cutes that code. We did not find evidence of a root exploit or any
other method to violate Android’s permission system. This finding
highlights that just as MAST highly ranks apps that could exhibit
malicious behavior, it ranks apps without this explicit ability lower.
Default Android key used to sign applications: Android requires
all applications to be signed to ensure that an application can be
upgraded only by the developer who created it. Thus, there is no
need for a certificate authority or PKI — self-signed certificates
suffice, as long as the security of the private key is maintained by
the developer. However, we found that 1,672 applications across
the markets (distribution in Table 4) used the default key present in
the Android codebase to sign their applications.

In terms of security, using the default private key is equivalent to
posting your private key in a public forum. Any malicious author
can update the applications signed with the default key and replace
them with malicious code. The fact that we found these applica-
tions in the official Google market indicates the need to check for
use of the default key when applications are submitted to the mar-
ket. Given the use of this key in applications in the alternative mar-
kets, we highly recommend that the package installer in production
Android phones blacklists the default key.

We also found a significant number of applications across mar-
kets signed with the same private key as malicious applications.
However, we leave further analysis of those results as future work.

6.5 MAST ranking limitations
Triage in principle is a “best effort approach”. With MAST,

we aim to increase the likelihood of finding malware in the low-
est percentiles of suspicion, but our results can only be as good as
the polls we conduct. Our current efforts attempt to select classes
of attributes (e.g., permissions, intents, etc.) that are absolutely
necessary for malware attempting to perform a specific task to de-
clare (e.g., SMS trojans must ask for SMS permissions, or their
malicious code simply will not run). However, if new classes of
malware attempt to abuse other protected or unregulated [36] inter-
4We exclude these apps from malware counts throughout the paper.

faces, MAST is unlikely to rank them highly. This is analogous to a
medical triage case where a patient has no symptoms of illness, but
is infected with an unknown disease. These scenarios can be easily
addressed in MAST as soon as new “zero-day classes” are discov-
ered. Specifically, new polls can be added to the infrastructure, and
new malicious applications can just as quickly be flagged.

7. CONCLUSION
Application markets simplify the distribution of consumer soft-

ware. The benefits have not been lost on malware authors: applica-
tion markets are the primary means of distributing smartphone mal-
ware. Preventing malware in markets is extremely difficult. Market
maintainers simply do not have the computational or personnel re-
sources to thoroughly or deeply inspect the large number of appli-
cations submitted each day. To address this challenge, we propose
MAST. The goal of MAST is to direct available analysis resources
to the most suspicious applications. To do this, MAST uses Mul-
tiple Correspondence Analysis (MCA) to measure the correlation
between declared indicators of functionality required to be present
in application packages. We described how to parameterize MAST
using current malware trends and then demonstrated its value by
using it to successfully perform triage on three third-party markets.

The concepts underlying MAST transcend malware discovery in
two ways. First, we show that MCA, a tool primarily used in the
social sciences, has tremendous potential for security, specifically
when the adversary must declare (i.e., commit to) functional spec-
ifications. The key contribution of MCA is its ability to establish
relationships between otherwise incomparable information. Sec-
ond, we believe that security triage tools that quantify perception
are essential to protect systems from intelligent adversaries. Triage
is neither diagnosis nor treatment. Rather, such tools make security
analysis more methodological, and less reliant on a “gut feeling.”

8. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of VirusTotal for

this work. This work was supported in part by the US National Sci-
ence Foundation under grant numbers DGE-1148903, CNS-0916047,
CNS-0952959, and TWC-1222699. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

9. REFERENCES
[1] H. Abdi and D. Valentin. Multiple correspondence analysis. In Encyclopedia

of Measurement and Statistics, page 13. Sage, California, 2007.
[2] Android market API. http://code.google.com/p/android-market-api/.
[3] Anzhi Market. http://www.anzhi.com.
[4] Apple app store, 2012.

http://www.apple.com/iphone/from-the-app-store/.
[5] Baksmali, 2012. http://code.google.com/p/smali/.
[6] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji. A

methodology for empirical analysis of permission-based security models and
its application to android. In Proceedings of the 17th ACM conference on
Computer and communications security, page 73. ACM Press, 2010.

[7] C. Beaumont. Apple iPhone ’kill switch’ discovered, August 2008.
http://www.telegraph.co.uk/technology/3358115/
Apple-iPhone-kill-switch-discovered.html.

[8] Blackberry app world, 2012.
http://appworld.blackberry.com/webstore/.

[9] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detection of malware on
mobile handsets. In Proceeding of the 6th international conference on Mobile
systems, applications, and services, page 225. ACM Press, 2008.

[10] T. Bray. Exercising Our Remote Application Removal Feature, June 2010.
http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html.

[11] J. Burns. Developing Secure Mobile Applications for Android. iSEC Partners,
Oct. 2008. http://www.isecpartners.com/files/iSEC_
Securing_Android_Apps.pdf.

[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th international conference
on Mobile systems, applications, and services, MobiSys ’11, pages 239–252,
New York, NY, USA, 2011. ACM.

[13] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks
in iOS Applications. In Proceedings of the ISOC Network & Distributed
System Security Symposium (NDSS), 2011.

[14] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.
TaintDroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, pages 393–407, 2010.

[15] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In Proceedings of the 20th USENIX Security Symposium,
San Francisco, CA, USA, 2011.

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on
Computer and communications security, page 235. ACM Press, 2009.

[17] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android Security.
IEEE Security & Privacy Magazine, 7(1):50–57, January/February 2009.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, Chicago, Illinois, USA, Oct. 2011.

[19] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile
malware in the wild. In ACM Workshop on Security and Privacy in Mobile
Devices, Chicago, Illinois, USA, Oct. 2011.

[20] GFan Market. http://www.gfan.com/.
[21] Google play, 2012. https://play.google.com/store/apps.
[22] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable and

Accurate Zero-day Android Malware Detection. In Proceedings of the
International Conference on Mobile Systems, Applications, and Services
(MobiSys), June 2012.

[23] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These Aren’t the
Droids You’re Looking For: Retrofitting Android to Protect Data from
Imperious Applications. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2011.

[24] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing malware
for scalable triage and semantic analysis. In Proceedings of the 18th ACM
conference on Computer and communications security, CCS ’11, pages
309–320, New York, NY, USA, 2011. ACM.

[25] X. Jiang. Questionable Android Apps – SndApps – Found and Removed from
Official Android Market, July 2011.
http://www.csc.ncsu.edu/faculty/jiang/SndApps/.

[26] X. Jiang. Security Alert: New Android SMS Trojan – YZHCSMS – Found in
Official Android Market and Alternative Markets, June 2011.
http://www.csc.ncsu.edu/faculty/jiang/YZHCSMS/.

[27] X. Jiang. Security Alert: New Stealthy Android Spyware – Plankton – Found
in Official Android Market, June 2011.
http://www.csc.ncsu.edu/faculty/jiang/Plankton/.

[28] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy anomalies and
mobile malware variants. In Proceeding of the 6th international conference on
Mobile systems, applications, and services, page 239. ACM Press, 2008.

[29] A. Kingsley-Hughes. So that’s what happens when you highlight an iOS
security hole, November 2011. http://www.zdnet.com/blog/
hardware/so-thats-what-happens-when-you-highlight-
an-ios-security-hole/16078.

[30] L. Liu, G. Yan, X. Zhang, and S. Chen. VirusMeter: preventing your cellphone
from spies. In Recent Advances in Intrusion Detection, volume 5758, pages
244–264, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[31] H. Lockheimer. Android and Security. Google Mobile Blog, Feb. 2012.
http://googlemobile.blogspot.com/2012/02/
android-and-security.html.

[32] Lookout Mobile Security. Mobile threat report. Technical report, Lookout
Mobile Security, Aug. 2011.

[33] Lookout mobile security, 2012. https://www.mylookout.com/.
[34] J. Lowensohn. iPhone lock-screen password app pulled, June 2011.

http://news.cnet.com/8301-27076_3-20071405-248/
iphone-lock-screen-password-app-pulled/.

[35] K. Mahaffey. Security Alert: DroidDream Malware Found in Official Android
Market, March 2011. http://blog.mylookout.com/2011/03/
security-alert-malware-found-in-
official-android-market-droiddream/.

[36] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp)iPhone: Decoding
Vibrations From Nearby Keyboards Using Mobile Phone Accelerometers. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2011.

[37] P. McDaniel and W. Enck. Not so great expectations: Why application markets
haven’t failed security. IEEE Security & Privacy, 8(5):76–78, Oct. 2010.

[38] Min Zheng, Patrick P.C. Lee, and John C.S. Lui. ADAM: an automatic and
extensible platform to stress test android anti-virus systems. In Proceedings of
the 9th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’12), Heraklion, Crete, Greece, July 2012.

[39] Ndoo market. http://www.nduoa.com/.

[40] NetQin Mobile Security, 2012. http://www.netqin.com/en/.
[41] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel. Forecast:

skimming off the malware cream. In Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC ’11, pages 11–20, New
York, NY, USA, 2011. ACM.

[42] Nicholas J. Percoco and Sean Schulte. Adventures in BouncerLand. In
Blackhat USA, Las Vegas, NV, 2012.

[43] M. Parkour. Contagio mobile malware MiniDump.
http://contagiominidump.blogspot.com/.

[44] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and
I. Molloy. Using probabilistic generative models for ranking risks of android
apps. In Proceedings of the 2012 ACM conference on Computer and
communications security, CCS ’12, page 241–252, New York, NY, USA,
2012. ACM.

[45] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in malware
collection and analysis using statistical classification of executables. In
Proceedings of the 2008 Annual Computer Security Applications Conference,
ACSAC ’08, pages 301–310, Washington, DC, USA, 2008. IEEE Computer
Society.

[46] B. L. Roux and H. Rouanet. Multiple Correspondence Analysis. Number 163
in Quantitative Applications in the Social Sciences. SAGE Publications, Los
Angeles, California, USA, 2010.

[47] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy.
Android permissions: a perspective combining risks and benefits. In
Proceedings of the 17th ACM symposium on Access Control Models and
Technologies, SACMAT ’12, page 13–22, New York, NY, USA, 2012. ACM.

[48] R. E. Schapire. The Boosting Approach to Machine Learning: An Overview.
In Nonlinear Estimation and Classification. Springer, 2003.

[49] SoftAndroid Market. http://softandroid.ru.
[50] Trend Micro Command Line Antivirus Scanner, 2012. http://

esupport.trendmicro.com/solution/en-us/0117058.aspx.
[51] Windows Phone: Marketplace, 2011.

http://www.windowsphone.com/en-US/marketplace.
[52] B. Womack. Google says 700,000 applications available for android, Oct.

2012.
[53] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and

Evolution. In Proceedings of the IEEE Symposium on Security and Privacy
(OAKLAND), 2012.

[54] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In
Proceedings of the Network and Distributed System Security Symposium, Feb.
2012.

[55] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-stealing
smartphone applications (on android). In TRUST, pages 93–107, 2011.

APPENDIX
A. FORMAL DESCRIPTION OF MCA

MCA has been independently discovered numerous times [1];
accordingly, descriptions of the methods and the terms used differ
from author to author. We follow the description of Abdi et al. [1],
with terminology and insights borrowed from La Roux et al. [46].

MCA constructs a cloud of points representing individuals by
encoding the data as a matrix with a column for each possible an-
swer, not question. Each of these columns is termed a “category”.
Let K be the set of categories. The contents of an individual el-
ement of this matrix �ik for i 2 I, k 2 K will be a “1” for an
individual choosing a category, and “0” otherwise. This matrix is
called an indicator matrix and is represented as X. This indicator
matrix will be of dimensions I ⇥K, and is defined such that each
row sum is constant:

KX

k=1

�ik = N

for all i 2 I . The restaurant example would have two categories
describing “Attire” (“Formal” and “Casual”) and three categories
for “Cost” (“High”, “Med”, and “Low”).

Once an indicator matrix of the data is constructed, MCA com-
putes a probability matrix Z = |I|�1X and a supplemental prob-
ability matrix Z0 = Z � rcT, where r and c are column vectors
with ri =

XK

k=1
�ik for all i in I and ck =

XI

i=1
�ik for all k

in K. Essentially r and c are the respective row and column sum
vectors of Z. Then MCA constructs the matrix H =D

� 1
2

r Z0D
� 1

2
c

where Dr =diag(r) and Dc =diag(c).
To arrive at the new coordinates for the individuals represented

by the rows of the indicator matrix, MCA computes the singular

Table 5: MCA Questionnaire⇤ composed of disjunctive questions.

Permission Question Included permissions (All permissions have the “android.permission” prefix.)
ACCOUNT ACCOUNT_MANAGER, AUTHENTICATE_ACCOUNTS, GET_ACCOUNTS, MANAGE_ACCOUNTS, USE_CREDENTIALS
AUDIO RECORD_AUDIO, MODIFY_AUDIO_SETTINGS
BOOKMARKS WRITE_HISTORY_BOOKMARKS, READ_HISTORY_BOOKMARKS
CALENDAR WRITE_CALENDAR, READ_CALENDAR
CONTACTS WRITE_CONTACTS, READ_CONTACTS
FILESYSTEM MOUNT_FORMAT_FILESYSTEMS, MOUNT_UNMOUNT_FILESYSTEMS
GENERIC_SETTINGS WRITE_SECURE_SETTINGS, WRITE_SETTINGS
INTERNET INTERNET
LOCATION ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION, ACCESS_LOCATION_EXTRA_COMMANDS, AC-

CESS_MOCK_LOCATION, CONTROL_LOCATION_UPDATES, INSTALL_LOCATION_PROVIDER
NETWORK ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE, BLUETOOTH, BLUETOOTH_ADMIN, BROADCAST_WAP_PUSH,

CHANGE_NETWORK_STATE, CHANGE_WIFI_MULTICAST_STATE, CHANGE_WIFI_STATE, NFC, RECEIVE_WAP_PUSH,
WRITE_APN_SETTINGS

PACKAGE DELETE_PACKAGES, INSTALL_PACKAGES, BROADCAST_PACKAGE_REMOVED, GET_PACKAGE_SIZE
PHONE_STATE MODIFY_PHONE_STATE, READ_PHONE_STATE
CALLS CALL_PHONE, CALL_PRIVILEGED, PROCESS_OUTGOING_CALLS, USE_SIP
SMS READ_SMS, SEND_SMS,WRITE_SMS, RECEIVE_SMS, BROADCAST_SMS, RECEIVE_MMS
Intent Filter Question Included action strings from intent filters (Unless otherwise indicated, all actions strings have the “android.intent.action” prefix.)
BOOT BOOT_COMPLETED, REBOOT
COMMUNICATIONS ANSWER, CALL, CALL_BUTTON, DIAL, android.provider.Telephony.SMS_RECEIVED, PHONE_STATE
MEDIA MEDIA_BAD_REMOVAL, MEDIA_BUTTON, MEDIA_CHECKING, MEDIA_EJECT, MEDIA_MOUNTED, MEDIA_NOFS,

MEDIA_REMOVED, MEDIA_SCANNER_FINISHED, MEDIA_SCANNER_SCAN_FILE, MEDIA_SCANNER_STARTED, ME-
DIA_SHARED, MEDIA_UNMOUNTABLE, MEDIA_UNMOUNTED

PACKAGE MANAGE_PACKAGE_STORAGE, MY_PACKAGE_REPLACED, NEW_OUTGOING_CALL, PACKAGE_ADDED, PACK-
AGE_CHANGED, PACKAGE_DATA_CLEARED, PACKAGE_FIRST_LAUNCH, PACKAGE_INSTALL, PACKAGE_REMOVED,
PACKAGE_REPLACED, PACKAGE_RESTARTED, MANAGE_PACKAGE_STORAGE, MY_PACKAGE_REPLACED,
NEW_OUTGOING_CALL, PACKAGE_ADDED, PACKAGE_CHANGED, PACKAGE_DATA_CLEARED, PACKAGE_FIRST_LAUNCH,
PACKAGE_INSTALL, PACKAGE_REMOVED, PACKAGE_REPLACED, PACKAGE_RESTARTED

POWER BATTERY_CHANGED, BATTERY_LOW, BATTERY_OKAY, ACTION_POWER_CONNECTED, ACTION_POWER_DISCONNECTED,
POWER_USAGE_SUMMARY, ACTION_SHUTDOWN

WALLPAPER WALLPAPER_CHANGED, SET_WALLPAPER
⇤ Discussed in Section 4.2, we additionally include a generic permission question, a generic intent filter question, a native code question, and a zip file question

Table 6: Malware distribution across markets

Malware Family Malware Description Training Set Anzhi Ndoo Softandroid
ADRD Information Stealer 28 1
Anserver Bot Downloads malicious payloads, Information Stealer 5
Asroot Native root exploit 8
BaseBridge Root exploit, SMS, CALL Trojan 116 19
Bgserv Information Stealer, SMS Trojan 7 1
Boxer SMS Trojan 2
DroidDream Root Exploit, Information Stealer 20
DroidDreamLight Information Stealer 23 18
DroidKungFu Root exploit, Downloads malicious payloads 179 53 19
Geinimi SMS Trojan, Information Stealer 72 3
GoldDream SMS, CALL spy, Bot capabilities 27 12
GPSSMSSpy Location and SMS spy 6
HippoSMS SMS Trojan 5
jSMSHider SMS Trojan targetting custom ROMs 18
KMIN Information Stealer 40
NickySpy SMS, GPS, CALL spy 3
Pjapps Information Stealer, SMS Trojan 52
Plankton Downloads malicious payloads, Information Stealer 10 3
RogueSPPush Automatically subscribes to premium SMS services 3
SndApps Information Stealer 10
YZHC SMS Trojan 34 1
zHash Native root exploit 12
Zsone SMS Trojan 12 1 1
Other - 42 53 4
Total - 732 160 26 5

value decomposition of H: H = P�QT. The principal coordi-
nates of each individual and category are described by the matrices

YI = D
� 1

2
r P� and YK = D

� 1
2

c Q�

From this, the �

2 distance of an individual from the barycenter of
all individuals is computed as d = diag(YIY

T
I)

Eigenvalues are also computed from the singular value decom-
position of H. The eigenvalues, termed inertia in MCA, are the
variances of the principal axes, and are defined as ⇤ = �2. These

variances sum to the total variance of the cloud formed by the in-
dicator matrix: V ar(X) = eidiag(⇤) where ei is the column
vector of ones of appropriate size. The concept of inertia is impor-
tant to the interpretation of an MCA analysis because it describes
which principal axes are relevant. In most cases, the relevant prin-
cipal axes are determined as those with inertia greater than V ar(X)

l
where l is the total number of eigenvalues. The effectiveness of
MCA is predicated on the fact that the number of principal axes
with sufficient inertia is quite small (2 or 3) even with large N .

