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ABSTRACT
Modern operating systems, such as iOS, use multiple access con-
trol policies to define an overall protection system. However, the
complexity of these policies and their interactions can hide pol-
icy flaws that compromise the security of the protection system.
We propose iOracle, a framework that logically models the iOS
protection system such that queries can be made to automatically
detect policy flaws. iOracle models policies and runtime context
extracted from iOS firmware images, developer resources, and jail-
broken devices, and iOracle significantly reduces the complexity of
queries by modeling policy semantics. We evaluate iOracle by using
it to successfully triage executables likely to have policy flaws and
comparing our results to the executables exploited in four recent
jailbreaks. When applied to iOS 10, iOracle identifies previously
unknown policy flaws that allow attackers to modify or bypass
access control policies. For compromised system processes, conse-
quences of these policy flaws include sandbox escapes (with respect
to read/write file access) and changing the ownership of arbitrary
files. By automating the evaluation of iOS access control policies,
iOracle provides a practical approach to hardening iOS security by
identifying policy flaws before they are exploited.
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1 INTRODUCTION
iOS (iPhone Operating System) supports Apple’s mobile devices
including iPods, iPads, and iPhones. With a billion iPhones sold and
a decade of hardening, iOS has become ubiquitous, and uses several
advanced security features. Therefore, the impact and scarcity of
iOS exploits has led to the creation of sophisticated attacks. For
example, exploit brokers like Zerodium pay million dollar bounties1
for multi-stage attacks called jailbreaks. A weaponized jailbreak
can bypass and disable iOS security features to provide the attacker
with elevated privileges, stealth, and persistence.

To combat such exploits, iOS enforces an assortment of access
control policies. These policies collectively define an overall protec-
tion system that restricts operations available to malware or com-
promised system processes. However, policy flaws allow untrusted
subjects to perform privilege escalation attacks that maliciously
modify the protection state.

Jailbreaks exploit a combination of policy flaws and code vul-
nerabilities. For example, if a jailbreak author discovers a kernel
vulnerability, the protection state may prevent the attacker from
reaching it. To reach the vulnerability, the jailbreak must use policy
flaws to modify the protection state such that the vulnerable ker-
nel interface becomes accessible. In order to prevent such exploits,
we ask the research question "What policy flaws exist in the iOS
protection system?"

Existing tools can provide relevant data, but are unable to meet
the challenges of modeling the iOS protection system. For example,
SandScout [10] is a tool that models iOS sandbox profiles in Prolog,
but it does not model runtime context, Unix permissions, or policy
semantics. These features are necessary to model policy flaws in
system processes and to reduce the complexity of queries.

In this paper, we propose iOracle, a framework for logically
modeling the protection system of iOS such that high level queries
about access control qualities can be automatically resolved. To
process queries, iOracle maps access control subjects and objects

1https://zerodium.com/program.html
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to relevant policies and evaluates those policies with respect to
runtime context. iOracle also supports multiple layers of abstraction
based on modeled policy semantics such that queries can be less
complex. For example, a process may be governed by multiple
complex policies, but iOracle can abstract away from the individual
policies and their esoteric semantics to answer questions about the
overall protection domain of the process.

iOracle uses Prolog to provide an extensible model that can re-
solve queries about the iOS protection system. First, static and
dynamic extraction techniques produce Prolog facts representing
sandbox policies, Unix permissions, and runtime context. Second,
iOracle’s Prolog rules simplify query design by modeling the se-
mantics of Unix permissions and sandbox policies. Finally, a human
operator discovers policy flaws by making Prolog queries designed
to verify traits of the protection system. For example, one could
query to confirm that no untrusted subject can write to a given file
path. If iOracle detects a violation of this requirement, it identifies
relevant runtime context and policy rules allowing the operation
so that the human operator can further investigate the policy flaw.

We evaluate iOracle in two ways. First, we perform a case study
of four recent jailbreaks and show how iOracle could have signifi-
cantly reduced the effort in discovering the policy flaws exploited
by them. Second, we use iOracle to discover five previously un-
known policy flaws and show how they allow privilege escalation
on iOS 10.We have disclosed our findings to Apple.

We make the following contributions in this paper.

• We present the iOracle policy analysis framework. iOracle mod-
els the iOS protection system including sandbox policies, Unix
permissions, policy semantics, and runtime context.

• We demonstrate iOracle’s utility through an analysis of four recent
jailbreaks.We show a significant reduction in executables to be
considered by security analysts.

• We identify previously unknown policy flaws. These policy flaws
include self-granted capabilities, capability redirection, write
implies read, keystroke exfiltration, and chown redirection.

We limit the scope of this work in two ways. First, modeling
code vulnerabilities is out of scope for this paper. Therefore, con-
structing new jailbreaks is not a goal of iOracle because jailbreaks
also require code vulnerabilities to compromise the behavior of
system processes or the kernel. However, future work could com-
bine the iOracle model with a set of code exploits as input to an
automated planner. Second, we limit iOracle to modeling file access
operations. As noted in Section 2, hard-coded checks and a lack of
documentation make it difficult to model access to inter-process
services in iOS. If future work models access control policies for
these services, iOracle can be extended to include the new data in
a more comprehensive model of the protection system.

The remainder of this paper proceeds as follows. Section 2 pro-
vides a background on iOS securitymechanisms. Section 3 overviews
the iOracle framework approach and findings. Section 4 describes
the design of iOracle. Section 5 provides a case study of recent
jailbreaks and evaluates iOracle’s utility in triaging executables
with policy flaws. Section 6 evaluates iOracle’s ability to discover
new policy flaws. Section 7 discusses the limitations of iOracle.
Section 8 presents related work. Section 9 concludes. The Appendix
quantifies the protection systems for 15 iOS versions.

2 BACKGROUND
iOS is a modified version of macOS that supports Apple’s mobile
devices (i.e., iPhones, iPods, and iPads). iOS uses multiple access
control mechanisms including Unix permissions, capabilities, sand-
boxing, and hard-coded checks. Modern iOS devices (iPhone 5S and
later) use two kernels, a primary kernel (XNU), and a secure ker-
nel (Secure Enclave). However, Secure Enclave supports a separate
operating system (SEPOS) and is outside the scope of this paper.
Unix Permissions: Unix permissions provide privilege separation
for different users and groups of users. Each process runs with the
authority of a specific user and a set of groups. Each file is owned
by a user and a group, and it has a set of permissions that determine
which users and groups can access it. These permissions, determine
read, write, and execute permissions for the file’s user owner, group
owner, and for all other users. On iOS, most processes run as one
of two users, root (UID 0), and mobile (UID 501). Third party appli-
cations and many system processes that do not need high levels
of privilege run as mobile. In general, root can access everything
regardless of Unix permissions, but mobile should be limited to
accessing personal data and third party resources. However, root
authorized processes can still be restricted by sandboxing or hard-
coded checks as discussed later in this section. Finally, there are
several protection state operations that modify Unix permissions
at runtime (e.g., chown or chmod commands).
Sandboxing: Processes in iOS may run under the restriction of a
sandbox profile. Sandbox profiles are compiled into a proprietary
format and define access control policies that allow or deny system
calls based on their context. All third party iOS applications and
several system applications (i.e., those created by Apple) use a
sandbox profile called container. Other system processes may use
one of approximately 100 other sandbox profiles or they may run
without a sandbox. Sandbox profiles are written in SBPL (SandBox
Profile Language), which is an extension of TinyScheme.2 These
profiles consist of one or more SBPL rules. Each rule consists of a
decision (i.e., allow or deny), an operation (e.g., file-write*), and
a set of contextual requirements called filters. An SBPL filter can
express the context of the object (e.g., file paths or port numbers)
or they can express context of the subject (e.g., capabilities or user
id). If the context of the system call matches the operation and all
filters in the rule, then the decision is applied. If the context of the
call does not match any rules, then a default decision is applied.
iOS Capabilities: Each process in iOS can have zero or more capa-
bilities assigned to it. iOS uses two types of capability mechanisms:
entitlements and sandbox extensions. Entitlements are immutable
key-value pairs embedded into a program’s signature at compile
time. Sandbox extensions are unforgeable token strings that can be
dynamically issued and accepted (the official term is “consumed”)
by processes. Therefore, entitlements are suitable for policies that
will not change, and sandbox extensions are used in policies that
may be modified at run time.
Hard-Coded Checks: Apple often uses hard-coded checks when
regulating information and services shared through Inter-Process
Communication (IPC). For example, a process can contain logic
to ignore IPC requests from processes that do not possess a cer-
tain capability. System daemons can also contain logic to consult

2http://tinyscheme.sourceforge.net/home.html
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Figure 1: iOracle Overview

specialized databases files representing access control policies for
revocable services. These databases are primarily used to regulate
access to private user data (e.g., location data, user photos, contacts).
The decentralized and ad hoc nature of hard-coded checks makes
them difficult to extract and model. Therefore, iOracle does not
model hard-coded checks and restricts its scope of access control
policies to Unix permissions and the sandbox.

3 OVERVIEW
As a motivating example, let us assume a security researcher has
identified a file containing sensitive data that needs to be protected
from untrusted executables. For example, users can specify that
system applications should not have access to their location data.
The researcher would like to generate a list of all executables able
to read this file based on iOS access control policies so that they can
identify any policy flaws allowing access for the wrong executables.

To produce the list of executables manually, the researcher could
check access control policies for each executable on the system.
However, the scale, complexity, and decentralized nature of these
policies makes the task especially daunting. In iOS 10.3, there are
754 system executables that could be assigned any of 140 different
sandbox profile policies. The rules in these sandbox policies can
be conditioned upon capabilities possessed by the subject. In total,
iOracle detects over 1,000 different classes of capabilities (i.e., enti-
tlement keys and extension classes), each of which can have various
values assigned to them. The researcher must also determine effec-
tive UIDs and GIDs of executables and map the UIDs to groups they
belong to. This runtime authority is then compared to the file’s
Unix permissions, user owner, and group owner to determine if
read access is allowed. iOracle detects 20 different UIDs and 77 GIDs
in iOS 10.3. Finally, the analyst should consider protection state
operations (e.g., sandbox extensions, chown) which can change
the protection state. iOracle automates this task by providing a
framework for extracting and modeling iOS access control policies,
relevant contextual data, and policy semantics.

Figure 1 depicts the architecture of the iOracle framework. Static
and dynamic analysis are used to extract policies and context from
firmware images, Developer Disk Images (DDIs), and jailbroken
devices. Next, we construct logical rules providing abstractions that
model the semantics of iOS access control policies. In this paper, we
use questions designed to identify policy flaws, but questions about
other aspects of the protection system can also be input as queries.
The data, semantics, and questions are combined into a decision
engine which can output potential policy flaws. The remainder of
this section overviews these steps.

Data Extraction: The iOracle framework uses a variety of static
and dynamic analysis tools to automatically extract policy data and
runtime context from iOS firmware images, Xcode (which provides
Developer Disk Images), and jailbroken devices. Examples of data
extracted statically are sandbox profiles, file metadata, program
entitlements, program binaries, and security configuration files
(e.g., /etc/passwd, /etc/groups). Extracted program binaries are
automatically analyzed using a custom IDA backtracer script to
collect hard-coded parameters of security relevant functions (i.e.,
sandbox initialization, chown, chmod). iOracle dynamically extracts
the following data for processes running on a jailbroken device: file
access operations, user authority (UID), group authority (GID), and
sandbox extensions possessed. This extracted data is then parsed
and formatted as Prolog facts as listed in Table 1.

If iOracle is designed to help find jailbreaks, but is also depen-
dent on data from jailbroken devices, this would create a circular
dependency. Therefore, iOracle uses jailbroken devices to supple-
ment knowledge of runtime context, but is not dependent on them.
iOracle primarily uses official, downloadable firmware images and
developer resources as the source of policy data. Since information
from jailbroken devices (Table 1, rows 1-3) rarely changes across
versions, iOracle can use data from older, jailbroken versions to
make inferences about newer, non-jailbroken versions. Several of
our queries and findings can be resolved using only the static data
acquired from firmware images and DDIs.
Access Control Model: iOracle models iOS access control seman-
tics as a collection of Prolog rules. For example, this model deter-
mines which Unix permission bits are relevant for a given subject,
object, and operation and evaluates queries with respect to those
permissions and other relevant factors. By using a hierarchy of
Prolog rules, iOracle models multiple levels of abstraction that al-
low it to map a high level query to relevant low level Prolog facts.
For example, a query may ask which subjects can write to a given
object. The solution to this query depends on several lower level
queries that are processed by Prolog rules representing the access
control model. These rules match runtime context of subjects and
objects to respective policy requirements such that unbound vari-
ables are resolved and a solution to the query is found based on
facts available. Details of this model are provided in Section 4.2.
Analysis and Evaluation:We use iOracle to extract facts from 15
iOS versions spanning iOS 7, 8, 9, and 10. We perform a quantitative
analysis of these facts and present our findings in the Appendix.
Next, we use iOracle to successfully triage executables exploited
in the jailbreaks presented in Section 5. In the Appendix we fur-
ther study Apple’s code and policy modifications in response to
jailbreaks by comparing iOracle models of various iOS versions.
Finally, we use iOracle to identify the following five types of previ-
ously unknown policy flaws (three others discussed in Appendix).
1. Self-Granted Capabilities – Sandbox policies determine which
sandbox extensions can be granted and consumed by the subject.
We search for flawed profiles that allow subjects to both grant and
consume the same extensions without restrictions. We find multiple
policies that allow arbitrary file access via self-granted extensions.
2. Capability Redirection – File-Type sandbox extensions declare
a file path when they are granted. However, we find that these
extensions can be arbitrarily redirected using symbolic links.



3. Write Implies Read – Sandbox policies can only represent file
paths and do not track inode numbers. We find files at writable,
non-readable paths that can be moved to readable paths.
4. Keystroke Exfiltration – Third party keyboards use a very restric-
tive sandbox profile that should prevent them from exfiltrating
keystroke logs. We find that pseudoterminals can be used to exfil-
trate data to a colluding third party app.
5. Chown Redirection – We identified chown operations that can
be redirected via symbolic links created by mobile UID subjects.
By redirecting chown operations an attacker can gain privileges
similar to root access.

4 iORACLE
iOracle is an extensible framework allowing researchers to make
high-level queries about the iOS protection system. Achieving this
goal requires overcoming two challenges: 1) extracting the access
control policies and relevant system context; and 2) constructing a
knowledge base that supports abstraction for high-level queries.

4.1 Policy and Context Extraction
This subsection discusses our design decisions and tools used to
extract the data needed to construct a knowledge base. Apple de-
clined our request for their access control policy data. Additionally,
the iOS simulator in Xcode oversimplifies the file system and there-
fore is unsuitable for iOracle. Therefore, iOracle extracts policies
and context from iOS firmware images (distributed by Apple as
updates), DDIs (extracted from Xcode), and jailbroken iOS devices.
The result of the policy and context extraction is the Prolog facts
listed in Table 1.

4.1.1 Static Extraction and Analysis. We statically extract the
following types of data from iOS firmware and DDIs: 1) file meta-
data and Unix configurations; 2) program attributes; 3) sandbox
assignment; 4) sandbox profile rules.

Official iOS firmware images and DDIs contain sandbox profiles,
system executables, file metadata, and Unix user/group configura-
tions. The DDI is mounted by Xcode over the /Developer/ directory
of an iOS device in order to support development features such
as debugging. It contains additional system executables that can
play a significant role in jailbreaks as discussed in Section 5. We
statically process the firmware and DDIs for each secondary iOS
version ≥ 7 (i.e., 7.0, 7.1, 8.0, 8.1, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2, 9.3, 10.0,
10.1, 10.2, 10.3).
FileMetadata andUnix Configurations:We extracted file meta-
data including the Unix permission bits, file owners, file path, and
link destination of each file. This datawas acquired using themacOS
gfind utility to traverse a directory that combines firmware image
and DDI for each version. Since gfind only provides a very coarse
granularity of file type (e.g., regular file, symlink), we extract the
files from the disk images and use the file utility on Linux to col-
lect more fine-grained file types (e.g., Mach-O armv7 executable).
We also extract Unix user and group data from /etc/passwd and
/etc/groups respectively.

Program Attributes: We use jtool3 to extract symbols, code sig-
natures, and entitlement key-value pairs from each system exe-
cutable. We use the strings utility on Linux to extract strings from
each system executable.

We created a custom Interactive DisAssembler4 (IDA) script to
backtrace hard coded parameters for chown, chmod, and sandbox
initialization functions. Our backtracer is engineered to infer regis-
ter values while considering architectural differences in armv7 vs
arm64 binaries and logic used in Position Independent Execution
(PIE). This backtracer is similar in concept to those implemented
by PiOS [11] and iRiS [9]. However, PiOS and iRiS are not publicly
available, and were designed to process objective-c dispatch func-
tions, while we need to infer parameters for chown, chmod, and
sandbox initialization functions.
Sandbox Assignment: A sandbox profile is assigned to an exe-
cutable based on three factors: 1) entitlements; 2) file path of the
executable; and 3) self-assignment functions. A self-assigning exe-
cutable calls a sandbox initialization function with a sandbox profile
as a function parameter. Our backtracer data allows us to determine
which profile will be applied to executables that sandbox themselves
by inferring these parameters.
Sandbox Profile Rules:We obtained the code for SandBlaster [8]
and SandScout [10] from their authors and extended them. We
used SandBlaster to extract sandbox profiles from iOS firmware
images and decompile them fromApple’s proprietary binary format
into human readable SBPL. Apple made significant performance
optimizations that changed the proprietary sandbox format in iOS
10, so we added new functionality to SandBlaster to process these.
We used SandScout to compile the SBPL sandbox profiles into
Prolog facts. The original SandScout models each profile in isolation
with an emphasis on the container profile. Therefore, we made
modifications to produce facts that more easily allow comparison
between profiles and to process new sandbox filters.

SandScout can list sandbox filters for each rule, but it requires
the operator to design sandbox filter semantics into queries. To
address this issue, iOracle automatically matches subjects and ob-
jects to relevant sandbox rules based on iOracle’s built-in model of
semantics for ten types of sandbox filter as discussed in Section 4.2.

4.1.2 Dynamic Extraction and Analysis. We perform dynamic
analysis on jailbroken iOS devices by continuously running a series
of tools while a human performs actions on the device. Known jail-
breaks exploit the interface between the iOS device and a desktop,
and they abuse access to file paths in the Media/ directory. Therefore
we perform three actions on the device: 1) backing up the device
via iTunes; 2) taking a photo; and 3) making an audio recording. We
collect the following types of data via dynamic analysis: 1) sandbox
extensions; 2) file access operations; and 3) process user authority.

Since iOS devices cannot downgrade to run older iOS versions,
jailbroken devices are less readily available than firmware images.
Therefore, we perform dynamic analysis on a device for each major
version to supplement static analysis from the same major version.
For example, the dynamic analysis data from our iOS 7.1.2 device
supplements our static data for both iOS 7.0 and 7.1. Our four
jailbroken devices include an iPhone 4 with iOS 7.1.2, an iPod 5th

3http://newosxbook.com/tools/jtool.html
4https://www.hex-rays.com/products/ida/



Table 1: Policy and Runtime Context Prolog Facts
Description Extraction Functor
File Access Observations dynamic fileAccessObservation/4
Process Ownership dynamic processOwnership/3
Sandbox Extensions dynamic sandbox_extension/2
Sandbox Profile Rules static profileRule/4
Entitlements Possessed static processEntitlement/2
Signature Identifier static processSignature/2
Executable Strings static processString/2
Executable Symbols static processSymbol/2
Directory Parents static dirParent/2
File Type (From Header) static file/2
Unix User Configuration static user/7
Unix Group Membership static groupMembership/3
Vnode Types static vnodeType/2
Sandbox Assignment static (backtraced) usesSandbox/3
Function Parameter static (backtraced) functionCalled/3
File Inode Number static fileInode/2
File GID static fileOwnerGroupNumber/2
File UID static fileOwnerUserNumber/2
File Permission Bits static filePermissionBits/2
File Symlink Target static fileSymLink/2
File Type (Unix Types) static fileType/2

Gen with iOS 8.1.2, an iPhone SE with iOS 9.3.2, and an iPod 6th
Gen with iOS 10.1.1.
Sandbox Extensions: Sandbox extensions act as dynamic capabil-
ities granted to and consumed by a process at runtime in order to
satisfy conditions in that process’s sandbox profile. For example, a
sandboxed third party application can only access the Address Book
database if it has consumed the addressbook sandbox extension. We
use sbtool5 to dynamically log the sandbox extensions possessed
by each process running on the device.
Files Accessed:Unsandboxed processes can access (i.e., read, write,
or execute) any file on the file system that the Unix permissions
allow them to access. Therefore, the set of files that such unsand-
boxed processes can access is often too large to be useful. The set
of files that these processes actually access during runtime and the
types of access that occur (e.g., modify, chown) are more useful
for detecting policy flaws. We collect file access observations using
filemon6 to log various file system operations, the process that per-
formed them, and the files affected. Note that these observed file
access operations are intended to be used as an optional heuristic
to triage exploitable file paths. iOracle still models the set of files
accessible to unrestricted executables (i.e., no sandbox or root).
Process User Authority:We use ps to determine the effective UID
and GID of each process running on the device. This dynamically
captured information is especially relevant in finding the processes
that run as root and should therefore be classified as high integrity.
Dynamic Analysis Limitations: The sbtool sandbox extension
extraction feature only runs correctly on our iOS 10.1.1 device.
Therefore, each model of the iOS versions created in our study
uses sandbox extension data from iOS 10.1.1. The effective UID and
GID of a process may change under different run time scenarios
(e.g., a process could be run with either root authority or less priv-
ileged authority). Finally, we do not claim complete coverage of
iOS functionality. Therefore, our results represent an inherently
lower bound on the process authority, file operations, and sandbox
extensions that may occur.
5http://newosxbook.com/articles/hitsb.html
6http://newosxbook.com/tools/filemon.html
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Figure 2: Simplified Hierarchy of Prolog Rules

4.2 Knowledge Base Construction
We model the iOS protection system by constructing a knowledge
base in Prolog. This construction requires reformatting the output of
various tools into Prolog facts as listed in Table 1. We then designed
Prolog rules that resolve high-level queries into a hierarchy of
subqueries that find the facts required to satisfy the high-level
query. A simplified hierarchy of rules is shown in Figure 2. Note
that the lowest level rules (e.g., literalFilter, checkRoot) consult
Prolog facts generated during extraction.

Prior work (i.e., SandScout) uses Prolog facts to model sandbox
policies, but relies on a human to embed relevant semantics into
complex queries requiring significant expert knowledge. For ex-
ample, SandScout could return a set of sandbox filters related to
file-write operations, but it lacks the context or modeled seman-
tics to automatically match those filters to file paths. While it is
possible to construct queries by directly referencing Prolog facts,
high-level questions involving multiple policies require specifying
an unmanageable number of conditions.

To address this issue, iOracle uses a hierarchy of Prolog rules to
keep queries at a more practical level of abstraction. The following
question will act as a running example for the remainder of this
section: What set of processes P can create files at filepath f ? While
the question appears simple, answering it requires consideration of
many facts, including Unix permissions, process authority, sandbox
rules, and sandbox assignment.

The remainder of this section discusses the purpose and design
of each rule iOracle uses to provide abstractions over policy seman-
tics. Note that users of iOracle also maintain the ability to directly
reference facts for simple queries such as checking the entitlements
possessed by a given executable.
Sandbox and Unix Policy Interaction: For a sandboxed, non-
root process to perform a file operation, both the sandbox and
Unix policies must allow the operation. These policies sometimes
have different requirements for similar operations. Creating a file
is one such example. To create a file, the sandbox must allow write
access for the filepath. In contrast, Unix permissions require write
access to the parent directory of the filepath in order to create a file.
Therefore, the query for the running example is made as follows:



?-dirParent(Parent, Path),
unixAllows("write", Parent, Process),
sandboxAllows("file-write*",Path,Process).

In this query, dirParent captures a filepath, Path, and its parent
directory, Parent. unixAllows and sandboxAllows query the Unix
permissions and sandbox policy, respectively.
sandboxAllows: The sandbox access control mechanism depends
on the default policy of the matching profile. The vast majority of
sandbox profiles in iOS are default deny, so the iOracle rules assume
a default deny policy. Our Prolog rules supporting sandbox decision
abstraction are designed to match relevant context to sandbox rules
that allow a given operation. The sandboxAllows rule is defined as:
sandboxAllows(Operation,Object,Process) :-
getAttributes(Process,Entitlements,Extensions,User,Home,Profile),
profileRule(Profile,Decision,Op,Filters),
satisfyFilters(Filters,Entitlements,Extensions,Home,Object).

To match a sandbox rule to a system call’s context requires three
sources of information: the operation, the subject’s context, and the
object’s context. The operation can be specified directly in our query
(e.g., file-write* for full write access to a file), and matched directly
to sandbox profile facts. The subject is the sandboxed process, and
the object is a file path. Not all objects in sandbox rules are files,
but iOracle is designed to model file access. The getAttributes rule
maps a process to its respective entitlements, extensions, etc.

Matching the subject and object context to a sandbox rule re-
quires satisfying all filters listed in the sandbox rule. Modeling the
semantics of each filter type is non-trivial, and is performed in
iOracle by defining a Prolog rule for each of 10 filter types as shown
in Figure 2. For example, one filter could specify that the filepath
satisfy a regular expression while another requires a certain Vnode
type. A notable exception that we also model is the require_not

filter, which requires that a given filter not be satisfied. Since we
need to process a list of filters, we recursively process each filter and
declare the rule to be matched if all filters are satisfied. Consider the
following fact for the disjunctive normal form of a sandbox rule.
profileRule(profile("example_profile"),decision("allow"),
operation("file-write*"),
filters([require_entitlement("system-groups",[]),
extension("system-daemon"),
require_not(vnode-type(character-device)),
regex('^.*\.db$'),
subpath("/private/var/containers/")])).

Each filter in the rule must be satisfied for the rule’s allow de-
cision to be applied. Therefore, a process with a true value for
the system-groups entitlement key and a sufficient extension value
for the system-daemon extension class could write a non-character-
device file in /private/var/containers/ that ends in .db.
Subject Context Sandbox Filters: Three sandbox filters relate
to the access control subject (process) context: prefix, require-
-entitlement, and extension. The semantics of each filter are mod-
eled by Prolog rules that together determine if a process’s context
matches a given sandbox rule’s filters.

The prefix filter uses Apple defined variables to act as the pre-
fix of a file path. For example, the filter prefix(${HOME}/foo.txt)
requires the subject file to be the foo.txt file in the process user’s
home directory. Therefore, the rule to model this filter must refer-
ence process ownership facts and facts that determine the home
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Figure 3: Privilege Levels and Kernel Attack Surface8

directories of iOS users. If the subject runs with the authority of
user mobile, the filter would match the mobile/foo.txt7 filepath.

The require-entitlement filter specifies an entitlement key-val-
ue pair and is only satisfied if the sandboxed process has the enti-
tlement key-value pair embedded in its signature. We model this
requirement by searching for entitlement facts that satisfy the filter.
If such facts do not exist, the process lacks the required entitlement.

The extension filter specifies the sandbox extension class that
must be possessed by the process in order to satisfy the filter. How-
ever, unlike the require-entitlement filter, the extension filter rep-
resents more flexibility due to the extension’s value. While the
sandbox profile can specify the extension class, the extension value
is not specified in the profile. In addition to the class, sandbox exten-
sions also have a type and a value. If the extension type is file, then
the value will be a subpath that filepaths may match. For example,
an extension value of /tmp allows access to /tmp and files inside
/tmp. We evaluate extension filters by referencing sandbox exten-
sion facts generated by dynamic analysis. The following Prolog
code is used to satisfy file type extension filters:
%The filter to satisfy is for a sandbox extension.
satisfyFilters(extension(ExtClass),_,Ext,_,file(ObjectPath)):-
%Does subject have required file type sandbox extension class?
member(extension(class(ExtClass),type("f"),value(ExtValue)),Ext),
%Does object file path match extension value?
satisfyFilters(subpath(ExtValue),_,_,_,file(ObjectPath)).

Object Context Sandbox Filters: There are sandbox filters based
on the context of the access control object. Objects include files,
network ports, and mach-services; however, for the purposes of this
paper, we only consider files. The literal filter matches an exact
file path. The subpath filter matches all file paths within a given
subpath (e.g., all files in /var/mobile/). The regex filter matches file
paths that match a given regular expression. Each of these filters
may contain variables to represent a prefix to the filepath (e.g.,
${HOME} would be replaced by the subject’s home directory when
resolving the filter. These filters are evaluated by comparing filter
values to facts about files found in the file system or the file paths
accessed during dynamic analysis.
unixAllows: For the Unix policy to allow creating a file, the parent
directory must be writable. Unix permission semantics are not
proprietary, but they are non-trivial to model. In general, the Unix
permission mechanism will allow an operation to proceed if any
of the following conditions hold: 1) the process user is root; 2) the
7/private/var/mobile/foo.txt
8Figure inspired by presentation on Pangu 9.
http://blog.pangu.io/wp-content/uploads/2016/08/us-16-Pangu9-Internals.pdf



process user is the owner of the file and the owner has permission
to perform the operation; 3) the process user is a member of the
group that owns the file and the group owner has permission to
perform the operation; and 4) the Unix permissions allow users
other than the user owner or group owner to perform the operation.
We also model exceptions such as parent directories that are not
executable or user owners being denied access while others are
granted access (e.g., 077 Unix permissions). Our rules modeling Unix
policy decisions reference file metadata facts to get file context such
as file ownership and permission bits. These rules reference facts
on process ownership and group membership for process context.

5 CASE STUDY: iOS JAILBREAKS
A primary use case of iOracle is the discovery of policy flaws that
enable jailbreaks. In this section, we investigate four recent jail-
breaks in order to characterize the different types of policy flaws
that have enabled them. We broadly separate our discussion into
name resolution based flaws and capability based flaws. We then
conclude the section by demonstrating iOracle’s ability to direct a
security analyst to executables likely to be exploited.

5.1 Understanding iOS Jailbreaks
A jailbreak is a collection of exploits that place Apple-mandated
iOS security features (i.e., code signing, sandboxing, and Unix per-
missions) under the jailbreaker’s control. This ability to disable
security features can be abused by malware to gain persistence and
elevated privileges. For example, the Pegasus9 malware combined
a trio of exploits called Trident to jailbreak the victim’s iOS device
via a malicious web page. Jailbreaks represent a significant threat
to iOS users as well as a powerful tool for attackers.

Early jailbreaks such as L1meRain performed exploits during the
device’s boot sequence [16]. However, as of the iPhone 4S, Apple
improved hardware security and boot-time jailbreaks became less
feasible. Modern jailbreaks attack the system after it has booted,
and their components can be divided into userland exploits and
kernel exploits. Jailbreaks typically use a series of userland exploits
to reach a vulnerable kernel interface in order to deploy a kernel
exploit. Figure 3 illustrates various levels of privilege on iOS. As
the attacker gains privileges, the kernel attack surface increases.

Jailbreaks exploit a combination of policy flaws and code vulner-
abilities. For example, a code vulnerability may provide the attacker
with elevated control of a system process, but policy flaws must
still be exploited to bypass access control mechanisms. We refer to
these code vulnerabilities and policy flaws as “jailbreak gadgets”
since they can be assembled into a chain where one gadget pro-
vides the privileges or control required to exploit the next gadget.
We categorize 4 jailbreaks into 2 families and study their jailbreak
gadgets as inspiration for iOracle queries. iOracle is designed to
detect policy flaws, but it does not identify code vulnerabilities.
However, we still discuss code vulnerabilities to provide a better
understanding of the attacks.

9https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-
analysis.pdf

The following survey of known jailbreaks and their gadgets is
based on Levin’s book chapters [16], conference presentations,10
blog posts,11 and our own investigations.

Due to space constraints and scope limitations, some jailbreak
gadgets have been simplified or excluded. Figures illustrating the
privilege escalation attacks discussed in the remainder of this sec-
tion are available in the Appendix A.2 (Figure 4 and Figure 5).

5.1.1 Name Resolution Based Jailbreaks iOS 7-8. The jailbreaks
in this family share the same start and goal states and primarily
use name resolution attacks to elevate their privileges. We define
the start state as a limited interface with the Apple File Conduit
Daemon (afcd), which is accessed via a computer connected to the
iOS device. This interface with afcd is a suitable starting point be-
cause it allows the creation of symlinks in Media/, a directory which
several potential confused deputies must traverse. Within userland,
we define the goal state as write access to the root partition, which
is normally mounted as read-only.

There are three layers of security between the start and goal
state that prevent the attacker from directly remounting the root
partition: 1) the limited interface with afcd only allows read and
write access to files in Media/; 2) a dedicated sandbox profile restricts
which system calls afcd can make; and 3) Unix permissions only
allow afcd to access files available to Unix user mobile.
evasi0n 7 (iOS 7): The user interface defined by afcd prevents
the jailbreaker from creating symlinks that redirect to files outside
of Media/. This symlink restriction is enforced when a symlink
is created, but no enforcement occurs when a symlink is moved.
However, when a relative symbolic link is moved, it may resolve to
a new filepath. Therefore, jailbreakers can create and then move
symlinks with ../ sequences in them to bypass this restriction.

With the interface restrictions bypassed, afcd can write through
the links to files outside of Media/, but it is still sandboxed. When
afcd is launched, it calls a sandbox initialization function to sand-
box itself. Therefore, if the export symbol for this library call is
overwritten and redirected to a different function, the sandbox will
never be applied. This technique is called export symbol redirection,
and it does not violate code signing since export symbols are not
covered by the code signature. The afcd sandbox allows it to deploy
symlinks in tmp/ and perform a name resolution attack against
installd which must traverse directories in tmp/. installd is used
as a confused deputy to modify afcd’s libraries to deploy the export
symbol redirection attack and disable afcd’s sandbox.

At this point afcd is unsandboxed, but running as the Unix user
mobile. However, a root authorized executable called CrashHouse-

keeping performs a hard coded “chown to mobile” operation on
Logs/AppleSupport. Since Logs/ is writable by mobile, afcd can re-
place AppleSupportwith a link to the device file for the root partition.
This name resolution attack causes CrashHousekeeping to change
the owner of the root partition to mobile, achieving the goal state.
TaiG (iOS 8): In iOS 8, afcd can still create symbolic links in Media/.
Instead of relying on confused deputies available during normal
activity, the TaiG jailbreak exploits an obsolete, but vulnerable
executable called BackupAgent. Although BackupAgent2 has been in
use since at least iOS 4, its predecessor BackupAgent can still be

10https://cansecwest.com/slides/2015/CanSecWest2015_Final.pdf
11http://proteaswang.blogspot.com/2017/



found on the iOS file system. The TaiG authors reverse engineered
the protocol to communicate with BackupAgent and interfaced with
it via USB connection prompting it to perform a recovery operation.
The recovery requires BackupAgent to move files from the Media/

directory into a backup staging directory.
TaiG performs a name resolution attack by using a chain of two

different symbolic links: 1) Link1 is moved by BackupAgent into the
backup staging directory; 2) Link2 is moved by BackupAgent into the
backup staging directory passing through Link1 as the destination
of the move operation is resolved. When BackupAgent moves the
second link, it resolves the first symbolic link, effectively placing
the second link anywhere that BackupAgent can write.

Even if the root partition is read-only, the directories inside it
can be used as mount points and overwritten with attacker con-
tent by using a mounting agent as a confused deputy. Therefore,
TaiG uses BackupAgent to overwrite MobileStorageMounter’s work-
ing directory with a symlink to a directory in Media/. This name
resolution attack changes MobileStorageMounter’s working direc-
tory from a high integrity directory to a low integrity directory.
TaiG deploys malicious disk images into the new working directory
and proceeds to exploit MobileStorageMounter such that a fake disk
image is mounted over /Developer. Malicious configuration files in
the fake disk image allow more disk images to be mounted over
the root partition to achieve the goal state.
Name Resolution Insights: Before the attacker can perform a
name resolution attack, they must find an intersection of an ac-
cessible directory and a confused deputy working in the directory.
Therefore, it is useful to know which high integrity processes work
in a given directory and to know which low integrity processes can
access a given directory. In some cases, a name resolution attack can
be triaged to specific file paths (e.g., chown or chmod operations on
hard coded filepaths), so it useful to observe these operations dy-
namically or predict them statically with our backtracer. Separation
of duties limits the usefulness of each confused deputy (e.g., the
BackupAgent is unlikely to mount a partition, but MobileStorage-
Mounter can). This separation of duties allows us to use iOracle to
identify interesting executables based on rarely used, security sensi-
tive function calls. Finally, legacy code (e.g., BackupAgent) represents
a security risk as it expands the options available to attackers and
may contain vulnerabilities. Therefore, iOracle models all executa-
bles on the firmware, even those considered to be legacy code.

5.1.2 Capability Based Jailbreaks iOS 8-9. We categorize Pangu
8 and 9 as capability based jailbreaks. Instead of name resolution
attacks, these jailbreaks exploit exceptions in access control policies
for processes with specific capabilities. We define the start state as
access to the debugserver which is mounted as part of the iOS DDI
and accessible via USB connection. The container sandbox profile
is too restrictive to deploy the Pangu 8 and 9 kernel exploits, but
other profiles are less restrictive. Therefore, we define the goal state
as full control of a process that is not sandboxed with the container
profile.
Pangu 8 (iOS 8): One method of gaining control of an executable
is to have it import an attacker defined library. debugserver does
this by manipulating environment variables before launching an
executable. While debugserver in iOS 8 is sandboxed, our reversal of
its sandbox profile shows that it can execute any file outside of the

Containers/12 directory, which holds third party apps. However,
code signing requirements prevent jailbreakers from arbitrarily
injecting third party libraries into system executables.

Unfortunately for Apple, neagent (Network Extension Agent) ex-
ists outside of Containers/, has an entitlement called skip-library-

-validation, and runs with the vpn-plugins sandbox profile. In
order to support third party VPN applications, neagent uses the
skip-library-validation entitlement to bypass code signing re-
quirements when loading libraries. Therefore, debugserver is able
to modify environment variables and load the jailbreaker library
into neagent. This library provides the attacker with full control of
neagent, and the less restrictive vpn-plugins sandbox profile allows
the kernel exploit to be deployed. Thus, the goal state is achieved.
Pangu 9 (iOS 9): Apple modified the debugserver sandbox in iOS
8.2 and later such that it can only execute processes with get-task-

-allow entitlement (in Mach systems the task port can be used
for debugging). The Pangu team stated that they could not find
an executable on iOS 9 with the get-task-allow entitlement,13 but
iOracle finds that neagent on the DDI for iOS 9.0 does have the
entitlement. Regardless, the jailbreakers decided to search older
versions of iOS for executables with the entitlement and found
vpnagent (neagent’s predecessor) on the DDI for iOS 6.1. vpnagent
also uses the vpn-plugins sandbox profile, making it an ideal target
to deploy the kernel exploit.

However, vpnagent is not installed on iOS 9 and its signature is
not valid for iOS 9. It is not sufficient to install vpnagent as a third
party application because debugserverwould not be able to execute
it, and the container profile would be applied to it. Therefore, the
jailbreak installs vpnagent as a system application by exploiting an
input validation vulnerability in a file moving service provided by
assetsd. Next, the jailbreak uses a disk mounting exploit to cause
MobileStorageMounter to import signatures from old disk images
into the list of acceptable signatures.

At this point, the iOS 6.1 vpnagent has been installed on iOS 9, and
its signature is now recognized by the system as valid. vpnagent does
not possess the skip-library-validation entitlement, but debug-
server can load third party libraries when debugging with the
get-task-allow entitlement. Therefore, the goal state is achieved
when debugserver executes vpnagent in debug mode and loads the
jailbreak library.
Capability Insights: The DDI, which is mounted on an iOS de-
vice via Xcode, contains several resources useful to jailbreakers and
should not be ignored. This insight is the reason iOracle uses the
DDI as a source of input for static extraction. Capability based poli-
cies should also consider older executables that have been signed
by Apple. Therefore, we created additional to scripts automatically
run iOracle queries on multiple versions of iOS. Combinations
of skip-library-validation or get-task-allow entitlements and
non-container sandbox profiles are dangerous. However, the facts
extracted by iOracle make finding these combinations trivial.
Other Modern Jailbreaks: evasi0n 6 (iOS 6), Pangu 7 (iOS 7) and
Yalu (iOS 10) are modern jailbreaks that we have not discussed in
detail. At a high level, the exploits used in evasi0n 6 are very similar
to those used in evasi0n 7 and TaiG. In iOS 7, the container profile for

12/private/var/mobile/Containers
13https://www.youtube.com/watch?v=vCLf7tdjabY



Table 2: Triage of Likely Attack Vectors and Confused Deputies Based on Known Jailbreak Gadgets

Query iOS
Version Jailbreak Executables

on System
Executables
Detected Target Executable Target

Detected
chown/chmod name resolution attack confused deputy 7.0 evasi0n 7 314 2 CrashHousekeeping Yes
low integrity can create files in tmp/ 7.0 evasi0n 7 314 60 afcd Yes
high integrity works in tmp/ 7.0 evasi0n 7 314 39 installd Yes
low integrity can create files in Media/ 8.0 TaiG 411 3 afcd Yes
high integrity works in Media/ 8.0 TaiG 411 25 BackupAgent Yes
triage executables with _mount symbol 8.0 TaiG 411 4 MobileStorageMounter Yes
capabilities for full control with non-container sandbox 8.0 Pangu 8 411 1 neagent Yes
capabilities for full control with non-container sandbox 6.1∗ Pangu 9 259 1 vpnagent Yes
capabilities for full control with non-container sandbox 9.0† Pangu 9 564 1 N/A N/A
∗ Pangu 9 installs an executable with required capabilities from iOS 6.1, bypassing expired signature with an exploit.
† iOracle additionally detected an executable with required capabilities on iOS 9.0 that may obviate the need to use an expired signature.

third party applications was sufficiently privileged for the Pangu 7
iOS application to exploit the kernel without elevating its privileges
in userland. Yalu was also able to deploy its attacks from within
the container sandbox profile. Yalu does so by exploiting mach
services that are accessible to third party apps in order to perform
a mach-port name resolution attack. This attack allows the Yalu
application to intercept a credential called a task port being sent as
a mach-message. The task port belongs to an unsandboxed, root
authorized process called powerd, and provides Yalu with debugger
control over powerd.

5.2 Evaluating iOracle
We evaluate iOracle’s effectiveness at detecting policy flaws by
using it to triage executables exploited in jailbreaks as confused
deputies or attack vectors. The set of executables returned by each
iOracle query includes the executable exploited by the jailbreak,
which we refer to in the following text as the target. The number of
executables detected for each query is provided in Table 2. Note that
the queries used are intentionally more generic than the jailbreak
gadgets targeted.

We define a high integrity executable (likely to be used as a
confused deputy) as an executable that is unsandboxed, runs as
root, or is sandboxed with a default allow policy. We use the term
low integrity executable (likely to be used as an attack vector) to
refer to other executables.
evasi0n 7 (iOS 7): The evasi0n 7 jailbreak used a name resolution
attack in the tmp/ directory and a name resolution attack against
a hard coded chown operation. To triage the attack in tmp/, we
search for either the attacking process (low integrity) or the con-
fused deputy (high integrity). We query to find all low integrity
executables with write access to files inside of tmp/ and identify 60
executables including the target afcd for iOS 7.0. We query to find
all high integrity executables that reference tmp/ in their strings or
were dynamically observed to access files in tmp/. This query iden-
tified 39 high integrity executables likely to work in tmp/ including
the target installd for iOS 7.0. For the chown attack, we query for
executables with hard coded chown operations targeting file paths
in directories that are writable by user mobile. This query returned
two executables including the target CrashHousekeeping for iOS 7.0.
In addition to the filepath exploited in the jailbreak, iOracle revealed
two more exploitable filepaths chown’ed by CrashHousekeeping.
TaiG (iOS 8): The TaiG jailbreak used name resolution attacks in
the Media/ directory as well as exploiting a confused deputy that
could mount disk images. To triage the attack in Media/, we search

for either the attack vector or the confused deputy. We query to
find all low integrity executables with write access to files inside of
Media/ and identify three executables including the target afcd for
iOS 8.0. We query to find all high integrity executables that refer-
ence Media/ in their strings or were dynamically observed to access
files in Media/. This query identified 25 high integrity executables
likely to work in Media/ including the target BackupAgent for iOS
8.0. To triage executables that could mount disk images we query
for system executables that contain the _mount symbol. This query
detects four executables including the target MobileStorageMounter.
Pangu 8 (iOS 8): The Pangu 8 jailbreak required an executable with
three attributes: 1) can be executed by debugserver’s sandbox; 2) has
the skip-library-validation entitlement; and 3) is not constrained
by the container sandbox profile. iOracle has facts for executable
entitlements, assigned profiles, and our abstraction models sandbox
policy semantics. We used iOracle to search for executables with
the attributes required and found that for iOS 8.0, neagent is the
only executable that satisfies these requirements.
Pangu 9 (iOS 9): The debugserver profile now requires a process
to possess the get-task-allow entitlement to be executed by debug-

server. The jailbreak also still requires an executable that is not
assigned the container sandbox profile. Our query for these two
attributes showed that neagent on the iOS 9.0 DDI meets these re-
quirements. We speculate that if Pangu had used neagent from the
iOS 9.0 DDI, fewer exploits would have been required. However,
Pangu chose to use exploits that allowed them to install system
executables from older versions of iOS (i.e., iOS 6.1). iOracle con-
firms that vpnagent from iOS 6.1 has the required capabilities, and
finds that vpnagent from iOS 7.0 and 7.1 could have also worked. In
total we found two unique executables with the required attributes
across all versions analyzed including the target vpnagent.

6 PREVIOUSLY UNKNOWN POLICY FLAWS
In addition to testing iOracle on known policy flaws, we search the
iOS protection system for previously unknown policy flaws. This
section lists a total of five new policy flaws detected by iOracle.
Other flaws are presented in the Appendix.
Responsible Disclosure: In August 2017, Apple confirmed receipt
of an early draft of this paper disclosing the following findings.
However, at the time of writing, Apple has neither confirmed nor
denied the vulnerabilities detected by iOracle.



6.1 Self-Granted Capabilities
The sandbox profile of a process determines which sandbox exten-
sions it can grant and which extensions in can effectively consume.
Potential privileges gained via sandbox extensions are usually lim-
ited by additional filters in the sandbox profile. Therefore, we refer
to an extension filter that is not paired with other significant filters
as an unrestricted extension filter.

We queried for sandbox profiles that allow a subject to grant
extensions to itself such that the subject gains access to arbitrary
files. More specifically, the profile allows the subject to grant exten-
sions that match unrestricted extension filters in file access rules.
Consider the following pair of profile rule facts from the quicklookd
profile, which allows quicklookd to give itself extensions that pro-
vide read access to any file on the system.
%allowed to grant quicklook extension
profileRule(profile("quicklookd"), decision("allow"),
operation("file-issue-extension"),

filters([extension-class("com.apple.quicklook.readonly")])).

%read access with quicklook extension
profileRule(profile("quicklookd"),decision("allow"),
operation("file-readSTAR"),
filters([extension("com.apple.quicklook.readonly")])).

If an attacker gains control of quicklookd, it can elevate its privi-
lege through self-granted extensions and significantly compromise
the user’s privacy. Our query identified 2 profiles (i.e., quicklookd
and AdSheet) on iOS 10.3 that allow a sandboxed process to grant
unrestricted extensions to itself. AdSheet allows a process to grant
itself read access to all but one filepath on the system (due to a
require-not filter restriction). During this analysis we found that
even third party applications could grant sandbox extensions, but
these seem too restricted to be exploited. Apple should augment
these sandbox rules allowing arbitrary file access based on exten-
sions with additional filters to limit the malicious potential of this
protection state operation.
Impact: Gaining read access to arbitrary files may not contribute
directly to a jailbreak, but it is still a privilege escalation that could
impact user privacy or assist in reverse engineering.

6.2 Capability Redirection
We find that it is possible to perform a name resolution attack
such that a confused deputy will be redirected and effectively grant
sandbox extensions with attacker defined values. When a process
grants an extension, it must specify a class and a value for the
extension. The class is a string that can match filters in a sandbox
profile. For a file type extension, the value is a file path that will
specify a subpath that objects may fall into. Similar to a chown
operation, any symlinks in the file path of the extension value will
be resolved before granting the extension. An attacker can replace
the filepath normally targeted by the extension granting process
with a symbolic link pointing to a filepath of the attacker’s choice.

For example, afcd’s sandbox allows write access to mobile/-

Media,14 and it is granted an unrestricted extension with the value
mobile/Media when it is launched. If afcd were to replace Media

with a symbolic link, it would be granted an unrestricted exten-
sion with a value determined by the link destination upon its next
launch, providing afcd with read/write access to the destination of
14/private/var/mobile/Media

the link. To create the symbolic link, the Unix permissions must
also allow afcd write access to the mobile directory. iOracle shows
that write access is allowed because afcd runs as UID mobile, and
user mobile owns the mobile directory.

We query for sandboxed processes on iOS 10.3 with write access
to filepaths corresponding to the values of unrestricted sandbox
extensions they possess. Our query identified seven processes that
can perform this sandbox manipulation to modify their sandbox
restrictions and gain read/write access to any file on the device.
Two additional processes can gain access to all but one file on the
device due to a require-not filter. Among these nine processes are
afcd and the default email client MobileMail. afcd has a history of
being exploited, and MobileMail is likely to be exposed to attacks.

If an attacker gains control over one of these nine processes,
they can exploit the policy flaws to bypass sandbox restrictions on
file writing operations. The attacker would be restrained as user
mobile, but this policy flaw could play a significant role in jailbreaks
as its effect is similar to sandbox escape. To mitigate this attack
Apple can pair the flawed sandbox rules with additional filters that
restrict the file paths accessible via sandbox extensions.
Impact: With respect to Figure 3, these policy flaws are similar to
sandbox escapes allowing a jailbreak to progress from the “System
Sandbox, mobile” stage toward the “No Sandbox, mobile” stage.

6.3 Write Implies Read
Sandbox rules can match a file path, but unlike Unix permissions,
they do not follow a file when it moves. Therefore, an attacker
can move a file to a filepath where less sandbox restrictions ap-
ply to the file. Creating hard links in less restricted file paths has
the same effect. For example, a sandbox profile may allow write
access to files in /write/, and allow write and read access to files
in /write_read/. An attacker can read files in /write/ by moving
them to /write_read/ which is a readable path.

We query sandbox profiles for files that can be written but not
read according to the sandbox policy. Our queries detected 3 sand-
box profiles on iOS 10.3 where read access to unreadable files can
be acquired by abusing write access and changing file paths. The
default allow profile assigned to BackupAgent is among the detected
profiles because it denies read access to a specific file path, but does
not deny write access to that file path.
Impact: Gaining read access may not contribute to a jailbreak, but
it is still a privilege escalation that could impact user privacy.

6.4 Keystroke Exfiltration
Apple allows third party developers to design custom keyboards for
iOS. These third party keyboards have a restrictive sandbox profile
that should prevent keyloggers from exfiltrating key stroke data.
The keyboard profile does not allow access to the Internet and file
write access is very restricted. Attackers could use covert channels
to exfiltrate this data (e.g., manipulating global inode numbers), but
these are slow and inconvenient. Therefore, we queried for filepaths
where a third party keyboard has write access and a third party
application has read access. Our query revealed that third party
keyboards and third party applications can both read and write to
a set of psuedoterminals in the /dev/ directory.



We created proof of concept applications that share information
by reading and writing to psuedoterminals on a non-jailbroken iOS
10.2 device. One application exports data by writing to /dev/ttyp1,
the slave of the pseudoterminal pair. The other application accesses
the data by reading from /dev/ptyp1, the master of the pseudoter-
minal pair. Once a third party keyboard has exfiltrated key logs to
a third party app, the app can exfiltrate the data over the Internet.
Impact: With respect to Figure 3, this policy flaw allows a mali-
cious third party keyboard to move sensitive data from a subject at
the “Keyboard Sandbox, mobile” privilege level to a subject at the
“Container Sandbox, mobile” privilege level.

6.5 Chown Redirection
High integrity system executables regularly modify Unix permis-
sions and file ownership. However, some of these operations are
susceptible to name resolution attacks similar to the one exploited
by evasi0n 7 to gain write access to the root partition. We use
iOracle to search permission changing file access operations (i.e.,
chmod/chown) performed by high integrity processes (confused
deputies) on iOS 10. Of the file paths targeted by these operations,
we search for those that are writable by sandboxed, mobile user
processes (attack vectors). The query results revealed that Backu-
pAgent2 chowns files in Media/ such that the file owner becomes
mobile. Since the untrusted, but sandboxed afcd process has write
access to files in Media/, it can be used as an attack vector to deploy
a name resolution attack against BackupAgent2’s chown operations.

This attack is reachable with full control of the sandboxed afcd

process, but the sandbox could deny access to files regardless of
their Unix permissions. Therefore, this policy flaw is most useful
to an attacker that has escaped the sandbox, but is running as
user mobile, The attacker can use this policy flaw to redirect chown
operations such that arbitrary files become owned by mobile, which
compromises Unix policies by making the untrusted mobile user
the owner of files that had previously been inaccessible.
Impact:With respect to Figure 3, this policy flaw allows a jailbreak
to progress from the “No Sandbox, mobile” privilege level to the
“No Sandbox, root” privilege level.

7 LIMITATIONS
It is possible that some tools such as SandBlaster and our back-
tracer could produce incorrect facts. Since iOS is closed source and
poorly documented, it is impractical to obtain ground truth, which
limits our ability to verify the correctness of some of our extracted
policies and contextual data. This limitation is inherent to working
with a closed source commodity operating system. Where feasible,
we mitigate these limitations through sanity checks, reproducing
experiments on jailbroken and stock devices, and cross referenc-
ing literature. Our evaluation of iOracle’s accuracy is based on its
ability to detect known and unknown policy flaws, and we find it
accurate enough for practical use.

Other limitations can be overcome with additional engineering
effort and expanding our scope. The following steps would improve
the accuracy of our model: 1) distinguishing between TTY and
character device files; 2) modeling POSIX ACLs (added in iOS 9);
3) modeling the Unix permission directory sticky bit; 4) modeling
the filemode sandbox filter (added in iOS 9); 5) reverse engineering

differences between the HOME and FRONT_USER_HOME prefix variables;
6) incorporating default allow sandbox profiles into high level
queries; and 7) implementing Prolog rules to identify when two
regular expressions share a common matching string.

Finally, when using iOracle, analysts must have some domain-
knowledge to design relevant queries. However, the Prolog rules
discussed in Section 4.2 allow analysts to make high level queries
without understanding low level details of Unix permissions or
Apple Sandbox filters. These Prolog rules can be extended to model
other access control mechanisms or to classify subjects and objects
(e.g., list private files).

8 RELATEDWORK
iOracle evaluates access control for iOS system executables, whereas
most prior academic iOS security research focuses on third party
applications. Han et al. [14] and Egele et al. [11] investigate poten-
tial privacy leaks in third party iOS applications. iRiS [9] improves
privacy leak analysis by integrating static and dynamic analysis
techniques to detect dangerous API calls. XARA [30] exploits flaws
in iOS inter-process communication to provide a third party app
with unauthorized access to sensitive data. Wang et al. [26] propose
a method for a compromised PC to inject malicious third party apps
onto an iOS device by exploiting the iTunes syncing mechanism.
Kurtz et al. [15] investigate methods for third party apps to finger-
print iOS devices. SandScout [10] models all iOS sandbox policies,
but its evaluation is limited to the policy for third party applica-
tions. Wang et al. [27], and Bucicoiu et al. [2] investigate Return
Oriented Programming (ROP) attacks in third party applications.
In response to these ROP attacks, Davi et al. [7], Werthmann et
al. [29], and Bucicoiu et al. [2] propose new security mechanisms
to provide control flow integrity and fine grained access control for
third party apps. Han et al. [13] investigate the potential for third
party applications to abuse access to Private APIs. Chen et al. [5]
detect potentially harmful Android libraries and then detect their
iOS counterparts based on features shared across both platforms.

Both non-academic and academic security research has provided
domain knowledge embedded into iOracle. Books by Levin [16] and
Miller et al. [17] provide detailed descriptions of jailbreaks and secu-
rity mechanisms. Several security researchers have shared findings
after reverse engineering the iOS sandbox mechanism15, 16, 17 [1, 6].
Finally,Watson [28] provides a survey of access control extensibility
in which he discusses several access control mechanisms including
iOS sandboxing.

Prior work creates logical models of access control systems.
Chaudhuri et al. [3] use Datalog to model dynamic access con-
trol systems (e.g., creating processes) including Windows Vista and
Asbestos. SEAL [18], a language similar to Datalog, is designed for
specifying and analyzing label-based access control systems such
as Windows 7, Asbestos, and HiStar. Chen et al. [4] use Prolog to
model and compare attack graphs for SELinux and AppArmor.

The multi-stage nature of jailbreak gadgets could be represented
as state transitions in an attack graph. Sheyner et al. [22] use the

15http://www.slideshare.net/i0n1c/
ruxcon-2014-stefan-esser-ios8-containers-sandboxes-and-entitlements
16http://2013.zeronights.org/includes/docs/
Meder_Kydyraliev_-_Mining_Mach_Services_within_OS_X_Sandbox.pdf
17http://newosxbook.com/files/HITSB.pdf



NuSMV model checker to automatically construct attack graphs
representing networks. MulVAL [19] uses Datalog to create a logic-
based attack graph that integrates network configurations with
data from reported vulnerabilities. Saha [20] extended MulVAL to
include complex security policies (e.g., SELinux), logical characteri-
zation of negation, and more efficient reconstruction of the attack
graph after changes are made. Sawilla and Ou [21] develop an algo-
rithm that uses vulnerabilities and attacker privileges to prioritize
vertices in a network attack graph.

iOracle is related to prior work in Android. Gasparis et al. [12]
learn from legitimate rooting applications in order to detect Android
malware containing rooting exploits. SEAndroid [23] ports SELinux
to Android, and EASEAndroid [25] automatically refines SEAndroid
policies by using semi-supervised learning. SPOKE [24] models the
attack surface of SEAndroid using functional tests.

9 CONCLUSIONS
In order to automate the evaluation of the iOS protection system,
we constructed iOracle. Working with a closed-source system, we
modeled the iOS protection system to detect policy flaws. We per-
formed a case study of four recent jailbreaks and iOracle helped
detect the executables exploited by them. Finally, iOracle has led
us to five previously undiscovered policy flaws.

iOS access control must continue to increase in complexity in
order to meet the demands of new features and increasingly sophis-
ticated attacks. The iOracle framework allows security researchers
to scale analysis efforts to keep pace with increasing complexity.
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Table 3: Measuring the Increasing Complexity of iOS Access Control
Description/iOS Version 7.0 7.1 8.0 8.1 8.2 8.3 8.4 9.0 9.1 9.2 9.3 10.0 10.1 10.2 10.3
sandbox profiles 63 63 95 95 99 100 100 117 117 116 121 136 137 138 140
used sandbox profiles 49 49 73 73 72 75 75 86 86 88 91 108 108 108 111
unused sandbox profiles 14 14 22 22 27 25 25 31 31 28 30 28 29 30 29
unsandboxed executables 248 250 311 311 342 369 372 412 415 418 431 537 537 539 545
sandboxed executables 66 66 100 100 102 106 107 152 152 154 158 194 194 197 209
percent sandboxed 21 20.9 24.3 24.3 23 22.3 22.3 27 26.8 26.9 26.8 26.5 26.5 26.8 27.7
executables sharing container 12 12 22 22 26 27 28 52 52 52 53 74 74 77 83
facts generated for container 1048 1051 1238 1245 1296 1322 1337 1475 1478 1476 1651 2342 2438 2539 2380
sandbox operations 114 114 114 114 114 114 114 119 123 124 125 131 132 132 137
non-mobile sandboxed processes 3 3 5 5 5 5 5 8 8 8 9 14 14 14 16
root processes 23 23 29 29 29 29 29 37 37 37 37 38 38 38 38
mobile processes 54 54 93 93 93 93 93 113 113 113 113 109 109 109 109
other user processes 4 4 6 6 6 6 6 8 8 8 8 8 8 8 8
unique entitlement keys (system apps) 312 320 503 505 544 562 567 689 693 694 746 936 937 955 986
unique sandbox extensions 17 17 31 31 31 33 33 38 38 38 42 49 49 49 49
default allow profiles 1 1 1 1 1 1 1 3 3 3 3 2 2 2 2
default deny profiles 62 62 94 94 98 99 99 114 114 113 118 134 135 136 138
Unix users 11 11 14 14 14 14 14 15 15 15 17 20 20 20 20
Unix groups 67 67 69 69 69 69 69 71 71 71 74 77 77 77 77
files on firmware rootfs
and DDI images 68k 70k 89k 90k 98k 100k 101k 111k 111k 111k 114k 139k 139k 141k 143k

A COMPARISON OF iOS VERSIONS
We performed an analysis of the data extracted for 15 versions
spanning iOS 7, 8, 9, and 10. The results of this analysis are provided
in Table 3. We also compare the data extracted across versions to
detect policy or context changes made by Apple in response to
jailbreaks.

A.1 Access Control Complexity
System files, system exectables, sandbox profiles, container profile
complexity, andUnix users have all approximately doubled from iOS
7.0 to 10.3. In the same time, the number of unique capabilities (i.e.,
entitlement keys and extension classes) has approximately tripled.
This rate of increasing complexity in subjects, objects, capabilities,
and policies emphasizes the need for frameworks that automate
access control evaluation as manual analysis becomes intractable.

Note that the majority of executables on iOS 10.3 are still un-
sandboxed. Among these unsandboxed processes is the default Mes-
senger app, MobileSMS. As an executable that must process external
input, we expected the Messenger application to use a sandbox
profile. In fact, a sandbox profile called MobileSMS was present on
iOS 7.0 through iOS 9.2, but it was never applied to any executables.
Since iOS 9.3, the MobileSMS profile stopped appearing on iOS.

A.2 Detecting Responses to Jailbreaks
We use iOracle’s ability to automatically process multiple versions
of iOS to detect access control patches and the iOS versions they
appear in. These access control patches may take the form of new
sandbox profiles, new sandbox rules, changed behaviors of potential
confused deputies, etc.

A.2.1 Name Resolution Jailbreak Responses. Figure 4 illustrates
the privilege escalation attacks used by the evasi0n 7 (iOS 7) and
TaiG (iOS 8) jailbreaks. These jailbreaks are discussed in more detail
in Section 5.
evasi0n 7 – In iOS 7.0, installd was unsandboxed, but our queries
indicate that it was assigned a sandbox profile in iOS 10.0. We found
that installd no longer contained strings referencing filepaths in
tmp/ as of iOS 9.0. In a similar patch, the afcd sandbox profile

was changed in iOS 7.1 removing its ability to access tmp/. iOracle
detects that CrashHousekeeping performs chown operations on files
in /private/var/mobile/Library/Logs/ on iOS 7.0. However, in iOS
7.1, the hard coded chown operations are no longer detected.
TaiG –Through experimentationwith libimobiledevice 18, we found
that the afcd interface on iOS 9 no longer allows the creation of
symlinks with ../ in the destination path. Since this symlink re-
striction appears to be a hard coded check built into afcd, it was
not detected by our iOracle queries. In iOS 8.0, BackupAgent and
BackupAgent2 were unsandboxed, but our queries indicate that they
were assigned a sandbox profile in iOS 9.0. This profile is one of
the only default allow profiles, and the few operations that were
denied seem focused on the filepaths exploited by TaiG. Therefore,
default allow profiles can be used to disrupt known exploits while
allowing all other functionality.

A.2.2 Capability Based Jailbreak Responses. Figure 5 illustrates
the privilege escalation attacks used by the Pangu 8 (iOS 8) and
Pangu 9 (iOS 9) jailbreaks. These jailbreaks are discussed in more
detail in Section 5.
Pangu 8 – Comparing the sandbox profile facts of debugserver

between iOS 8 and 9 reveals an interesting change. The debugserver
profile in iOS 9 adds the debug-mode filter as a requirement for the
process-exec* operation. Based on the Pangu 9 requirements, we
assume the debug-mode filter requires the executed subject to possess
the get-task-allow entitlement.
Pangu 9 – Beginning in iOS 10.0, the container-required entitle-
ment was added to neagent. We speculate that container-required
overrides the entitlement that assigns the vpn-plugins profile (neagent
has both, but only one profile can be used). The container profile
makes neagent significantly less useful for deploying kernel ex-
ploits.

B OTHER POLICY FLAWS
In addition to the five policy flaws presented in Section 6, we dis-
covered three other flaws while implementing iOracle.

18https://github.com/libimobiledevice
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Figure 4: Name Resolution Based Jailbreak Steps
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Figure 5: Capability Based Jailbreak Steps

B.1 Denial of Service
Several system applications (e.g., Voice Memo, Camera, Safari) rely
on files in the Media/ directory. Therefore, if an attacker abuses ac-
cess to afcd, it can disrupt the functionality of these applications. Us-
ing iOracle, we know that afcd has write access to all files in Media/

and can create non-regular type files there. We also queried iOracle
to detect filepaths within Media/ that are written by system executa-
bles. As a proof of concept attack, we used libimobiledevice to con-
trol afcd on iOS 10.2 and replaced databases in Media/Recordings/

with directories containing dummy content. If the user attempts to
make an audio recording with Voice Memos, the application will
fail to save the recording because the database it requires has been
replaced by a directory, and it cannot delete the directory.

The impact of this vulnerability is limited. However, it empha-
sizes the fragility of system processes with respect to file integrity.

B.2 Address Book Privacy Setting Bypass
This vulnerability was not detected by using iOracle, but rather
was the result of insights gained while modeling iOS access control
semantics. Apple uses sandbox extensions as revocable capabilities.
However, malicious applications can resist revocation. Revocation
is resisted by storing the sandbox extension token value (which
only changes on system reboot) in a file or other form of persistent
storage. After revocation, an application can reclaim a revoked
sandbox extension by calling sandbox_extension_consume with the
stored extension token as a parameter. We designed a proof-of-
concept application that uses this technique to maintain access to

the user’s address book after access is revoked through privacy
settings.

The impact of this vulnerability is moderate. The attack bypasses
privacy settings and allows access to user data that should be pro-
tected by the sandbox. The attack also provides insight into the
challenges of revocable privileges. CVE-2015-7001 and CVE-2016-
4686 suggest that Apple has already increased address book security
twice in attempts to prevent this type of attack.

B.3 Symlink Restriction Bypass
The afcd interface on iOS 9 does not allow the creation of links with
../ in the destination. This restriction prevents afcd from creating
symlinks that direct to files outside of Media/. However, third party
applications can still create symbolic links with any filepath as
the destination. If a third party applications places a symlink in
Media/, then afcd can create a second link that redirects to the
first link without using ../ in the path. Therefore, by combining
multiple symbolic links, afcd can create links in Media/ that redirect
to arbitrary filepaths.

We query the container profile for filepaths in Media/ where
a third party application has write access. Our queries indicate
that third party applications on iOS 9.3.5 have write access to
Media/lock_sync.19 Therefore, a chain of links can be created by a
third party application and afcd such that directories in Media/ are
redirected to directories under attacker control. The third party app
can link Media/lock_sync to any destination, and afcd can replace

19/private/var/mobile/Media/com.apple.itunes.lock_sync



files or directories in Media/ with links to Media/lock_sync. For ex-
ample, the following chain of links can be formed Media/Recordings

→ Media/lock_sync → ../../../attackerTarget.
The impact of this vulnerability depends on its applicability to

iOS 10 and the prevalence of devices restricted by their hardware
to iOS 9.3.5. Third party write access to lock_sync was removed in
iOS 10 in response to vulnerabilities detected by SandScout [10].
Therefore, our proof of concept does not apply to iOS 10. However,
it can affect iOS 9.3.5 (the latest version supported by 32 bit iOS
devices). On iOS 9.3.5, this vulnerability can act as a starting point
in jailbreak attacks to perform name resolution attacks similar to
those used in evasi0n 7 and TaiG.
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