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ABSTRACT
Security advisories are the primary channel of communication for
discovered vulnerabilities in open-source software, but they often
lack crucial information. Specifically, 63% of vulnerability database
reports are missing their patch links, also referred to as vulner-
ability fixing commits (VFCs). This paper introduces VFCFinder,
a tool that generates the top-five ranked set of VFCs for a given
security advisory using Natural Language Programming Language
(NL-PL) models. VFCFinder achieves a 96.6% recall for finding the
correct VFC within the Top-5 commits, and an 80.0% recall for the
Top-1 ranked commit. VFCFinder generalizes to nine different pro-
gramming languages and outperforms state-of-the-art approaches
by 36 percentage points in terms of Top-1 recall. As a practical
contribution, we used VFCFinder to backfill over 300 missing VFCs
in the GitHub Security Advisory (GHSA) database. All of the VFCs
were accepted and merged into the GHSA database. In addition to
demonstrating a practical pairing of security advisories to VFCs,
our general open-source implementation will allow vulnerability
database maintainers to drastically improve data quality, supporting
efforts to secure the software supply chain.
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1 INTRODUCTION
Security advisories help users identify vulnerabilities, apply neces-
sary fixes, and facilitate informed decision-making regarding com-
ponents in software. The United States and the European Union
have emphasized the need for high-quality advisories to address
software dependency vulnerabilities effectively [34, 59]. Neverthe-
less, many existing security advisories lack crucial information [11].

Vulnerability fixing commits (VFCs) are a valuable but often
missing part of security advisories. VFCs help practitioners miti-
gate vulnerabilities by enhancing software composition analysis
tools [39, 40] and enabling patch presence verification [50, 53, 60],
as well as new state-of-the-art techniques such as enabling few-
shot bug repair [26, 57]. While the security community frequently
focuses on identifying new vulnerabilities in code, less attention
is given to identifying fixes for vulnerabilities [21, 51, 54]. This
disparity is also reflected in practice. GitHub and Sonatype use hu-
man curators to enhance vulnerability databases [17, 48]; however,
the volume of security advisories exceeds the available workforce,
leading to 63% of advisories without patch links; see Figure 1.

Prior work established several variations for matching security
advisories to VFCs. Initial approaches include extracting the vulner-
ability ID from commit messages [23] or following reference links
in advisories [24, 58]. However, poorly documented security com-
mit messages [43] and incomplete security advisories [11] limit the
effectiveness of these techniques. In response to these limitations,
machine learning approaches have shown promise by transitioning
the task into a ranking problem. For instance, FixFinder [21] ranks
commits using 23 features and a logistic regression model, achiev-
ing a Top-1 recall of 65.1% and Top-5 recall of 77.7% on a single
Java dataset [41]. PatchScout [51] uses 22 features and RankNet [5]
to attain a Top-1 recall of 69.5% and Top-5 recall of 85.4% across
various C/C++ projects and a single Java project. VCMatch [54], and
its GUI-based implementation Patchmatch [47], extends PatchScout
using 100 features and three machine learning models to achieve
the highest reported Top-1 recall of 88.9% and Top-5 recall of 95.3%
across 10 OSS projects.

Existing Limitations: Despite the reported performance met-
rics, several key factors limit the application in practice of the
current state-of-the-art (i.e., VCMatch [54]).

(1) Lack of Representative Training Data: We performed a pre-
liminary study on OSS projects with fixes in GHSA and found that
41.2% of the projects do not include any contributing guidelines.1

1Evaluating if a CONTRIBUTING.md file exists in a repository.
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Without guidelines, contributors submit poor quality commits mes-
sages [43]. However, VCMatch (the top-performing prior work)
evaluated rigorously maintained projects with restrictive contribut-
ing guidelines. For example, FFmpeg’s contribution policymandates
that a reference to an issue on the bug tracker is insufficient. Con-
tributors must also include a summary of the bug in the commit
message.2 This dataset is not representative of the broader software
supply chain. We address this limitation by curating data from 3,389
advisories across 2,138 different projects.

(2) Non-contiguous Data Sampling: PatchScout and VCMatch use
a random sampling technique to build their training and evaluation
datasets. Specifically, for every positive VFC, 5,000 other random
commits from the code repository are selected as negative samples.
This random sampling can have unintended consequences. For
example, the time difference between the commit and the associated
CVE file date in VCMatch can become emphasized by the model
as a discriminating feature and could lead to overestimation of
recall. When commits are randomly selected for analysis, there is a
tendency to overlook nearby commits to the VFC that would need
analysis in a real-world setting. In contrast, contiguously sampling
all commits between the window of the reported fixed version and
the prior version of commits does not introduce this issue.

As a result, VFCFinder required approximately 24 times less data
than PatchScout and 60 times less data than VCMatch for train-
ing purposes due to our contiguous sampling approach. The ran-
dom sampling approach by PatchScout required 3,329,286 unique
commit-to-vulnerability pairs and 8,346,669 pairs for VCMatch. The
contiguous sampling approach in VFCFinder required only 138,529
commit-to-vulnerability pairs.

(3) Model Complexity and Risk of Overfitting: VCMatch incorpo-
rates 100 features, complicating its interpretability and heightening
the risk of model overfitting. Prior machine learning research [3, 14]
shows more features lead to a higher variance and tend to overfit
noisy patterns in the training data, resulting in poor accuracy on
new examples. We confirmed this hypothesis of overfitting through
empirical evaluation of testing VCMatch on unseen data.

Our System: In this paper, we propose VFCFinder, a novel ap-
proach for helping an analyst match a given security advisory to
its VFC. Our key intuition is to leverage the fixed version number,
which is available for the overwhelming majority of advisories
(84%, see Section 4.3). Specifically, we take the window of commits
between the fixed version and the prior version to determine the
VFC. We empirically found that advisories with fixes contain 94%
of VFCs between this window. We then use a combination of five
intuitive features to produce a ranked set of five potential VFCs
for a given advisory. These features are: (1) the likelihood a com-
mit fixed a vulnerability, (2) the type of vulnerability fixed, (3) the
similarity between the commit message and the advisory details,
(4) where the commit appeared in the window, and (5) any direct
indicators in the commit message (i.e., CVE/GHSA-ID).

The first two features, VFC fix probability and VFC vulnerability
type, are generated by fine-tuning the CodeBERT NL-PL model [13].
The semantic similarity between commits and advisory details is
generated from sentence embeddings using a pre-trained language

2https://ffmpeg.org/developer.html#Contributing

model. The final two features, commit location and CVE/GHSA-
ID in the message, are statically generated. Finally, these features
are fed into an XGBoost model for ranking. We then introduce a
contiguous sampling technique that divides the training and testing
sets between fixed and prior versions, simulating the approach a
human would take to identify a VFC.

We began our work with the goal of automatically backfilling
VFCs to security advisories. However, we found that a fully au-
tomatic solution inherently introduces unacceptable risk. Adding
the incorrect VFC to a security advisory can result in a false sense
of security. While a "human-in-the-loop" process will always be
required for matching VFCs to their security advisories, our work
seeks to provide a nearly-automatic method.

Evaluation and Measurement: We evaluate VFCFinder in two
ways. First, we construct a representative dataset consisting of the
set of all security advisories from the GHSA database with a known
patch link: thousands of projects spanning nine programming lan-
guages. VFCFinder identifies the correct VFC for a given security
advisory 96.6% of the time within the Top-5 ranked commits and
80.0% within the Top-1 ranked commit. For projects with 15 or
fewer commits between version releases, VFCFinder identifies the
VFC for a given security advisory with a Top-1 recall of 90.9%. In
contrast, running VCMatch on our dataset resulted in a Top-1 recall
of 44.0% and a Top-5 recall of 70.1%.

Second, we deploy VFCFinder on over 300 randomly selected
GHSA advisorieswithout patch links to demonstrate that VFCFinder
generalizes beyond our training and testing data. VFCFinder found
the missing patch link with a Top-5 recall of 96.1% and a Top-1
recall of 81.2%.

In summary, we make the following key contributions.

• We propose a security advisory-to-VFCmatching approach that
generalizes to nine programming languages and thousands of
open-source projects. In contrast to prior work, which uses 100
features [54], our approach only uses five. By using a smaller
set of features, we reduce the amount of variance in the
resulting model, allowing similar performance of the model
across nine languages. Specifically, VCMatch [54] has a 36
percentage point lower Top-1 recall than VFCFinder when
evaluated on VFCFinder’s dataset, which spans thousands of
projects and nine languages. Whereas VFCFinder performs
similar to VCMatch when tested on the VCMatch dataset
(not included in VFCFinder’s training).

• We propose a new evaluation standard for security advisory-to-
VFCmatching tools. Priorwork [51, 54] uses a non-contiguous
sampling approach for VFC ranking, which overestimates
their recall in practice. Our contiguous sampling approach
ranges from 24 times less data to 60 times less data than
non-contiguous approaches.

• We deployed VFCFinder to backfill over 300 security advisories
in the GitHub Security Advisory database. GitHub’s security
team confirmed all of our submitted VFCs and integrated
them into the GHSA database.

Availability: VFCFinder is available on GitHub.3

3https://github.com/s3c2/vfcfinder
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Figure 1: 63.1% of GHSA security advisories are missing their
patch link based on a snapshot taken through 2022.

2 BACKGROUND
In the current landscape, vulnerabilities in software are abundant
and varied. Effective communication of these vulnerabilities is cru-
cial for the security of the software supply chain. To streamline the
reporting and tracking of these vulnerabilities, the U.S. Department
of Homeland Security and the Cybersecurity and Infrastructure
Security Agency back the MITRE corporation’s Common Vulner-
ability Enumeration (CVE) Program [36]. Through this program,
researchers and vendors can report vulnerabilities, which the CVE
Assignment Team and CVE Numbering Authorities then review.

MITRE has simplified vulnerability reporting with its dedicated
CVE intake form. The formmandates three fields: vulnerability type,
the product’s vendor, and the affected products with their versions.
The form also offers optional sections covering acknowledgment
of the vulnerability, attack nature, potential impact, affected com-
ponents, attack pathways, a recommended description, discovery
credits, and relevant references. Once reviewed, the vulnerabilities
are assigned CVE IDs and publicly listed on the CVE list [9].

Over the years, various downstream databases have emerged,
such as the National Vulnerability Database (NVD)[35], Google’s
Open Source Vulnerabilities (OSV) [20], and GitHub Security Advi-
sory Database (GHSA)[15], to enrich reports from the CVE list. For
example, the NVD offers an additional layer of detail with fields
for numerical vulnerability severity scoring, such as the Common
Vulnerability Scoring System score. Google introduced OSV and
an associated schema emphasizing machine-readable fields. GHSA
streamlines updates for vulnerability data, allowing the community
to submit enhancement suggestions (e.g., additional reference links)
for an associated security advisory. One significant detail within
reports is the reference link to the patch link.

Motivating Examples: Figures 2 and 3 present two scenarios
on the difficulty of pairing security advisories and VFCs. Figure 2
shows CVE-2019-9721, from the VCMatch dataset, which addressed
a denial of service within FFmpeg. The advisory description is clear.
The commit message addresses the vulnerability and is similar to
the advisory, making it straightforward to pair the advisory to the

Commit Message for VFC: avcodec/htmlsubtitles: Fixes denial
of service due to use of sscanf in inner loop for handling braces
Fixes: [Semmle Security Reports #19439]
Fixes: dos_sscanf2.mkv

Description: A denial of service in the subtitle decoder in
FFmpeg 3.2 and 4.1 allows attackers to hog the CPU via a
crafted video file in Matroska format, because
handle_open_brace in libavcodec/htmlsubtitles.c has a complex
format argument to sscanf.

CVE-2019-9721

Figure 2: An informative commit message for a VFC within
FFmpeg for CVE-2019-9721.

Description: CKEditor4 is an open source what-you-see-is-
what-you-get HTML editor. A vulnerability has been discovered
in the core HTML processing module and may affect all plugins
used by CKEditor 4 prior to version 4.18.0. The vulnerability
allows someone to inject malformed HTML bypassing content
sanitization, which could result in executing JavaScript code.
This problem has been patched in version 4.18.0. There are
currently no known workarounds.

CVE-2022-24728

Commit Message for VFC: Code refactoring.

Figure 3: A misleading commit message for the VFC within
CKEditor4 for CVE-2022-24728.

patch. VCMatch and VFCFinder rank the commit as the top choice.
In contrast, for a cross-site scripting vulnerability in the CKEdi-

tor4 project (Figure 3), the CVE description is informative, but the
commit message for the patch link contains little useful information.
Had the patch link not been included in the original CVE reference
links, it would have been nearly impossible for a human to identify.
There are 78 commits between the fixed version (4.18.0) and the
prior version (4.17.2). VCMatch ranked the corresponding commit
as 38th, whereas VFCFinder ranked the commit as third.

Multiple VFCs and Multiple Versions: We anecdotally ob-
served that some security advisories reference multiple VFCs. To
understand this relationship, we performed a preliminary study
and found that 96% of GHSA security advisories with a fix (see
Section 4.3 for data collection process) only list a single VFC. The
remaining 4% of advisories offer more than one VFC. Of those,
39% are for patches in multiple versions. For instance, the project
parse-server from GHSA-2m6g-crv8-p3c6 gives two patch links
that correspond to two patched versions (4.10.14 and 5.2.5). In fact,
the backport patch link for 4.10.14 needed more changes than the
patch for version 5.2.5, demonstrating that it is important to find all
VFCs. Therefore, identifying the patches for each reported version
is valuable to aid practitioners.
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Figure 4: The architecture of VFCFinder ranking commits based on their relevance to fixing a given security advisory.

CommitWindow for VFCs:We hypothesized that VFCs gener-
ally appear between the reported fixed version and the prior version.
To test this hypothesis, we performed a second preliminary study
that examined all GHSA security advisories with a VFC and found
that around 65% of VFCs appear in this range. An additional 29% of
commits are backported from the VFC listed in the security advi-
sory, indicating that there exists a VFC in the hypothesized range.
Therefore, 94% of the examined security advisories had the VFC in
the expected location. The remaining VFCs not appearing in the
anticipated location may be due to unreliable version data [1, 32].
VFCFinder leverages this intuition for its approach.

How the commit window is determined matters. PatchScout’s
optional branch analysis is the closest to using a commit window:
it considers all commits for an entire branch. However, version
releases within GitHub are based on git tags, not branches [19].
For example, parse-server maintains branches 4.x.x and 5.x.x, each
having many minor releases and CVEs. Therefore, the commit
window should be based on git tags and not branches. We note that
each GHSA advisory contained an exact version [16].

3 THE DESIGN OF VFCFINDER
Figure 4 illustrates the architecture of VFCFinder. The primary
goal of VFCFinder is to match security advisories to VFCs. Initially,
VFCFinder consumes a security advisory extracting information
regarding the fixed and prior version commit windows. Then, con-
sidering each commit within the window, the commit message
and git diff are extracted. Leveraging CodeBERT [13], VFCFinder
generates the first feature, predicting the likelihood that a commit
fixed a vulnerability. We fine-tune the CodeBERT model using data
from NVD [35], OSV [20], and VulasDB [41]. In addition to VFC
identification, VFCFinder uses CodeBERT for vulnerability type
classification for each VFC, explicitly focusing on the OWASP Top
10. The third feature is a commit-to-advisory semantic similarity
score using SentenceTransformers. The final two features are a CVE

or GHSA identifier in commit messages and the commit rank loca-
tion. These features are fed into a single XGBoost model to create
the final ranking of commits relevant to fixing security advisory.

3.1 Extracting Advisory Information
VFCFinder uses the OSV format [6] for security advisories, which
provides the following key-value data : (1) a detailed vulnerabil-
ity summary, (2) CWE type, (3) source code repository, (4) related
CVE/GHSA identifiers, and (5) fixed versions. VFCFinder addition-
ally identifies the associated VFC for each fixed version.

Identifying Prior Version and Commit Window: VFCFinder
uses git tags, typically used for versioning, to determine the commit
window. Once cloning a project locally, all project tags are retrieved
(i.e., via git tag). The fixed version from the advisory is then
matched directly to the tag set. For the prior version tag, VFCFinder
uses the package packaging,4 allowing for semantic version sorting
of the tags. The tag immediately preceding each fixed version is
selected as the prior tag. Upon obtaining the fixed and prior tags,
the command git tag prior_ver...fixed_ver lists all commits
within the specified commit window. As mentioned in Section 2,
this approach resulted in a success rate of 94% for identifying the
commit window of the provided VFC.

3.2 VFC Identification
The first feature VFCFinder predicts is if a commit resolves a vul-
nerability, a process based on a fine-tuned CodeBERT model. Code-
BERT [13] is a transformer-based architecture [52] equipped with
bimodal pre-training for natural language (NL) and programming
language (PL). CodeBERT was initially trained on six program-
ming languages paired with function-level documentation. Hug-
gingFace [56] hosts CodeBERT with pre-trained weights, allowing
fine-tuning of the model for specific tasks.

We fine-tune CodeBERT for VFC identification using a custom
tuning loop, Figure 5, and tuning data described in Section 4.

4https://pypi.org/project/packaging/
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Tokenization: Before fine-tuning, we transcribe the free-form
commit message and code into numerical forms through tokeniza-
tion. The tokenizer expects two elements from commit data: (a) the
commit message, and (b) the git diff featuring modified, deleted,
and added code. The tokenizer produces a tensor divided into
three sections: input_ids, attention_mask, and token_type_ids. The
input_ids are a blend of the commit message and git diff as fol-
lows: [CLS] commit_message [SEP] git_diff [EOS]. Tokens
[CLS][SEP][EOS] are special separators; [CLS] signifies the be-
ginning of the segments, [SEP] is a divider between the commit
message and raw git diff code, and [EOS] is the end-of-sequence
token. The attention_mask assists the model in identifying input_ids
padded tokens, indicating which tokens require attention. The to-
ken_type_ids designates the start and end of sequences, specifically,
the length of the commit message tokens and the git diff.

The tokenizer accepts a maximum token count based on the pre-
trained model; for CodeBERT, it is 512 tokens. Excess tokens are
truncated. In order to minimize truncation, we section the commit
data into smaller chunks, each based on a file with changes, and
generate tensors from these chunks. This method not only aids in
reducing data truncation but also allows us to make predictions
and evaluations for individual programming languages separately.

Fine-Tuning: We implemented a classification fine-tuning loop
for the CodeBERT model. The model includes an embedding layer
that maps input tokens to 768-dimensional vectors and 12 encoder
layers. These encoder layers incorporate a self-attention mecha-
nism for focusing on varying parts of the input sequence. Each
encoder’s intermediate layer executes a non-linear input transfor-
mation, followed by a linear output layer transformation. The last
encoder layer’s output is directed to a pooling layer, averaging
the hidden states across the input sequence. This output is then
processed through a fully connected layer with an output size of
one. During tuning, we use an unweighted binary cross entropy
loss function defined as:

𝑙𝐵𝐶𝐸 = − [𝑦 · log𝑥 + (1 − 𝑦) · log(1 − 𝑥)] (1)

where 𝑥 is the input and 𝑦 is the target. The logits are passed
to a sigmoid activation function, producing the final prediction,
ranging from 0 to 1, indicating the VFC positive class probability.

Aggregating Predictions to Commit Level: VFCFinder gen-
erates predictions on a per-file basis. This strategy ensures that
different programming languages are handled separately during the
prediction process. For instance, when a commit updates Python
and C files, CodeBERT does not need to process multiple languages
simultaneously. Therefore, VFCFinder consolidates file predictions
into a total commit prediction. To do so, VFCFinder calculates the
arithmetic mean of the file predictions, resulting in a single value
between 0 and 1, where 1 suggests a likely vulnerability resolution.

3.3 VFC Vulnerability Type
The fine-tuning for VFC type identification mimics the VFC identifi-
cation outlined in Section 3.2, differing primarily in the classification
tasks. VFC type is categorized based on the OWASP Top 10 and
an additional “Other” class that signifies vulnerabilities outside the
OWASP Top 10. Initially, we contemplated predicting VFC type at
the CWE level, but since MITRE defines 933 different CWE types

[CLS] tokm1 ... tokmi [SEP] tokc1 ... tokci [EOS]

 Message Tokens Code Diff Tokens

Tokenization

CodeBERT

Fully Connected
Layer

Sigmoid

VFC Prob

Figure 5: A fine-tuning CodeBERT framework for VFC identi-
fication. The fully connected layer of the VFC classification is
vector size one. VFC Type identification uses the same frame-
work, but the vector size from the fully connected layer is 10
(i.e., OWASP Top 10) and uses a softmax function.

and the relatively sparse training data, we decided against it. Dis-
cussion of VFC type data collection and mapping OWASP Top 10
labels to VFC types is in Section 4.2.

Tokenization: The tokenizer for VFC type is the same for VFC
identification, as seen in Section 3.2.

Fine-Tuning: The fine-tuning architecture for VFC type is simi-
lar to that of VFC identification. The primary differences are the
output size of the fully connected layer, the loss function, and the
activation function. The VFC type’s output size is 10, denoting its
deployment for a 10-class classification task.5 We specifically use a
weighted cross entropy loss function as defined:

𝑙𝑊𝐶𝐸 = −𝑤𝑦 log
𝑒𝑥,𝑦∑10
𝑐=1 𝑒

𝑥,𝑐
· 𝑦 (2)

where 𝑥 is the input, 𝑦 is the target,𝑤 is the weight, and 𝑐 is the
number of classes. A softmax activation function is then used on
the fully connected output layer, transforming the results into a
probability distribution across the classes.

Aggregating Predictions to Commit Level: Predicting the
VFC type on a per-file basis requires a distinct commit-level aggrega-
tion process. To determine the VFC type, we use the file prediction
that has the maximum probability. In specific terms, we use an
argmax function to identify and select the OWASP Top 10 type that
has the highest probability within a given predictions.

𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 (𝑋 ) := 𝑥 : 𝑓 (𝑠) ≤ 𝑓 (𝑥),∀𝑠 ∈ 𝑋 (3)

This procedure ensures the selection of the VFC type with maxi-
mum confidence. The evaluation of VFC type identification is in
Section 5.3.2.

5As outlined in Section 4.2, the classification size would be 11, but no examples exist
for one of the OWASP Top 10 classes.



3.4 Semantic Similarity
VFCFinder also incorporates the similarity between the commit
message and the original advisory. For instance, consider the advi-
sory GHSA-fj7c-vg2v-ccrm and its associated VFC:

GHSA-fj7c-vg2v-ccrm description: “Buffer leak on in-
coming WebSocket PONG message(s) in Undertow
before 2.0.40 and 2.2.10 can lead to memory exhaus-
tion and allow a denial of service.”
undertow@c7e84a0 VFC commit message: “[UNDER-
TOW -1935] - buffer leak on incoming websocket
PONG message”

VFCFinder uses SentenceTransformers [42], an advanced tech-
nique for generating embeddings to produce semantic similarity
scores between texts. Specifically, we use the pre-trained all-mpnet-
base-v2 model. 6 VFCFinder then feeds these embeddings into a
cosine similarity function to identify semantic correlations from
the embeddings. The output ranges from -1 (indicating opposite
meanings) to 1 (denoting identical meanings). A score of 0 signifies
orthogonality or dissimilarity between the two vectors.

Regrettably, not every advisory and VFC commit message is as
descriptive as the previous instance. Take the advisory GHSA-rgp5-
m2pq-3fmg and the related VFC as an example:

GHSA-rgp5-m2pq-3fmg description: “microweber prior
to version 1.2.11 is vulnerable to cross-site scripting”
microweber@f7f5d41 VFC commit message: “update”

In the initial example, the cosine similarity score is 0.88, reflecting
considerable similarity. However, for the second example, despite
being the VFC for the advisory, the cosine similarity score is -0.01.

3.5 Static Features
VFCFinder also incorporates two static features to enhance the
classification. We initially considered other static features, similar
to those in prior work [21, 51, 54], however, most demonstrated
limited feature importance, leading us to retain the following two
prominent static features.

CVE/GHSA Identifier: In some cases, developers mention the
CVE or GHSA identifiers for advisories directly in commit mes-
sages. Naturally, VFCFinder should encapsulate this information.
The presence of the CVE/GHSA-ID within the commit message is
determined using a direct search method. This feature is encoded
as a binary value, with 1 signifying a match.

Normalized Commit Rank Location: In our feature engi-
neering, we observed that VFCs often occur toward the end of
the commit lifecycle, typically before the next version release. For
instance, the GHSA-prrh-qvhf-x788 advisory resolved a vulnera-
bility across 32 commits, with the VFC (314456d) as the 31st com-
mit, directly preceding the v5.0.2 release.7 VFCFinder computes
𝑐𝑜𝑚𝑚𝑖𝑡𝑟𝑎𝑛𝑘/𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑜𝑡𝑎𝑙 for the normalized commit rank location,
yielding a location of 31/32 = 0.97 for the cited VFC. According to
our ground truth dataset (Section 4), the average normalized com-
mit rank location for VFCs is 0.67. This is intuitive for vulnerability
patching practices. As vulnerabilities are identified, the expectation
is a new software release with the patch provided shortly after.
6https://huggingface.co/sentence-transformers/all-mpnet-base-v2
7https://github.com/PrestaShop/productcomments/compare/v5.0.1...v5.0.2

Table 1: VFCFinder’s ranking model uses five features.

Features Description

VFC Probability Probability distribution of commit fixing a
vulnerability

VFC Type Match∗ Boolean match between advisory and VFC
Type prediction

Commit/Advisory
Similarity

Similarity score commit message and advi-
sory report

CVE/GHSA ID
in Commit∗

Boolean match if CVE/GHSA ID in commit
message

Commit Rank
Location

Normalized commit rank location of a commit
in version lifecycle

∗ We describe this as five features, but the XGBoost model uses seven features.
We split individual features for CVE and GHSA, and split VFC type into Top-1
and Top-5.

3.6 Ranking Commits
The final step in VFCFinder is to use the previously described fea-
tures, Table 1, to rank the commits relevant to the given security ad-
visory. VFCFinder uses XGBoost [7], an iterative gradient-boosting
algorithm that progressively incorporates decision trees while ad-
justing observation weights based on previous inaccuracies. By
combining weak learners and predicting residuals from prior trees,
XGBoost uses regularization techniques to optimize performance
and mitigate overfitting.

To initially tune the hyperparameters of the XGBoost model,
we used hyperopt [4], a Bayesian optimization algorithm. The best
results were obtained when the learning rate was set to 0.001, and
the decision tree depth in the model was restricted to four. Further-
more, we set the maximum number of boosting rounds, i.e., the
number of decision trees included in the model, to 1,500.

A binary logistic objective was used during training, classifying
each commit as related or unrelated to the security advisory fix.
The model outputs the predicted probabilities for each input to
belong to the positive class, which range from 0 (non-match) to 1
(match). This process transforms the task into a classification prob-
lem. These probabilities are then ranked to denote the likelihood
of each commit fixing a security advisory. Section 5 elaborates on
the model’s evaluation.

4 DATA COLLECTION
Here, we discuss the training and testing datasets for VFCFinder.
The data collection process is organized into three sets, each corre-
sponding to a unique classification model: VFC identification, VFC
type identification, and the final XGBoost ranking process. Table 2
provides a summary and the aggregate commit count for each set.

4.1 Vulnerability Fixing Commits
We sourced data from three vulnerability databases: NVD[35],
OSV[20], and VulasDB [41]. NVD, operated by NIST, is a primary
vulnerability disclosure platform. Google’s OSV aggregates data
from multiple sources (GHSA, PyPA, RustSec, Global Security Data-
base, and OSS-Fuzz) and primarily targets open-source dependen-
cies. VulasDBmanually curated vulnerable commits in Java projects

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/PrestaShop/productcomments/compare/v5.0.1...v5.0.2


Table 2: Datasets used for training various aspects of
VFCFinder. The dataset size indicates commit count.

Dataset Objective Size

VFC Identification VFC and Non-VFCs 54,858
VFC Types OWASP Top 10 Labeled VFCs 7,847
GHSA Data Matching VFCs to advisories 138,529
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Figure 6: Language breakdown across Vulnerability Fixing
Commits within the VFC Identification dataset

and has been used extensively in previous studies [30, 33, 45].
Our training data included 54,858 commits, with 9,143 VFCs and

45,715 non-VFC commits. The commits span nine languages. We
started data collection by downloading all datasets, beginning with
the NVD,which contained 193,250 CVEs as of August 16, 2022. CVEs
contain reference links tagged as a patch, typically signifying VFCs.
We focused specifically on GitHub commit links, identifying 8,951
GitHub commit patch links. A similar methodology on OSV yielded
3,633 GitHub-referencing VFCs, and VulasDB provided 1,282 Java
commits linked to open-source dependencies. After consolidation
and de-duplication, 9,143 unique VFCs were obtained.

We then cloned each repository containing the commit and con-
firmed the commits used languages in C/C++, PHP, Java, JavaScript,
Python, Go, Ruby, TypeScript, or C#. To pull the data, we developed
an additional tool for parsing commit data, PatchParser.8 The tool
pulls key features from GitHub commits and formats them in a way
ideal for ML/AI applications. Figure 6 demonstrates the language
distribution for the study, emphasizing PHP and Java.

Collecting Non-VFCs: Training requires non-VFCs in addition
to VFCs. Consistent with prior work, we keep a ratio of five non-
VFCs to one VFC [45]. For every VFC in a repository, we gather
five non-overlapping non-VFCs from the same repository.

To collect non-VFCs, we follow methods established in previous
studies [33, 45]. Firstly, we collect unique repositories from the

8This tool has been publicly released on PyPI: https://pypi.org/project/patchparser/

Table 3: VFC OWASP Top 10 Distribution

Category VFC Count

A01: Broken Access Control 1,333
A02: Cryptographic Failures 126
A03: Injection 2,249
A04: Insecure Design 232
A05: Security Misconfiguration 125
A06: Vulnerable and Outdated Components 0
A07: Identification and Authentication Failures 322
A08: Software and Data Integrity Failures 209
A09: Security Logging and Monitoring Failures 30
A10: Sever-Side Request Forgery (SSRF) 88
Other (Weaknesses outside OWASP Top 10) 3,133

VFCs, a total of 2,658. From these repositories, we compile the com-
mit history. We then run a modified version of git-vuln-finder [8],
which includes additional keywords from SPI [67], on the commit
history. Commits not matched by git-vuln-finder are assumed to
be non-VFCs. We then check if the commit modified at least one
file associated with the study’s target languages; if not, the commit
is discarded. After verifying the commits, we shuffle the non-VFCs
and match each VFC with five non-VFCs from the same reposi-
tory. For validation, we randomly sampled 100 non-VFCs to ensure
they weren’t related to security fixes. This process yielded 45,715
non-VFCs from 2,658 unique repositories.

4.2 Vulnerability Fixing Commit Types
Security advisories are associated with a common weakness enu-
meration (CWE), denoting the type of vulnerability. With 933 exist-
ing CWE types [27], predicting a VFC’s corresponding vulnerability
type is challenging. We leverage the CWE to OWASP Top 10 map-
ping provided by MITRE [27], simplifying our prediction classes.
VFCs not in the OWASP Top 10 are categorized as “Other.”

We excluded advisories with multiple CWEs. Our preliminary
analysis found that less than 2% of the total advisories list multiple
CWEs. Furthermore, 1,296 VFCs did not possess a CWE label, re-
sulting in a dataset of 7,847 VFCs with a CWE label. Table 3 details
the commit distribution per OWASP Top 10 label and the “Other”
class. This imbalance mirrors the real-world vulnerability distri-
bution. Notably, "Vulnerable and Outdated Component" was not a
classification within the VFC dataset.

4.3 GHSA Data
We used GHSA advisories to train the final ranking model of
VFCFinder. The GHSA data is a subset of the OSV data described in
Section 4.1. We selected GHSA as the full pipeline training because
it (1) is guaranteed to be on GitHub and (2) is one of the popular
advisory databases for open-source projects. An advisory was con-
sidered for training if it contained a GitHub code repository link
and an identified fixed version. In total, 15.7% of GHSA advisories
did not contain fixes, leaving approximately 84.3% of advisories
with fixes. We identified 3,605 advisories with a VFC, each contain-
ing a fixed version. As Section 2 mentioned, we matched 94% of the
VFCs to their associated fixed version range. Therefore, we only
considered those VFCs within that range.

https://pypi.org/project/patchparser/


Our total dataset consisted of 3,389 advisories, across 2,138
projects, and 138,529 associated commits. The average number
of commits between fixed and prior versions was 15. Commit labels
were determined based on their association with an advisory, with
VFCs in the advisory receiving a label of 1 and others labeled as 0.

Contiguous Data Sampling: The contiguous aspect is to obtain
all of the commits in the order in which they appear in the commit
lifecycle between the prior and fixed versions. As discussed previ-
ously, current state-of-the-art [51, 54] uses a non-contiguous data
sampling technique, selecting non-associated commits randomly
throughout the project. By narrowing the dataset to commits within
the fixed version’s window, we eliminate the risk of overemphasiz-
ing the time difference between commits and CVE file dates.

FixFinder [21] uses a contiguous sampling approach, but the
boundaries are set without respect for the prior and fixed version,
creating a selection of commits two years before and one hun-
dred days after the CVE file date for each evaluation, resulting in
2,753,058 commits for their training datasets. VCMatch collected a
dataset containing 1,669 vulnerabilities from 10 open-source soft-
ware projects for training their prediction models. VCMatch used
the corresponding fixing commits for each of these vulnerabilities as
positive samples. To construct negative samples, they followed the
method used in the study of PatchScout, which involved randomly
sampling 5,000 other commits in the code repository as negative
samples for each positive sample. VCMatch required a total training
set of 8,346,669 pairs of vulnerabilities and commits. Each of those
approaches requires significantly more data than VFCFinder.

Additionally, our approach separates training and testing datasets
to keep advisories distinct and ensures that commit lifecycles within
each set are non-overlapping. This strategy ensures the integrity
of our training and testing sets, preventing any associated commits
from being split between them. Further details on training and
testing can be found in Section 5.1.

5 EVALUATION
This section presents the evaluation of VFCFinder on the datasets
from Section 4. We pose four research questions:
RQ1: What is VFCFinder’s effectiveness in pairing security advisories

and vulnerability fixing commits? This question assesses the
full VFCFinder ranking pipeline. We benchmark VFCFinder
against VCMatch [54] on their dataset and across our dataset,
representing the software supply chain.

RQ2: How well does VFCFinder identify VFCs? We evaluate against
nine programming languages for identifying VFCs.

RQ3: How effective is VFCFinder in determining the VFC type? Ex-
tending past VFC identification, we evaluate how VFCFinder
can identify the vulnerability type fixed during the VFC. We
classify based on the OWASP Top 10 and an “Other” class.

RQ4: What features are important for matching security advisories
to VFCs? In addition, we provide insight into how the features
of matching security advisories to VFCs impact the output
of VFCFinder.

5.1 Evaluation Setup
Our evaluation depends on three datasets: GHSA commits (Sec-
tion 4.3, RQ1), VFC/Non-VFC labels (Section 4.1, RQ2), and VFC

Table 4: A Top-N recall comparison of VCMatch [54] vs
VFCFinder on VCMatch’s dataset (8.3M commits across 10
OSS projects) and VFCFinder’s dataset (138K commits across
2,138 projects). VCMatch’s performance on unseen data
(VFCFinder data) indicates overfitting, while VFCFinder
demonstrates robust performance on new unseen data.

VCMatch VFCFinder Difference∗

Dataset (# cmts) Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

VCMatch (8.3M) 89.6% 94.3% 81.9% 97.3% -7.7 +3.0
VFCFinder (138K) 44.0% 70.0% 80.0% 96.6% +36.0 +26.6
∗ VFCFinder performance minus VCMatch performance.

types (Section 4.2, RQ3). These are real-world, up-to-date data from
maintained vulnerability databases.

We create a holdout set of 10% of each dataset, preserving vulner-
ability type and language imbalances through stratified sampling.
We apply a 5-fold cross-validation for model fine-tuning on the re-
maining 90% of data. Each fold results in a model that we test on the
holdout set. We then average the model probabilities to create the
final holdout set prediction. We confirmed that the training/testing
and holdout data do not contain any forms of overlap, which would
result in data leakage. Throughout, we use a machine with an Intel
i7-9700k CPU, 32GB RAM, and an NVIDIA RTX 3090 Ti GPU.

During the evaluation of VFCFinder, we use Top-N metrics as
those in prior work [51, 54]. The Top-N metric measures how often
the correct item (or one of the correct items) appears in the top N
recommendations or predictions made by a model.

5.2 Evaluation Results
BaselineComparison:We focus our comparison onVCMatch [54],
as it is the latest and highest reporting metric for advisory to VFC
matching. Additionally, we omit PatchScout [51] from our com-
parative analysis because the source code is not publicly available.
VCMatch replicated PatchScout by themselves in their work and
demonstrated a 17-percentage-point performance advantage over
PatchScout. We attempted to retrain VCMatch on our data but could
not get their source code implementation to work. However, we
could get the source code and trained models to work that was
publicly accessible within Patchmatch [47], the GUI-based imple-
mentation of VCMatch. This availability allows for a noise-free,
direct comparison. We first validated Patchmatches implementa-
tion matches VCMatch to obtain results using their original dataset
before comparing its performance with our dataset. We applied
VCMatch on the same contiguous data as VFCFinder and used our
contiguous sampling to evaluate VFCFinder on VCMatch data.

Table 4 presents the results of VFCFinder compared to VCMatch.
VFCFinder significantly outperforms VCMatch in Top-1 recall by 36
percentage points (80.0% vs. 44.0%) on our dataset, demonstrating
greater generalizability. Although VCMatch shows a marginal 7.68
percentage point increase in Top-1 recall when evaluated on its
dataset (89.6% vs. 81.9%), it suggests overfitting to its specific data.
Furthermore, VFCFinder excels in Top-5 recall on both datasets,
indicating a broader and more consistent ability to identify vul-
nerabilities correctly. These performance metrics in both Top-1
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Figure 7: Top-N recall for ranking commits based on the
commits between the prior and fixed versions of an advisory.
Note, the CDF percentage of the commit count is at 100%
at 11,015 commits (the maximum number of commits seen
between versions).

and Top-5 recalls validate VFCFinder’s robustness in real-world
scenarios for matching security advisories to patch links.

Detailed VFCFinder performance: Figure 7 illustrates the
performance of VFCFinder. When searching for the vulnerability
fixing commits, each version lifecycle will have a different number
of commits. We found the median number of commits between
versions to be 15. Focusing on the Top-1 recall, when considering
the lower quartile (25%) of data, the commit count is less than 5; the
recall is 95.9%. This recall value changes to 90.9% for the median
(50%, commit count ≤ 15) and to 85.8% for the upper quartile (75%,
commit count ≤ 44). For the entire dataset, the Top-1 recall is 80.0%.
For 75% of the data, the Top-2 to Top-5 recall consistently remain
above 93%. On the entire dataset, the Top-2, Top-3, and Top-5 recalls
are 89.5%, 93.2%, and 96.6%, respectively.

Accurately Ranked Commits: Consider the advisory GHSA-
h47x-2j37-fw5m,9 addressing a critical injection vulnerability in the
Infinispan project. This advisory reports two patched versions and
provides two VFCs. In the case of version v9.4.17, with 63 commits
in the window, VFCFinder correctly ranked the corresponding VFC
as first. The VFC identification probability was 0.96, and the model
accurately classified the vulnerability type. Despite the final predic-
tion output of 0.30, it was significantly higher than the second-rank
commit of 0.08. For the older version, v8.2.12, with just six commits
within the window, VFCFinder identified the correct VFC as the
top-ranked commit, validating patches for both versions.

Misranked Commits: An instance of an incorrectly ranked
commit happened with advisory GHSA-wqv4-9gr3-3qgh related to
Jenkins, where VFCFinder ranked the actual VFC seventh among 82
commits. This version had six additional GHSA-IDs, three of which
fell into the same OWASP category, leading to the misranking. This
highlights the challenge of correctly associating a VFC with its
relevant advisory, mainly when multiple vulnerability fixes of a
similar type exist between versions.

9https://github.com/advisories/GHSA-h47x-2j37-fw5m

Takeaway: Within five commits, VFCFinder produces a
96.6% recall for containing the correct VFC within the prior
and fixed versions. Over prior work [54], VFCFinder increases
the Top-1 recall by 36% percentage points when applied to
various OSS projects.

5.3 VFCFinder Characterization
This section assesses the distinct elements of VFCFinder, with a
particular emphasis on the fine-tuned CodeBERT models used for
VFC identification and VFC type. Although a substantial body of
research exists regarding VFC identification and type (refer to Sec-
tion 8), they predominantly concentrate on individual facets of
VFCFinder. To our knowledge, a comprehensive analysis of VFC
identification spanning nine languages has not been extensively
explored. Our claim is not to have enhanced VFC identification
or VFC type identification; rather, our focus has been to further
evaluate CodeBERT across nine languages in VFC identification
and VFC type as they are important aspects of VFCFinder.

5.3.1 RQ2: VFC Identification. The VFC identification component
of VFCFinder proves effective, achieving an 89.3% macro F1 score
and a 94.4% accuracy. Additionally, the performance generalizes
across nine languages. We use a base threshold of 0.5 during evalu-
ation to represent a VFC; values below this do not indicate a VFC.
Formally,

𝑉𝐹𝐶 =

{
0 if 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 < 0.5,

1 if 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 ≥ 0.5

(4)

where 𝑥 is the output from the sigmoid activation function from
the fine-tuned CodeBERT model.

VFC Identification Evaluation: Table 5 presents VFC identi-
fication results for the dataset outlined in Section 4. Key metrics
include a macro F1 score of 89.3%, recall of 87.5%, precision of 91.5%,
accuracy of 94.4%, and an area under the ROC curve (AUC) of 95.7%.
Weighted F1 on the holdout data is 94.2%. Evaluation against the
holdout set yielded 4,452 true negatives, 209 false negatives, 100
false positives, and 704 true positives. The overall performance of
VFCFinder is similar to prior work (Section 8) for identifying VFCs,
ranging in an F1 score of around 90%.

Correctly Classified VFCs: The true negatives and positives
from the model classification within the holdout dataset offer in-
sight into VFCFinder’s performance. The average probability for
the 4,452 true negatives is 0.04, with a standard deviation 0.07. The
true positives average a probability of 0.94, which indicates high
model certainty. VFCFinder also applies to less descriptive com-
mit messages, such as d158413 in ckeditor/ckeditor4, to resolve a
cross-site scripting vulnerability with a commit message of “Code
refactoring” and a probability of 0.84.

Misclassified VFCs: False negatives refer to true VFCs wrongly
classified as non-VFCs, while false positives denote non-VFCs in-
correctly classified as VFCs. False negatives had a mean probabil-
ity of 0.18, with a standard deviation of 0.16. For instance, CVE-
2017-5553 identified a cross-site scripting (XSS) vulnerability in the
b2evolution CMS project, with a single patch link: ce5b36e.10 The

10https://github.com/b2evolution/b2evolution/commit/ce5b36e44b714b18b0bcd34c
6db0187b8d13bab8

https://github.com/advisories/GHSA-h47x-2j37-fw5m
https://github.com/b2evolution/b2evolution/commit/ce5b36e44b714b18b0bcd34c6db0187b8d13bab8
https://github.com/b2evolution/b2evolution/commit/ce5b36e44b714b18b0bcd34c6db0187b8d13bab8


Table 5: VFC Identification Language Generalization

Language Macro Precision Macro Recall Macro F1

C/C++ 92.4% 89.3% 90.7%
Python 90.1% 87.6% 88.8%
TypeScript 86.1% 86.1% 86.1%
JavaScript 89.2% 84.9% 86.9%
PHP 92.9% 88.4% 90.4%
Java 91.0% 84.2% 87.1%
Ruby 93.9% 88.7% 91.0%
C# 87.5% 98.5% 92.1%
Go 89.4% 85.7% 87.4%

Total 91.5% 87.5% 89.3%

Table 6: VFC Type Identification (OWASP-Top 10 + Other
Class) Top-N Evaluation

Precision Recall F1 Accuracy

Top-1 80.2% 80.1% 79.7% 80.1%
Top-2 89.3% 88.8% 88.5% 88.8%
Top-3 94.4% 94.3% 94.1% 94.3%
Top-5 98.6% 98.6% 98.6% 98.6%

commit message, Ignore wrong URLs on markdown plugin, corre-
sponded to a patch where developers refined an existing regex to
accept only URLs beginning with http://, https://, or /. The model
overlooked this subtle regex adjustment and vague commit mes-
sage, marking it as a false negative. The probability outputted by
VFCFinder was 0.30. Revising the probability thresholds could make
the model identify it as a VFC.

False positives produced a mean probability of 0.72 with a stan-
dard deviation of 0.16, implying model uncertainty compared to
the mean of 0.93 for true positives. For instance, a false positive
arose from the Ansible package’s bug fix for a missing dependency.
Though the commit message, defend against bad or missing crypt,
initially suggested a vulnerability fix, code review clarified the issue
as a failure due to a missing package.

VFC Language Generalization: Table 5 presents the perfor-
mance metrics for the nine languages in our holdout set. VFCFinder
performed well across each programming language. C#, with a
92.1% macro-F1 score, performed best, largely owing to a high re-
call of 98.5%, despite its lower precision at 87.5%. Interestingly, C#
accounted for the smallest training samples in our dataset. Type-
Script was the least successful, with an 86.1% macro F1 score.

Takeaway: VFCFinder identifies VFCs with an F1 score of
89.3% and generalizes across nine languages.

5.3.2 RQ3: VFC Type Identification. Table 6 shows the Top-N met-
rics for VFC vulnerability type classification, labeled as per the
OWASP Top 10. VFCFinder scores 80.1%, 88.8%, and 98.6% accuracy
for the Top-1, Top-2, and Top-5 labels, respectively. The metrics are
weighted to account for data imbalance.

Correctly Classified VFC Types: Figure 8 shows the normal-
ized confusion matrix for predicting vulnerability types, labeled by
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Figure 8: Normalized Confusion Matrix for the VFC Type
Top-1 Identification by OWASP Top 10 Categories

OWASP Top 10 categories as per Table 3. The matrix’s diagonal indi-
cates the recall for each category; for instance, VFCFinder correctly
identified 73% of A01: Broken Access Control vulnerability types.
In the “Other” class the model correctly detects 84% of them for
the Top-1 label. Even with approximately 40% of the data classified
as “Other,” VFCFinder can accurately distinguish different OWASP
classes.

Misclassified VFC Types: Figure 8 additionally shows the mis-
classification analysis of OWASP Top 10 categories. For instance,
22% of A10: SSRF VFCs were predicted as A03: Injection. Despite
initial concerns, these types exhibit notable similarities. Taking
CVE-2022-1723 as an example, an SSRF was fixed in jgraph/drawio
before version 18.0.6, mitigating potential local file access by web
server attackers. The commit message "18.0.6 release" fails to spec-
ify the patch’s purpose. Upon commit review, a sanitizeUrl(String
url) function emerged to validate URL parameters, a method similar
to A03: Injection patching. Thus, SSRF and Injection patches may
resemble each other regarding code modification.

Takeaway: VFCFinder correctly classifies the VFC type with
a Top-1 accuracy of 80.1% and a Top-5 accuracy of 98.6%.

5.4 Feature Importance
In this section, we explore the impact of five specific features out-
lined in Table 1 on the performance of VFCFinder. Although ma-
chine learning models are often seen as black boxes, using Shapley
Additive Explanations (SHAP) values [25] has enhanced our abil-
ity to interpret these models. Specifically, SHAP values are used
to explain the output of a model. They help to understand how
much each feature (or input variable) contributes to the model’s
prediction, whether positively or negatively. We approach each
combination of features as a distinct power set, subjecting each
to training. By measuring the contribution of each feature to the
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Figure 9: The SHAP values (impact on the model output) of
VFCFinder’s features. High feature values correspond to high
SHAP values, underscoring the importance of all features
in VFCFinder’s classification. Features are ranked by impor-
tance, from highest (Commit/Advisory Similarity) to lowest
(Commit Rank).

model’s overall predictive outcome, we assess its relative impor-
tance. These measured values allow for an understanding of each
feature’s role in the model.

Figure 9 visually represents the SHAP values distribution across
the complete training data pipeline for VFCFinder. The y-axis is the
feature value (e.g., a description similarity score of 0.98 would be
considered high), with darker colors denoting higher values. The
x-axis reflects the aggregated SHAP value. A rise in VFC probability
correlates with elevated SHAP values, impacting themodel’s overall
predictive probability. A decrease in VFC probability diminishes
the likelihood of a match. Features with higher values, such as VFC
probability, commit advisory similarity, and types of vulnerability
fixes, are more likely to correspond to an accurate patch link.

Takeaway: Each feature in VFCFinder provides a strong
contribution to the matching of security advisories to VFCs.

6 GHSA MISSING LINKS
This section explores an empirical study of VFCFinder applied to
a set of GHSAs missing VFC links. As stated in Section 2, around
63% (6,159/9,764) of GHSAs do not have VFC links. We pose the
research question: How does VFCFinder work on existing real-world
advisories with missing VFC links?

6.1 Considered GHSA Advisories
Section 4.3 details VFCFinder prerequisites: a source code link, a
fixed version, and a prior vulnerable version, which are not uni-
versally available across advisories. Approximately 2,129 (34.6%) of
VFC-lacking GHSA advisories do not contain a source code link.
As described in the Appendix, we created a simple methodology
for obtaining the missing GitHub repository. We can directly locate

Table 7: Results based on 334 reviewedGHSAAdvsioriesmiss-
ing their VFC. Top-N recall is calculated on the 308 advisories
VFCFinder found inside and outside of the Top-5.

GHSA Breakdown

Total Reviewed 334
Found in Top-5 296 (88.6%)
Found outside Top-5 12 (3.59%)
Could Not Find 25 (7.78%)

Top-N Recall for Found VFCs

Top-1 81.2%
Top-2 88.9%
Top-3 93.5%
Top-5 96.1%

project links on GitHub using the GHSA package name (e.g., Source
Code/Issues/Homepage). This method yielded source code links
for approximately 1,092 GHSA advisories missing VFCs. However,
1,037 (16.8%) GHSA advisories continue to lack source code links.
We have submitted this data to GitHub.

In total, 5,122 GHSA advisories still lacked VFC links. During
repository cloning, 239 (3.88%) did not use tags to define the commit
window (Section 3). Not all advisories have been fixed; 1,537 (24.9%)
do not contain fixed versions, which would not have a VFC. Three
(0.05%) advisories did not contain a previous vulnerable version.
Ultimately, VFCFinder could be used on 3,343 advisories.

6.2 Missing Link Results
Table 7 provides the results of VFCFinder applied to GHSAs missing
VFCs. We assessed VFCFinder using a random 10% (334) subsample
of 3,343 advisories. We manually validated the results of VFCFinder
to confirm the correct VFC was found.

In total, 334 advisories and VFCFinder’s output underwent man-
ual review. VFCFinder’s output identified the VFC for 296 (88.6%)
advisories. For 12 (3.59%) cases, the patch link was found but not
among VFCFinder’s Top-5. In 25 (7.78%) cases, the patch link wasn’t
found in the reported fixed versions, leading us to assume these 25
advisories may have incorrect fixed version data. For VFCFinder’s
Top-N recall calculation, we considered advisories where the VFC
was found or wasn’t in the Top-5, resulting in 308 advisories. The
Top-N recall results were as follows: 81.2% at Top-1, 88.9% at Top-2,
93.5% at Top-3, and 96.1% at Top-5.

Community Contribution: As a valuable contribution to the
community, we submitted all found patch links (308) back to GitHub.
The GHSA database welcomes community enhancements to ad-
visories [18]. The security team at GitHub independently reviews
the suggested updates to determine if the security advisory will
be updated. As discussed in Section 2, advisories can list multiple
versions where a vulnerability is fixed. In response to this, for each
advisory that mentioned multiple fixed versions, we submitted
a VFC corresponding to each of those versions. All 308 patches
submitted to GitHub were accepted.

Takeaway: The recall of our empirical study of missing
VFCs matches the evaluation in Section 5, demonstrating gen-
eralizability. The GitHub security team reviewed and merged
all 308 VFCs into GHSA.



6.3 Ethics and Disclosure
Before submitting VFC links to the GHSA database, we consulted
our Institutional Review Board (IRB), which confirmed that analyz-
ing public open-source software projects for vulnerabilities does
not require IRB approval as it doesn’t involve human subject re-
search. The data is public, and our work aims to improve the quality
of security advisories for the public.

Initially, we contacted GitHub to see if they would be interested
in VFC data. After confirming GitHub’s interest in the VFC data and
agreeing to manage about 300 updates, we limited our submissions
to roughly ten per day to prevent overwhelming the team. Due to
the amount of data, the GitHub security team recommended we
update through their manual advisory update process, allowing the
team to also thoroughly validate and approve our VFC links.

7 THREATS TO VALIDITY
Noisy Data: There is potential for noisy labels within our ground
truth data. While we randomly sampled our non-VFC commits to
confirm the absence of VFCs from within the set, some could be
within the remaining data set. We also trust the original stakehold-
ers provided the correct VFC links in the security advisories. We
note that prior research has reported errors in NVD data [11, 32].

Unseen Vulnerability Types: VFCFinder cannot label vulner-
ability types it has not seen. For example, we had no instances of
“Vulnerable and Outdated Components" in our training data.

Advisories without Fixed Versions: VFCFinder works with
advisories that have fixed versions. Of the total GHSA dataset, 1,537
(15.7%) advisories do not contain fixed versions. These advisories
are assumed not to have been fixed and do not contain a VFC.

Silent Vulnerability Fixes: VFCFinder only works if a known
security advisory exists for a project. The purpose of VFCFinder is
to pair those known security advisories with their associated VFC.
Therefore, the task to find silent vulnerability fixes [12, 29, 49, 61, 62]
is significantly different than VFCFinder.

8 RELATEDWORK
Vulnerability Fixing Commit Identification: While VFCFinder
incorporates identifying a VFC, simply identifying the VFC does
not match it to a security advisory. Therefore, the overall task of
VFCFinder is significantly different from identifying if a commit
fixed an arbitrary vulnerability. However, we extend prior work of
identifying vulnerability-fixing commits by evaluating CodeBERT
across nine different programming languages, whereas existing
works have mainly concentrated on C/C++, Python, or Java. The
overall performance of the following prior work for identifying
VFCs is equivalent to ours, ranging in an F1 score of around 90%.

Earlier work has used stack-based classifiers [66], support vec-
tor machine models [33, 45, 46], and voting algorithms [55] to
detect security patches. Zhou et al. [63] create separate classifiers
(including CodeBERT) for commit messages and code changes,
subsequently integrating the results through a stacking ensemble
technique. Building on this foundation, Nguyen et al. [33] incor-
porated commit issues as an additional feature for classification.
Vulcurator [30] extended the model using CodeBERT to analyze
messages, issues, and code diffs. Vulcurator reported up to 87% on
a Python dataset. Hong et al. [22] consider multiple data sources,

including issue trackers like Bugzilla, GitHub projects, and Stack
Overflow. TMVDPatch [64] reported a 90% F1 score on a single
C/++ dataset using an attention-based BLSTM model that relies on
the commit message and the patch to identify VFCs. Midas [31]
introduced a multi-granularity approach, focusing exclusively on
code to identify vulnerability fixes at line, hunk, and file levels.
Zhou et al. [61] introduced CoLeFunDa to identify vulnerability
fixes at the function level with an AUC of 80% only on a Java dataset.
VFFinder [29] introduced an AST graph-based approach for iden-
tifying VFCs based only on code changes. Evaluating against 507
C/C++ projects, VFFinder reported an F1 score of 69%. Zhou et
al. [65] introduced CCBERT, a new transformer-based pre-trained
model to represent code changes. Within a downstream task of
identifying bug-fixing commits, they reported a 91.8% F1 score on a
set of Linux bug-fixing patches using just the code. Zuo et al. [68],
using a transformer-based architecture relying only on the commit
message, reported an F1 score of 89.1% across C/C++ projects with
commit patches from NVD. In parallel, Sun et al. [49] confirmed
that Codebert with commit messages and code changes provided
the best performance in terms of VFC prediction.

Vulnerability Fixing Commit Type: Related to our work has
been identifying the type of vulnerability fixed during a commit,
but the vast majority has been identifying CWE types for longer
descriptions in security advisories [2, 10, 28, 37, 44]. TreeVul [38]
uses a CodeBERT to embed the removed and added code during a
git diff, which is then fed into a hierarchical Bi-LSTM encoder to
predict the CWE type of a VFC. TreeVul reported a 72% weighted F1
score at the depth-3 CWE prediction and up to an 85% F1 score at the
depth-1 CWE prediction on 6,541 commits from 1,560 GitHub OSS
projects. In addition, CoLeFunDa [61] can categorize the correct
CWE type with an F1 score of 50% and AUC of 85%. Contrastingly,
DAA [12] took a non-ML approach for VFC identification, which,
while capable of producing corresponding CWE types, suffers from
recall issues due to reliance on Static Application Security Testing
tools. While TreeVul, CoLeFunDa, and DAA are similar to a feature
of our work, we predict by the OWASP Top 10.

9 CONCLUSION
The completeness of security advisories is crucial for downstream
users, yet about 63% of GitHub Security Advisories lack their patch
link. This paper presents VFCFinder, a tool designed to perform
security advisory to VFC matching. VFCFinder achieved a recall
of 96.6% in identifying the correct VFC within five commits. Our
approach demonstrates that a streamlined pipeline and concise fea-
tures offer superior generalization over complex systems. Applied
to GHSA advisories lacking VFCs, VFCFinder found 96.1% of the
VFCs within the Top-5. GHSA has accepted and merged over 300
of our submitted VFCs.
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A APPENDIX
A.1 Process for identifying the missing source

code links
Each ecosystem contains an online registry (e.g., PyPI -> https:
//pypi.org/). Using the package name from a GHSA Advisory, we
can do a direct lookup in the respective online registry for the
package project links (e.g., Source Code/Issues/Homepage) that
point to GitHub.

PyPI Example:

(1) Example GHSA-ID: GHSA-m6xf-fq7q-8743
(2) We extract package name: bleach
(3) We then try to parse the project links on the respective online

registry: https://pypi.org/project/bleach/
(4) We extract the homepage from the online registry -> https:

//github.com/mozilla/bleach
(5) We then return the link that points to a GitHub Repository

Maven Example: Maven based projects were not so simple. The
following steps were followed to identify Maven source code links:

(1) First, we search for the project using the following API (https:
//search.maven.org/solrsearch/select?q={groupId}+AND+a:
{artifactId}&rows=10&wt=json)
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(2) We extract the package name from the GHSA object: org.
springframework.security:spring-security-core

(3) We search using the following API: https://search.maven.o
rg/solrsearch/select?q=org.springframework.security+AN
D+a:spring-security-core&rows=10&wt=json

(4) We match based on the groupId and artifactID parsed from
the package name.

(5) We pull the latest version of the package from the. Example
response:

(a) Latest Version: 6.0.1
(6) We pull the POMfile for the latest version using the following

API https://search.maven.org/remotecontent?filepath=org/
springframework/security/spring-security-core/6.0.1/sprin
g-security-core-6.0.1.pom

(7) We then search the POM file for the SCM tag that points to
a GitHub repository:

(a) <connection>scm:git:git://github.com/spring-projects/spring-
security.git</connection>

Our process obtained 56% of the missing source code links. We
provided the appropriate source code to the GitHub security team
to pull these links for their security advisories.
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