
HideM: Protecting the Contents of Userspace Memory in
the Face of Disclosure Vulnerabilities ⇤

Jason Gionta

NC State University

jjgionta@ncsu.edu

William Enck

NC State University

whenck@ncsu.edu

Peng Ning

NC State University

pning@ncsu.edu

ABSTRACT
Memory disclosure vulnerabilities have become a common
component for enabling reliable exploitation of systems by
leaking the contents of executable data. Previous research
towards protecting executable data from disclosure has failed
to gain popularity due to large performance penalties and
required architectural changes. Other research has focused
on protecting application data but fails to consider a vul-
nerable application that leaks its own executable data.

In this paper we present HideM, a practical system for pro-
tecting against memory disclosures in contemporary com-
modity systems. HideM addresses limitations in existing ad-
vanced security protections (e.g., fine-grained ASLR, CFI)
wherein an adversary discloses executable data from mem-
ory, reasons about protection weaknesses, and builds cor-
responding exploits. HideM uses the split-TLB architec-
ture, commonly found in CPUs, to enable fine-grained exe-
cute and read permission on memory. HideM enforces fine-
grained permission based on policy generated from binary
structure thus enabling protection of Commercial-O↵-The-
Shelf (COTS) binaries. In our evaluation of HideM, we find
application overhead ranges from a 6.5% increase to a 2%
reduction in runtime and observe runtime memory overhead
ranging from 0.04% to 25%. HideM requires adversaries to
guess ROP gadget locations making exploitation unreliable.
We find adversaries have less than a 16% chance of correctly
guessing a single gadget across all 28 evaluated applications.
Thus, HideM is a practical system for protecting vulnerable
applications which leak executable data.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized access;
D.4.6 [Operating System]: Security and Protection—Inf-
ormation Flow Controls; Access Controls

⇤This work is supported by U.S. National Science Founda-
tion (NSF) under grant CNS-1330553.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.

Copyright

c� 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.

http://dx.doi.org/10.1145/2699026.2699107

General Terms
Security

Keywords
return-oriented programming; information leaks; memory
disclosure exploits; code reuse attacks; memory protection

1. INTRODUCTION
Protecting memory is a critical component to ensuring the

security of a system. Process memory contains many types
of sensitive information including code, keys, and other se-
crets. Contemporary computer hardware contains page level
memory protections preventing reads and writes. These pro-
tections provide isolation between address spaces (e.g. user
and kernel-space).

Recent processor extensions seek to protect memory within
an address space. For example, the no-execute (NX) protec-
tion bit prevents execution of specific memory pages (e.g.,
stacks). Unfortunately, techniques such as Return Oriented
Programming (ROP) allow successful exploitation without
executing these memory pages [23].

A common requirement for modern exploits to bypass
system protections (e.g., ASLR, DEP) is reading memory.
Specifically, a memory disclosure vulnerability is used to dis-
close code locations and values to ensure exploit reliability
and correctness [17]. Memory disclosure vulnerabilities that
leak code instructions are fundamentally possible because
execute permission always implies read permission on com-
modity hardware. As a result, advanced protections such as
fine-grained ASLR [14, 34] and Control Flow Integrity [2,
37] can be bypassed leading to exploitation [24, 10].

Execute-only memory is a well defined and understood
technique for protecting the contents of memory. Multics, a
classical secure system design and architecture, included an
execute-only bit for memory pages [7]. XoM implemented
execute-only memory by encrypting executable data and
only decrypting on instruction loads. XoM required a cus-
tom processor architecture and su↵ered from poor perfor-
mance making adoption di�cult. Regardless, both approaches
are too coarse grained in their protections.

We seek to broadly protect critical contents of userspace
memory by leveraging a concept we call code hiding. Code
hiding is inspired by PaX [28] for enabling no-execute mem-
ory without hardware extensions, as well as by advanced
rootkit hiding that prevents forensic analysis [25]. We pro-
pose code hiding to protect userspace memory from being
read by a malicious or vulnerable process. Code hiding is

enabled using the unique features of the split Translation
Lookaside Bu↵er (TLB) architecture to configure reads of
executable pages on contemporary commodity hardware.

In this paper we propose HideM, a system that disallows
userspace code from arbitrarily reading critical data in its
own memory address space. HideM is built on code hiding
to prevent reading executable data of existing legacy and
COTS binaries. We observe the majority of code does not
need to be read but only executed. We propose code reading
policy as an approach to enforce fine grained read access on
executable pages. Applications can also leverage HideM to
protect sensitive data by encoding critical data in executable
pages. The design of HideM allows integration with existing
advanced security techniques (e.g., fine-grained ASLR [34,
14] and CFI approaches [37]). HideM ensures memory dis-
closure vulnerabilities cannot be used to find ROP gadgets to
enable reliable exploitation, discover vulnerabilities in mem-
ory, and enable some forms of data leakage. Furthermore,
HideM is generic and can be enabled on existing commer-
cial hardware with minimal performance overhead to protect
memory against disclosures.

Code reading policies are created based on data that may
be legitimately read by code. For example, the GNU GCC
compiler will embed exception handling data in code pages
as an .eh frame section. Policies are generated based on
binary structure (e.g., read-only data in executable pages)
and code/function symbols. To identify what code needs
to be read as data, we perform binary analysis to recover
code symbols from executable sections and identify data in
code. We perform minimal manual analysis to verify the
identification of data in code as correctly identifying all data
in code is provably undecidable [35]

HideM uses code reading policies to divide read data from
executable data (e.g., machine code) on executable pages.
Shadow memory pages are created containing only required
readable data or executable data. The OS kernel config-
ures the hardware split-TLB to hide executable data from
userspace read access. As a result, HideM can transpar-
ently apply code reading policies to commercial o↵-the-shelf
(COTS) binaries.

In this paper, we make the following contributions:

• We design and implement HideM for protecting against
the broader threat of information disclosure of process
memory. HideM leverages code hiding as a new secu-
rity mechanism to provide fine-grained userspace read
access without changing current commodity hardware.

• We propose code reading policy to automatically con-
figure userspace reads of binary executable pages. Pol-
icy is enforced at runtime and protects executable data
vulnerable to memory disclosure.

• We evaluate compatibility, performance, and security
impact of HideM. We find that HideM has limited im-
pact on performance. The runtime increase ranges
from 6.5% to a 2% reduction. We observe working
memory increases ranging from 0.04% to 25%. Fur-
thermore, HideM raises the level of security for pro-
tected binaries by reducing the probability of reliable
exploit. We find an adversary has a less than 16%
chance of guessing a single valid ROP gadget.

The remainder of this paper is as follows. Section 2 has
a background on memory access and memory disclosures.
Section 3 provides an overview, Section 4 discusses design,

and Section 5 provides implementation details. Section 6
evaluates HideM. Section 7 discusses limitations and future
work. Section 8 has related work. Section 9 concludes.

2. BACKGROUND AND MOTIVATION
We briefly provide background and motivation for HideM.

First, we discuss memory accesses using hardware caching
of virtual to physical mappings. Then, we motivate HideM
looking at the threat of memory disclosure on existing secu-
rity protections.

2.1 Memory Access via TLB
The Translation Lookaside Bu↵er (TLB) is a cache used

by processors to reduce the cost of continuous memory ac-
cesses. The TLB stores mappings from page numbers (i.e.,
upper bits of a linear/virtual address) to physical frame
(i.e., upper bits of physical address) along with page sta-
tus and permissions. The TLB obviates the need for the
system Memory Management Unit to walk page-tables for
each memory access. The TLB also assists in MMU transla-
tions (i.e., walking pages-tables) by adding entries for inter-
mediate page-table values (i.e., top level page directories).

Operations of TLB: TLB operations for managing en-
tries are architecture specific. For example, SPARC imple-
ments TLB in software and thus the OS manages the TLB
by adding and evicting entries [36]. On the other hand,
x86 and ARM architectures use both hardware and soft-
ware for TLB management [22, 13]. Specifically, entries are
only added by hardware after the MMU walks page-tables.
Entries are flushed (i.e., evicted) by both hardware events
such as task-switch or using privileged CPU instructions.

Split-TLB Architecture: Processors commonly con-
tain two TLBs, a DTLB to handle data accesses and an
ITLB to handle instruction fetches. This split architecture
allows for better locality of accessed memory [18]. In normal
execution, the DTLB and ITLB are synchronized and con-
tain the same values for a given address. TLB flushes of a
specific address will remove associated entries from both the
ITLB and DTLB. However, entries are added based on the
type of CPU access. If an instruction is executed on a page,
an ITLB entry is added. If memory is read, for example via
a mov instruction, a DTLB entry is added.

2.2 Memory Disclosure
Memory disclosures are a subset of information leakage

vulnerabilities in which an adversary gains unauthorized ac-
cess to read raw memory. An adversary can then leak sen-
sitive information such as encryption keys, passwords, or
executable data. Using leaked executable code and associ-
ated addresses, an adversary can build reliable ROP based
exploits in an automatic and just-in-time fashion [24]. Mem-
ory disclosures have also been used in bypassing CFI en-
forcement. Goktas et al. showed relaxed CFI code transfer
enforcement can lead to ROP based exploitation [10]. The
authors’ exploit relied on a memory disclosure vulnerability
to find function call and return stubs for trampolines.

There is a growing need to protect systems against mem-
ory disclosures; however existing research is limited. In inde-
pendent work, Backes et al. [4] seek to provide ”Execute Not
Read” (XnR) permissions on code pages. Unfortunately, the
proposed approach allows reading of the currently executing

Process
Memory

Code Page

pushl %ebp
movl %esp, %ebp
subl $8, %esp

00000000000000
00000000000000
00000000000000

execute

read

Code Page

Read Page

Figure 1: High level view of memory hiding shows
di↵erent memory values based on memory access
type (i.e., read or execute).

code page (and optionally surrounding pages within a win-
dow). These pages can be identified by return addresses on
the stack and therefore can used in a JITROP attack [24].
Furthermore, their approach does not address allowing le-
gitimate code reads present in PIE and C++ binaries. Our
proposed approach provides finer-grained protection to al-
low legitimate reads of code page.

3. OVERVIEW
The goal of HideM is to protect binaries from leaking ex-

ecutable data from arbitrary reads by userspace code. In
turn, HideM thwarts memory disclosure vulnerabilities and
JIT-ROP style attacks described in previous work [24, 17,
10]. At a high level, HideM simply displays di↵erent con-
tents of memory for di↵erent CPU operations. Figure 1 de-
picts the basic protection of HideM wherein a single memory
address provides di↵erent content based on read or execute
operations. Specifically, read operations will access read
pages and instruction fetches will access code pages. As
a result, memory containing executable data that is hidden
cannot be read by processes or other traditional memory
reading operations. Similarly, hidden read-only data (e.g.,
jump tables, binary headers) on executable pages can no
longer be used for execution.

The properties of HideM harden the security of existing
systems and provide new opportunities to protect data in
memory. However, enabling seamless memory protections
provided by HideM faces challenges:

C-1: Ability to execute memory implicitly allows read access.
Existing commodity hardware architectures such as
x86 and ARM do not provide distinctions between read
and execute permission. Executable memory implic-
itly contains read permissions in these architectures.
As a result, all code can be read as data. Memory hid-
ing must di↵erentiate memory accesses into read and
execute operations.

C-2: Executable pages of binaries often contain read-only
data that is read during execution. For example, GNU
GCC references immediate values in code as memory
addresses of functions. We must ensure that we al-
low legitimate reads of such data for correct execu-
tion. This requires fine-grained read-access at sub-
page granularity.

C-3: Support for legacy and commercial-o↵-the-self binaries
without code symbols. We must determine what data
needs to be read by code to build code reading policies.
Symbols can be added at compile time with access to
source code but often removed in final binaries.

To overcome the above challenges, we use a combination of
binary analysis (C-3), OS kernel memory management (C-
2), and hardware memory features (C-1). Specifically, Hi-
deM performs lightweight data analysis to identify read data
(e.g. jump-tables, or embedded data) and symbols for data
residing in executable pages (C-3). At binary load time,
HideM generates a read policy based on identified symbols
and in-memory binary layout to allow code to read legiti-
mate data from memory (C-2). The policy is then enforced
on memory access through OS kernel hardware configuration
using the memory address caching of TLBs (C-1).

We identify that code pages often contain read-only data
and function symbols that are read during legitimate execu-
tion (C-2). Thus, memory hiding must allow for selective
reads of data on code pages. HideM generates a read policy
that allows for such data to be legitimately read by code.
The policy is generated using binary and symbol informa-
tion to create a shadow page that contains necessary data for
correct execution. The policy is enforced by adding a page
of read-only data to the DTLB and a page of instructions to
the ITLB. When the DTLB or ITLB is not configured, all
page accesses are trapped allowing TLB reconfiguration.

The read policy is generated based on binary section in-
formation along with symbols and read-only data in exe-
cutable sections. Symbols are often found as part of relo-
cation information. Unfortunately, many compilers such as
GNU GCC and LLVM remove relocation information by de-
fault and thus COTS binary will not have symbols for code
sections (C-3). We reconstruct partial relocation informa-
tion to identify symbols in code sections using static binary
data analysis. Specifically, we log the locations of all pos-
sible immediate values in code sections that may point to
code addresses. These symbols represent the expected data
that may be read by code during execution. In a small num-
ber of cases, read-only data such as jump-tables are embed-
ded in executable data. We adapt algorithms and heuristics
based on previous research [37] to identify subject data in
code. After which, we manually verify data identified as am-
biguous because distinguishing data from code is a proven
undecidable problem [35]. Fortunately, our experience using
HideM indicated that ambiguous data only occurred in a few
libraries. We also use binary layout information to identify
compiler marked read-only data in code pages.

The general flow of HideM is shown in Figure 2. Prior
to execution, binaries are analyzed and data locations in
executable sections are added to the binary as non-loaded
data. Upon loading of the binary, the OS will identify the bi-
nary as protected by HideM, extract the data locations, and
identify load information (i.e., segment permissions, section
permission, o↵sets). Using this information, HideM builds
a read policy containing executable data regions and data
required to be read. On first load of a protected page into
memory (e.g., on page-fault), the policy is applied to the
faulting page by identifying the locations of read-only data,
executable data, and data locations on the page. The pol-
icy is then enforced through hardware configurations set
by the OS. Specifically, we leverage the concepts of de-
synchronizing the split ITLB/DTLB to seamlessly enforce
di↵erent memory permissions for di↵erent CPU operations
(i.e., instruction loads and memory reads) (C-1).

Assumptions: We assume that the system has a Memory
Management Unit (MMU) configured with virtual address-
ing and page-tables. This requirement e↵ectively enables

Pre-execution Execution

Legacy/COTS
Binary

Symbol
+

Data
Analysis

Legacy/COTS
Binary

Data
Locations

+

Load
Binary

Policy
Generation

Page
Fault

Data
Locations Read Policy Apply

Policy

Is Hidden
Page?

yes

no Continue
execution

Load
Information

Figure 2: HideM overview: Prior to execution, binaries are analyzed to identify data read by code. Locations
are used to create code reading policy. Access is enforced through page permissions and de-synchronized TLB.

TLB caching and virtual address permissions (e.g., supervi-
sory, non-writable, non-execute, non-present). We assume
that all code pages for hiding are non-writable. Our ap-
proach assumes the target hardware has a split-TLB archi-
tecture and does not have a unified TLB cache. We discuss
implications of unified TLB caches in Section 7.

Threat Model: We trust that the operating system ker-
nel is not modified or compromised. Attackers have access
to memory disclosure vulnerabilities that can read arbitrary
userspace virtual memory of a vulnerable process. However,
the attackers do not have prior knowledge about known lo-
cations of ROP gadgets in memory. Specifically, the attacker
cannot assume ROP gadget locations based on binary load
location.

4. HIDEM
Next, we discuss the details of HideM. In Section 4.1, we

discuss enforcing memory permissions based on memory ac-
cess types using TLB de-synchronization and OS kernel page
table management. In Section 4.2, we discuss generating
and enforcing a code reading policy. Section 4.3 discusses
HideM support for protecting userspace executable memory
allocations.

4.1 Memory Permissions Enforcement
HideM provides separate enforcement for reading and ex-

ecuting data in memory for commodity systems. Memory
permissions are enforced by (1) trapping all accesses to hid-
den memory (i.e., protected executable pages) by default,
and (2) configuring the ITLB and DTLB to allow access
to distinct physical pages for code and data respectively.
Once the TLB is configured, future memory accesses of the
page will not trap, allowing execution to continue. The
TLB needs reconfiguration after the TLB is cleared. Fig-
ure 3 shows an overview of enforcing memory protections.
The hardware traps hidden memory access based on vir-
tual memory page permissions. The page-fault handler is
then responsible for priming the TLB with correct virtual
to physical page mappings and permissions.

4.1.1 Permissions Management
By default, all accesses to hidden memory must be trapped

when the TLB is not configured. This ensures that the OS
kernel can configure memory permissions for hidden mem-
ory prior to access. This is similar to standard page-faults
whereby the OS kernel is responsible for correctly config-
uring page-table entries. However, the lack of distinction
between execute and read permissions in page-table struc-
tures limits the ability to handle hidden memory in hard-

ware. Instead, the OS must intervene on access to configure
permissions accordingly.

HideM uses page-faults as a gate to mediate all accesses
to hidden memory. To enable page-faults by default, the
user bit is cleared for page-table entries of protected mem-
ory e↵ectively marking the memory for supervisor access
only. This bit is commonly cleared for kernel pages and
is supported on all contemporary processors. As a result,
all accesses from userspace to the protected page will cause
a page-fault. Note that all HideM page-table entries by de-
fault have a physical address of a shared zero page. This
prevents any userspace controlled memory from being used
for privilege escalation.

Blocking all userspace accesses to hidden memory will not
allow for useful execution. To allow execution to continue,
the page-tables are temporarily configured with permissions
that allow memory access based on CPU operation of the
fault. For example, on an instruction fetch fault, HideM
temporarily maps the page-table entry to the physical ad-
dress of the code page and sets permission for userspace
access. Next, the TLBs are de-synchronized to allow execu-
tion, but block future reads. After de-synchronization, the
page-table entry that blocks access by default is restored.

4.1.2 TLB Priming and De-synchronization
The split-TLB architecture stores separate virtual address

to physical address mappings along with permissions for in-
struction loads and data reads. In traditional system oper-
ations, page-table configurations are added to TLB caches
upon memory access and instruction fetches. As a result,
when data from a code page is both read and executed, the
ITLB and DTLB values will be identical and thus synchro-
nized.

TLB de-synchronization occurs when the ITLB and DTLB
contain di↵erent entries for the same virtual address. The
implication of de-synchronization allows a single virtual ad-
dress access to result in disparate physical page accesses.
For example, Figure 3 depicts a de-synchronization where
an ITLB entry for virtual address 0x40000 maps to physi-
cal address 0x1000 and the DTLB has a mapping for vir-
tual address 0x40000 to physical address 0x4000. Unfortu-
nately, TLB operations for adding entries to the ITLB and
DTLB are limited to specific architectures as discussed in
Section 2.1. As a result, we must provide a way to add
entries to the ITLB and DTLB thereby enabling TLB de-
synchronization.

TLB priming is the process of configuring hardware to
add entries to either the ITLB or DTLB. The idea of TLB
priming uses the knowledge of how hardware adds entries to
respective caches. In the case of the ITLB, an entry is added

after the page-table is successfully walked by the configured
MMU to fetch an instruction. Similarly, a DTLB entry is
added upon walking the page-table for a read operation. A
successful page-table walk occurs when the physical page
for a page-table entry is present and contains the correct
permissions for the operation.

Priming of the TLB begins when a page-fault occurs on
access to hidden memory. The TLB entry for the address
is flushed for the virtual address accessed by the operation.
This is required to ensure there are no existing entries that
may contain wrong permissions (e.g., supervisory). Two
page-table entries are generated to allow userspace access.
One entry pertains to a read operation and the other to
an execute operation and thus the corresponding entries are
configured with the physical page addresses accordingly.

The page-tables of the faulted process are briefly updated
with the read page entry and the code page entry. When
the page-table is set with the read entry, the DTLB can be
primed by reading one byte from the page using the faulted
virtual address. Similarly, the ITLB is primed after the
code page is mapped in the page-tables and then execut-
ing an instruction in the page. On the first page-fault for a
hidden page, the executable data page is mapped to kernel
space and the page is searched to find a return gadget or
similar instruction (e.g., ret, jmp %reg). Searching for the
gadget using kernelspace addressing prevents priming the
DTLB with a userspace address to code page entry. HideM
then calls into the page at the gadget location using the
userspace virtual address of the return gadget. After prim-
ing, the page-table is updated to the original faulting value.
For processors that support SMEP and SMAP, protections
are disabled immediately before priming and enabled after
priming.

HideM primes both the ITLB and DTLB on each page-
fault. This prevents multiple page-faults from occurring by
code that reads data on the executable pages.

4.1.3 Non-Execute Optimization
For processors supporting non-execute (NX) page permis-

sions, HideM can use the NX bit to trap access instead of the
user bit. By default, HideM protected pages will all be non-
execute and mapped to the read page allowing applications
to read the data but not execute. Page-faults for priming
only occur on execution. This is beneficial in applications
containing large amounts of read-only data on executable
pages.

4.2 Code Reading Policy
De-synchronized TLBs allow page-level read and execute

policies to be set on memory. For example, HideM can en-
force execute-only memory wherein executable pages cannot
be read. Unfortunately, executable pages of existing bina-
ries often contain data that is read during execution. As a
result, execute-only pages are too broad for applying permis-
sions to binaries. Thus, HideM must allow selective reads of
executable pages to enable correct execution.

Code reading policy identifies the bytes on an executable
page that may be read as data. Executable pages read as
data will only contain required data for execution and not
the majority of code.

Data required to be read on executable pages can be cat-
egorized into two types:

DT-1 read-only data on executable pages (e.g., jump ta-
bles, exception handler data, binary headers)

DT-2 immediate values used for pointer arithmetic and func-
tion calls (e.g., symbol addresses, call o↵sets).

HideM instances of DT-1 andDT-2 data are represented as
byte ranges and o↵sets in executable pages. After all of the
data embed in executable pages is identified, the o↵sets and
ranges of identified data are added to the binary in a new
section which is processed during binary load time. Next, we
provide details for identifying DT-1 and DT-2 data using
binary structure and binary analysis.

4.2.1 Identifying DT-1 Data
DT-1 data can (1) reside outside executable data (e.g.,

binary headers) or (2) be embedded with executable data
(e.g., jump-tables). This data is never executed by a process
and thus can be removed from code pages used for execution.

Read-only DT-1 data outside of executable sections can
be identified using binary structure and metadata. For ex-
ample, ELF [6] binaries contain sections which identifies
contents and permissions. Sections are associated with seg-
ments which defines in-memory binary locations and per-
missions. Section permissions are disjoint from segments
allowing read-only sections to be part of an executable seg-
ment. GNU GCC default linker scripts combine read-only
sections (e.g., .rodata, .eh frame hdr, .eh frame, .rela.dyn)
with executable sections (e.g., .init, .plt, .text, .fini) into
one segment and thus the same physical pages of memory.
PE/COFF [31] read-only data is by default configured in
di↵erent pages simplifying policy generation on Windows.

Read-only DT-1 data embedded within executable sec-
tions is identified using binary analysis. We apply a modified
algorithm and heuristic presented by Zhang and Sekar [37] to
discover jump-tables and other non-standard data in code.
Specifically, we run the algorithm to first identify all control
flow locations and build a control flow graph. The algorithm
identifies jump-tables to determine all indirect control flow
locations required for enforcing control flow integrity. To
identify data that is not noted as jump tables, regions of
the binary not belonging to the generated call graph are
marked as unknown. These regions map to gaps and errors
in disassembly. Complete and correct identification of data
in code requires correct disassembly, which is a known un-
decidable problem [35]. Thus, we perform minimal manual
analysis of unknown regions to verify contents as data. Due
to space constraints, we only briefly describe the algorithm
for disassembly and analysis. We encourage the reader to
read previous work [37] for a more detailed discussion of the
algorithm.

4.2.2 Identifying DT-2 Data
DT-2 data is often encoded by linkers as relocation infor-

mation. Relocation data is commonly found in PE/COFF
binaries and used for enabling binary relocation and ASLR.
Thus, Windows binaries with ASLR enabled do not require
analysis to identify DT-2 data. However, ELF binaries of-
ten have relocation information stripped which makes gener-
ating a code reading policy from COTS binaries less feasible.

We look to recover relocation information by analyzing
binaries to identify potential symbol references. Unfortu-
nately, complete reconstruction of relocation information
from binaries is an unsolved problem [20]. However, we
identify that reconstructing DT-2 data is a confined prob-

Userspace Kernel Hardware
Process

Code Page

0x00000000

0xFFFFFFFF

0x00040000
Page
Fault

Protected
0x00041000

Prime TLBaccess Physical
Address

Virtual
Address

ITLB
0x40000 0x00001000

DTLB
0x40000 0x00004000

execute

read

callq 0x41B290
add $0x8,%rsp
retq

00F7DBFFFF000000000
0000000000000000000
0000000000000000000

Figure 3: Enforcing HideM protections: Page-faults trap all accesses to hidden pages. Then HideM configures
hardware to di↵erentiate reads and fetches. Access is allowed while TLB entries are not evicted.

lem with a number of assumptions and restrictions. As a
result, DT-2 data can be reconstructed from static binary
analysis.

DT-2 data assumes that memory being read as data will
reside in executable sections. This data is categorized into
two groups: (1) immediate values that represent addresses
located within an executable section, and (2) instruction
pointer relative o↵sets resolving to an executable section.

Prior to execution, DT-2 data is identified using binary
headers and analysis of the disassembled binary. Executable
sections and their ranges in virtual memory are found us-
ing binary headers and the base load address. The binary
is disassembled and searched for operations containing im-
mediate values and instruction relative pointer operations
that resolve to addresses located in code sections. For ex-
ample, a x86 call instruction will specify a relative address
to execute. The o↵sets used as part of the instruction must
be readable. Identifying DT-2 data is performed during
analysis to identify DT-1 data embeded in code.

4.2.3 Applying the Policy
HideM uses DT-1 and DT-2 data to divide executable

pages into read pages (i.e., containing only DT-1 and DT-2
data) and code pages (i.e., executable data which includes
DT-2 data). Once divided, these pages are used in TLB
priming and de-synchronization. TLB hardware then en-
forces the read and execute policies on these pages as de-
scribed in Section 4.1.2.

At binary load time, DT-1 and DT-2 data locations are
recorded and associated with virtual memory address al-
locations (e.g., Virtual Memory Areas for Linux, Virtual
Address Descriptors for Windows). The associated values
are then used to generate separate code-only and read-only
pages when an executable page is mapped into memory.

On a page-fault of a non-present executable page, DT-1
and DT-2 ranges are checked to determine if the executable
page has data that can be read by code. If the faulting page
does not have DT-1 and DT-2 ranges, the code page should
never be read as code and thus the DTLB is only primed
with a shared zeroed page. If the executable page contains
DT-1 or DT-2 ranges, then a read page is created and
the code page is modified with respect to DT-1 and DT-
2 ranges. Specifically, the DT-1 and DT-2 ranges from
the code page are copied to the read page. The code page
has DT-1 ranges filled with halt instructions. If the page
contains only DT-1 data, then the page is not modified and
a shared code-page filled with halt instructions is used to
prime the ITLB. By isolating DT-1 data and executable
data into separate pages, the policy prevents read-only data
on executable pages from being used as ROP gadgets.

4.2.4 Hardening HideM against ROP Exploits
DT-2 data must be both readable and executable. There-

fore, the sameDT-2 data values will appear in both the read
and the code shadow pages. This property allows an ad-
versary to potentially build ROP gadgets from DT-2 data.
Since DT-2 data is limited in size (4 bytes) and is non-
contiguous, the complexity of potential ROP gadgets is lim-
ited. However, HideM strives to make the discovery of DT-2
ROP gadgets as di�cult as possible.

As depicted in Figure 3, discovering DT-2 data in read
pages is trivial: all non-DT-2 data is zero. We harden Hi-
deM by replacing the zero data with random data. The
random data is created to match the form of DT-2 data.
Therefore the adversary must guess if a memory location
value is DT-2 data (i.e., executable) or not. An incorrect
guess will cause the program to crash.

HideM generates random, fake DT-2 data based on the
types of values that are stored in DT-2 data. Specifically,
DT-2 data is instruction pointer relative addresses or val-
ues. We fill read pages with false data that is relative to both
the location being filed and the executable sections for the
binary loaded at this location. We also randomly align this
data in the page to prevent guessing DT-2 data locations
based on alignment.

4.3 Protecting Userspace Allocated Executable
Memory

HideM generates code reading policy based on DT-1 and
DT-2 ranges from the kernel at process load time. However,
many applications load shared libraries from userspace (i.e.,
dynamic linking) or dynamically allocate executable mem-
ory at runtime (e.g., scripting). This presents a challenge,
since HideM does not have the context required generate
code reading policy for these executable pages.

To address this challenge, HideM provides an interface for
userspace applications to provide context required for pro-
tecting runtime allocated memory. Memory may be flagged
as HideM protected at allocation time or by changing protec-
tions. In e↵ect, this makes protected memory execute-only.
The userspace application can then provide DT-1 and DT-
2 ranges to generate the shadow pages for priming. Note
that, HideM only enforces protection after the memory has
been made non-writable. As a result, HideM can protect dy-
namically loaded libraries and other dynamically allocated
memory at runtime.

5. IMPLEMENTATION
Our HideM implementation uses a modified tool from pre-

vious research [37] to disassemble and parse binaries to iden-
tify DT-1 and DT-2 data. Specifically, we added support

for 64-bit binaries. DT-1 and DT-2 data locations are then
written back into the binary as a separate non-loaded sec-
tion. HideM protected binaries have their in-memory per-
missions of executable data modified with a new protec-
tion flag. Note that HideM converted binaries also work
on legacy systems.

We implemented HideM for Linux Kernel 3.10.12 with 64-
bit ELF support. Currently, we do not have 32-bit support,
however this is an engineering issue. We augment ELF bi-
nary loading in the kernel to extractDT-1 andDT-2 ranges
from the HideM enabled binaries. We also modify inter-
preter loading to protect HideM enabled dynamic loaders or
interpreters as discussed in Section 4.3. Code reading policy
is associated with binary load addresses and the provided
DT-1 and DT-2 ranges. False executable data used for
hardening against ROP exploits is generated using a hard-
ware random number generator.

To test support for shared libraries, we modified the LD-
loader for GLIB 2.18. The LD-loader tells the kernel which
binary and data locations to protect. In total we added 53
lines to enable HideM support of GLIB. We believe minimal
e↵ort would be required for porting other dynamic loaders
such as Apache’s mod so for Dynamic Shared Objects.

6. EMPIRICAL EVALUATION
We look to evaluate the practicality of adopting HideM

to existing platforms by evaluating three di↵erent aspects of
HideM. First, we evaluate HideM’s impact on system per-
formance and resources. Next, we evaluate HideM’s com-
patibility with COTS applications. Finally, we provide a
security evaluation to investigate the reduction of valid gad-
gets and the probability that an adversary can build a valid
ROP exploit for a HideM protected binary.

6.1 Experimental Setup
We performed our evaluation on an IBM LS22 blade server

with two Quad-Core AMD Opteron 2384 processors with
32GB of RAM running 64-bit Ubuntu 12.04.4 LTS. Each
core can store 1024 4KB page entries. This processor does
not support SMEP or SMAP and thus are not considered
in the performance evaluation. However, disabling and en-
abling SMEP and SMAP consists of twelve instructions in
total.

We acquired 28 di↵erent applications for evaluating Hi-
deM. These applications were chosen based on the dataset
provided in previous work [37]. 19 applications are part of
SpecCPU2006 and 9 applications are non-trivial common
Linux user applications. We built the SpecCPU2006 bench-
mark applications with a modified base AMD64 configura-
tion adding only “check md5=0” to prevent rebuilding ap-
plications that were converted to HideM. The complete list
of applications can be viewed in Figure 5.

We converted the 28 applications along with all required
shared libraries to enable HideM protection. In total, we
converted 442 binaries totaling 441MB. We identified that
3% (13 binaries) of 442 binaries contained data embedded in
code of which only libcrypto.so required manual analysis for
unknown data regions containing cryptographic algorithm
data.

Each binary is converted by identifying DT-1 and DT-2
ranges in executable pages and writing the information back
into the binary as a separate ELF section. We first converted
the HideM supported GLIB ld-loader and shared libraries.

We then converted all binaries required for running the 28
applications. To identify all required shared libraries, we ran
all 28 applications with LD DEBUG enabled for printing all
files opened by the loader. This provided a list of all loaded
binaries along with respective locations. We found that ldd
did not provide a list of all binaries loaded into memory. The
28 application binaries had their ELF interpreter modified
to load the HideM enabled GLIB ld-loader.

6.2 Performance Evaluation
HideM augments execution to enforce code reading policy.

In turn, HideM may impact the performance of a running
application when enforcing a de-synchronized TLB config-
uration. HideM also requires additional runtime memory
for generated shadow pages. Finally, converting binaries to
HideM support requires additional diskspace. Next, we eval-
uate HideM’s impact of each of these categories.

6.2.1 Runtime Overhead
To investigate HideM’s impact on runtime performance,

we observed the runtime overhead of the 19 converted Spec-
CPU2006 applications. The benchmark was run with the
command line options “–size=ref -noreportable –action=run
–nobuild”. This configuration constitutes a reportable run
with the number of run iterations set to three for each appli-
cation. However, we are required to set the “–noreportable”
switch to force execution of the benchmark when “–nobuild”
and “check md5=0” are set.

Figure 4 shows the percent overhead for each application
as reported by SpecCPU2006. The percent overhead ob-
served ranged from a 6.5% increase in runtime to a 2% de-
crease in runtime with an average increase of 1.49% and the
median increase of 0.51%.

Many applications have minimal runtime overhead and
even a performance increase. For example, h264ref has a
2% reduction in runtime. Low performance overhead and
increases can occur for three reasons. First, read policy gen-
eration is lazy only occurring on first access to a protected
page. Thus, the cost of generating a shadow page is only in-
curred after a page is accessed. The TLBs are then primed
on first page-fault. Second, TLB priming opportunistically
caches page mappings for both data and instructions on a
single fault. Intermediate page level entries are cached pre-
venting the need to walk the entire page-table. Standard
hardware page-table walks may require caching all interme-
diate values. Finally, execution paths that do not cross many
pages may never fill the TLB cache and thus may never be
re-primed. Applications exhibiting noticeable overhead such
as perlbench, soplex, and hmmer have TLB entries evicted
requiring re-priming.

6.2.2 Runtime Memory Overhead
HideM requires extra runtime memory for storing code

reading policy and generated shadow pages. Shadow pages
are generated under two conditions: (1) DT-1 data and
executable instructions reside on the same page or (2) DT-2
data resides on an executable page. In the worst case, HideM
will consume approximately twice the amount of executable
pages allocated for a given binary.

We recorded the maximum Resident Set Size (RSS) for
each tested application during our compatibility testing dis-
cussed in Section 6.3. We then ran each application with-
out HideM protections under the same conditions (i.e., same

Figure 4: Percent execution overhead for Spec-
Cpu2006 benchmarked applications.

kernel and modified GLIB) and workload recording the max-
imum observed RSS. Figure 5 shows the percent maximum
RSS memory overhead for each of the 28 applications. The
observed percent overhead increase ranges from 0.04% to
25% with an average of 4%. Applications exhibiting small
amounts of overhead allocate significant amounts of data
and or have tight execution flows which does not gener-
ate a significant number of shadow pages. We looked at
the amount of memory increase in MBs for the five applica-
tions with the largest percent increase: smplayer/24.41MB,
dumpcap/2.89MB, lyx/24.03MB, povray/3MB, lynx/4.09MB.
The large memory footprint of smplayer and lyx occurs be-
cause execution covered a significant number of code pages
across the loaded binaries.

6.2.3 Disk Overhead
To enable HideM support, binaries must provide DT-1

and DT-2 ranges residing in executable pages. This data
is added to binaries during the conversion process and thus
requires extra disk storage. We report the disk storage costs
for enabling HideM support of the converted binaries.

We calculated the percent di↵erence in on-disk binary
sizes for all 443 converted binaries. We observed the average
amount of data required to enable HideM support was 4.9%
and medium of 4.2%. The overhead of the 28 application
range 1% to 11.8%. Figure 5 shows the disk storage over-
head for each of the 28 application binaries. HideM has the
potential to leverage relocation information when available
thereby reducing this cost.

6.3 Compatibility
HideM makes modest changes to binary loading and ex-

ecution but should not interfere with correct execution. To
evaluate HideM’s correctness and compatibility with exist-
ing COTS applications, we ran the 9 non-trivial applications
under application specific workloads. The list of applications
tested along with workloads can be found in Table 1.

We also ran the 19 SpecCPU2006 benchmark applications
with the same configuration discussed in Section 6.2.1. Spec-
CPU2006 verified the expected output of each benchmark
run and did not report any errors.

6.4 Security Evaluation
Our goal is to determine the security advantage of protect-

ing binaries using HideM. The main way to exploit HideM
is to build ROP exploits using only gadgets found in DT-2

Table 1: Non-trivial applications evaluated with spe-
cific workloads to test compatibility with HideM.

Binary Name # Experiment
wireshark v1.6.7 Captured packets for 10 minutes, filtered

TCP on port 80
dumpcap v1.6.7 Captured packets for 10 minutes

gimp v2.6.12 Open JPEG, blur, enhanced, cropped
gedit v3.4.1 Opened 189KB file, copied, pasted, saved
lynx v2.8.8 Opened ncsu.edu website, navigated,

posted forms in search
python v2.7 Ran Volatility 2.3.1 pslist command on

1.0GB memory dump
emacs v23.3.1 Opened, edited, saved text files of size

200KB and 1MB
lyx v2.0.2 Opened classic thesis template, made mod-

ifications, compiled
smplayer v0.7.0 Played 10 minute 720p video

data. These gadgets reside on both read pages and code
pages. Gadgets found completely within DT-2 rages are
valid and can be used in an ROP exploit. In an unprotected
binary, all identified gadgets are valid. HideM obfuscates
DT-2 data by randomizing readable data not part of DT-1
or DT-2 ranges with values that mimic DT-2 data. Gad-
gets identified as part of this data are non-valid.

HideM provides security advantages in two ways. First,
HideM reduces the number of valid gadgets that can be used
to build exploits; thus, making exploit synthesis more di�-
cult. Second, HideM introduces non-valid gadgets into read-
able pages. As a result, an adversary must guess valid unique
gadgets and locations within DT-2 to enable successful ex-
ploit generation.

First, we identified all valid and non-valid gadgets in mem-
ory for both HideM protected binaries and non-protected
binaries for all 28 tested applications. To identify gadgets
we used two open source ROP gadget finder tools: ROP-
Gadget v4.0.4 [19] and RP++ v0.4 [1]. We chose these util-
ities for their flexibility, support of 64-bit architectures, and
their di↵erence in types of gadgets reported. ROPGadget re-
ports a limited set of expressive gadgets (e.g., pop %reg ret)
while RP++ is more aggressive providing many more less
expressive gadgets. These tools do not enable synthesizing
available gadgets to build exploits. Tools such as Q [21] do
synthesize gadgets to build exploits but do not support 64-
bit architectures. We dumped all reported gadgets from the
two utilities and identified valid and unique sets of gadgets.
Table 2 contains the raw gadget data for all 28 application
binaries, which will be used for calculating the probability
of exploitation. Gadget sizes searched for HideM protected
binaries were limited to a length of 4-bytes or less. This
insight comes from the observation that symbols compos-
ing DT-2 data are likely 4-bytes for 64-bit binaries and are
never contiguous. We use this data going forward to assess
the security advantages of HideM.

Reduction in Valid Gadgets: Without hardening Hi-
deM, DT-2 data stands out in memory. For example, Fig-
ure 3 shows a read page with a single valid DT-2 value.
HideM reduces the set of valid gadgets available for exploita-
tion. The set of valid unique gadgets in a HideM protected
binary is a subset of all valid unique gadgets for a non-
protected binary. Thus an adversary is more restricted when
synthesizing gadgets to build an exploit.

The total reduction in valid gadgets can be seen in Table 2
by comparing the “Orig.” unique gadgets to “Valid HideM”

Figure 5: Percent memory and disk overhead observed for each application.

unique gadgets. We found HideM reduces the number of
valid unique gadgets identified by ROPGadget ranging from
38.24-100% and for RP++ ranging from 99.3-99.92%. The
average reduction for ROPGadget is 77.33%. In general, the
reduction is lower for applications with a larger number of
DT-2 ranges, which leads to more potential gadgets.

Probability of Exploitation: Hardening HideM adds
false data to read pages and forces an adversary to guess the
locations of valid gadgets. As a result, an adversary cannot
simply identify DT-2 data to build an exploit. Thus, adver-
sarial exploitation of HideM protected binaries is based on
the probability of correctly choosing a series of valid gadgets.

We can reduce the problem of building a successful exploit
to modeling as“ordered sampling without replacement”. The
adversary chooses N di↵erent gadgets from a set of unique
gadgets (U

g

) at di↵erent address locations to build an ex-
ploit. There is a set of unique valid gadgets (U

vg

), which is
the subset of unique gadgets U

g

containing at least one valid
gadget. ChoosingN unique valid gadgets from U

vg

given the
set of all unique gadgets U

g

constitutes a successful exploit
and takes the standard form

UvgPN

UgPN

=
NY

n=1

⇣U
vg

� n� 1
U

g

� n� 1

⌘

where
x

P
N

= x!
(x�N)! is permutation notation.

In many cases, the same gadget is often found in multiple
locations of the binary. Thus, an adversary must also choose
a valid location residing in DT-2 ranges. S

g

is the number
of di↵erent address locations where a chosen unique gadget
exists, and S

vg

is the number of valid locations for the spe-
cific gadget. Thus, we modify the standard form to account
for Svg and Sg. The probability of successful exploitation
against HideM is

NY

n=1

⇣⇣U
vg

� n� 1
U

g

� n� 1

⌘⇣S
vg

S
g

⌘⌘

Svg and Sg are gadget specific and are dependent on the
frequency of duplicates.

We calculated the probability of exploitation for each of
the 28 application binaries protected by HideM. Svg and
Sg are gadget specific; thus, we substituted

Svg

Sg
with an

observed average for the distribution of valid gadgets to du-
plicate gadgets for each observed unique valid gadget. The
right column of Table 2 contains the probability when only
one valid gadget is required for exploitation (e.g., N=1). In
reality, exploits will require more than one gadget. Further-

Figure 6: Probability of exploit for 10 binaries with
highest probability using ROPGadget.

more, the expressiveness of gadgets size 4 or less bytes is
limited and thus it is likely that more gadgets are required
for exploitation [12]. All binaries have a probability of less
than 16% for an adversary to correctly choose only one valid
gadget. Figure 6 plots the probability of exploit (y-axis) for
the 10 most vulnerable binaries over the number of gadgets
in an exploit(x-axis). When the exploit requires 5 gadgets
(N=5), the probability of exploit approaches zero for all bi-
naries.

7. DISCUSSION
HideM does not support writable pages and thus does not

support self-modifying programs. Previous work has argued
that it is di�cult to support self-modifying code in split
memory architectures [9]. However, we believe that apply-
ing HideM with self-modifying code is possible by providing
updates to code reading policy after writing to a page.

HideM uses the split-TLB architecture to di↵erentiate mem-
ory reads from instruction fetches. Unfortunately, modern
processor architectures have begun to implement a unified
L2 TLB cache1 which does not di↵erentiate TLB entries
based on the type of access. As a result, any research or
technical approaches that rely on a split-TLB to di↵eren-
tiate memory access will not function on these processors.

1Unified L2 caches are standard beginning with 2008 In-
tel Nehalem architectures, ARM Cortex-A series, and AMD
Phenom II.

Table 2: ROP gadgets statistics for ROPGadget v4.0.4 and RP++ v0.4 utilities. “Orig.” contains the gadgets
for the original unprotected HideM binary, “Exec” contains the gadgets in the executable region of a HideM
protected binary, and“Valid” contains the gadgets that can be used for exploitation. “(A/U)”or“All/Unique”
represents the number of all gadgets and unique gadgets. Probability of exploit assumes only one specific
gadget is necessary for exploitation (N=1). In reality, successful exploitation will require N > 1.

ROPGadget RP++
Exploit Prob.

N=1

Binary
Name

Orig.
(A/U)

Exec
HideM
(A/U)

Valid
HideM
(A/U)

⇣
Svg

Sg

⌘ Orig.
(A/U)

Exec
HideM
(A/U)

Valid
HideM
(A/U)

⇣
Svg

Sg

⌘ ROP
Gadget

RP++

astar 954/31 141/20 3/3 .1698 75k/43k 88k/74k 97/44 .5963 2.55% 0.04%
bzip2 809/29 143/21 2/2 .1397 64k/39k 78k/65k 88/41 .55 1.33% 0.03%
dealII 6267/43 734/24 24/13 .0557 356k/154k 455k/372k 955/365 .5863 3.02% 0.06%

dumpcap 42/9 3/3 0/0 0.0 2372/1696 2270/1817 15/7 .7222 0.00% 0.28%
emacs 2163/31 357/27 18/11 .1637 117k/68k 233k/192k 591/204 .5765 6.67% 0.06%

gcc 3916/42 589/26 37/19 .0709 202k/100k 387k/316k 966/353 .5844 5.18% 0.07%
gedit 616/21 54/19 6/5 .5067 32k/17k 37k/31k 236/85 .7019 13.33% 0.2%
gimp 4630/34 519/21 45/17 .0869 25k/109k 353k/286k 1752/644 .7039 7.03% 0.16%

gobmk 1790/34 270/22 13/10 .111 146k/68k 171k/143k 264/100 .5142 5.04% 0.04%
h264ref 1300/35 226/20 1/1 .1429 94k/55k 141k/118k 124/50 .5348 0.71% 0.02%
hmmer 1326/34 178/20 2/1 .3333 89k/51k 117k/97k 155/62 .5774 1.67% 0.04%

lbm 806/32 127/20 1/1 .2000 63k/38k 76k/64k 63/31 .6236 1.00% 0.03%
libquantum 1122/31 183/23 3/3 .1101 72k/42k 95k/80k 97/45 .5702 1.44% 0.03%

lynx 1001/33 164/20 15/11 .1932 56k/32k 107k/89k 407/158 .671 10.63% 0.12%
lyx 7740/34 1387/28 236/21 .2124 570k/239k 789k/626k 6431/1671 .7514 15.94% 0.2%
mcf 804/30 118/22 2/2 .0734 69k/38k 73k/61k 79/35 .5722 0.67% 0.03%
milc 1010/32 154/20 7/7 .1353 72k/43k 91k/76k 105/50 .6403 4.74% 0.04%

namd 1551/32 231/20 3/3 .0972 87k/49k 141k/118k 123/63 .587 1.46% 0.03%
omnetpp 3112/42 399/23 17/10 .0937 205k/97k 236k/196k 548/205 .6088 4.08% 0.06%
perlbench 2473/41 376/23 10/5 .0948 147k/79k 230k/191k 387/144 .6210 2.06% 0.05%

povray 3254/40 409/21 8/8 .0569 160k/84k 243k/201k 292/106 .516 2.17% 0.03%
python 3464/41 286/21 20/13 .1066 177k/79k 192k/159k 459/181 .6149 6.60% 0.07%
sjeng 943/34 148/20 5/5 .1360 71k/43k 89k/74k 90/41 .5529 3.40% 0.03%

smplayer 1695/23 315/20 22/12 .1094 174k/74k 210k/172k 1154/349 .7453 6.56% 0.15%
soplex 2330/39 273/20 3/3 .0962 159k/85k 180k/150k 284/121 .5809 1.44% 0.05%
sphinx 1363/37 169/20 3/3 .1339 85k/49k 113k/94k 139/66 .6045 2.01% 0.04%

wireshark 1170/25 197/22 20/14 .1579 67k/37k 128k/106k 655/257 .7011 10.05% 0.17%
Xalan 7671/46 767/24 25/12 .0479 605k/267k 464k/376k 1167/450 .6064 2.40% 0.07%

That said, our use of a split-TLB is primarily an implemen-
tation decision that demonstrates how HideM can enforce
fine-grained code reading policies to prevent memory disclo-
sures. Future work will consider how to realize HideM with-
out a split-TLB. For example, virtualization is a promising
approach to enforce read policy [29]. Furthermore, HideM is
similar to PAX in that we seek an implementation without
CPU changes. We believe that HideM’s fine-grained code
reading policies are a powerful primitive that warrants in-
vestigation for inclusion into future CPU hardware designs
(i.e., similar to the NX bit).

Finally, HideM assumes that adversaries have no prior
knowledge of code protected in memory. This can be achieved
through fine-grained binary randomization techniques bet-
ter known as code diversity [15]. Fine-grained randomiza-
tion can be achieved in numerous ways through both binary
rewriting [34] or compiler based approaches [11]. The most
e�cient approaches show minimal overhead as small as 1-
2% [15].

8. RELATED WORK
PaX [28] introduced non-executable page support in soft-

ware using split-TLB architecture to enforce no-execute per-
missions on memory without support hardware. Modern
hardware can enforce non-executable permissions on pages.

Van Oorschot et al. introduced bypassing self-hashing
software checks via TLB de-synchronization [30]. Check-
sum software would read valid pages instead of modified ex-
ecutable pages thereby passing checks for modification. Sim-
ilarly, Shadow Walker introduced stealthy hiding of rootkits
through TLB de-synchronization [25]. These techniques pre-
vent analysis of specific executable data but cannot protect
the mechanism performing the de-synchronization.

Riley et al. used the split-TLB architecture to prevent
code injection attacks [18]. The authors used the split-TLB
to only allow memory writes to data pages. Injected code
would never fill a page added to the ITLB.

HideM has similarities to a Harvard architecture where
code and data are stored separately [3]. However, contempo-
rary commodity hardware platforms implement a von Neu-
mann memory architecture [32] where code and data are
accessible in the same address-space. HideM accesses code
and data in the same address-space only di↵erent data is
provided for di↵erent operations.

Multics introduced execute-only memory permissions [7].
Execute-only memory could not be read by users programs.
Modern binaries contain data on executable memory that
make execute-only memory di�cult to adopt in existing sys-
tem. HideM uses both execute and read permissions for a
given memory address to allow for seamless execution.

XoM encrypted executable memory which was only de-
crypted prior to instruction loads by a special hardware

processor [16]. Unfortunately, XoM su↵ers from poor per-
formance and requires significant architectural changes. Suh
et al. introduced modification to the XoM architecture to
address performance issues but requires hardware architec-
tural changes [26]. HideM is targeted at commodity systems
to protect vulnerable applications from leaking data.

Research has also focused on protecting the contents of ap-
plication data. Overshadow protected application data from
a malicious kernel using virtualization techniques to encrypt
userspace pages during kernel execution [5]. CleanOS used
taint-tracking of sensitive application data in mobile devices
to encrypt data that is not active [27]. VirtualGhost uses
SFI [33] and CFI [2] techniques to prevent a kernel from
reading application data [8]. All of these approaches do not
address applications which leak their own data.

9. CONCLUSION
In this paper we presented HideM, a practical system to

protect memory from leakage vulnerabilities on contempo-
rary commodity hardware. HideM uses the split-TLB archi-
tecture to enforce fine-grained execute and read permission
on memory by applying a code reading policy on memory
reads and execution. The policy is generated from binary
structure. HideM protects COTS and legacy binaries from
disclosing critical information about memory contents. Our
evaluation showed that HideM incurs limited overhead aver-
aging 1.49% increase in runtime and 4.47% increase in mem-
ory. Furthermore, HideM significantly reduces to probability
of exploitation. HideM is a practical system for enhancing
the security of non-trivial applications with limited impact
to performance.

10. REFERENCES
[1] 0vercl0k. Rp++ tool.

https://github.com/0vercl0k/rp.
[2] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay

Ligatti. Control-flow integrity. In Proceedings of the
12th ACM conference on Computer and
communications security, pages 340–353. ACM, 2005.

[3] Howard Aiken, AG Oettinger, and TC Bartee.
Proposed automatic calculating machine. Spectrum,
IEEE, 1(8):62–69, 1964.

[4] Michael Backes, Thorsten Holz, Benjamin Kollenda,
Philipp Koppe, Stefan Nürnberger, and Jannik Pewny.
You can run but you can’t read: Preventing disclosure
exploits in executable code. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and
Communications Security, pages 1342–1353. ACM,
2014.

[5] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis,
Pratap Subrahmanyam, Carl A Waldspurger, Dan
Boneh, Je↵rey Dwoskin, and Dan RK Ports.
Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating
systems. In ACM SIGOPS Operating Systems Review,
volume 42, pages 2–13. ACM, 2008.

[6] Tool Interface Standards Committee et al. Executable
and linkable format (ELF). Specification, Unix System
Laboratories, 2001.

[7] Fernando J Corbató and Victor A. Vyssotsky.
Introduction and overview of the multics system. In
Proceedings of the November 30–December 1, 1965,

fall joint computer conference, part I, pages 185–196.
ACM, 1965.

[8] John Criswell, Nathan Dautenhahn, and Vikram
Adve. Virtual Ghost: Protecting applications from
hostile operating systems. In Proceedings of the
nineteenth international conference on Architectural
support for programming languages and operating
systems, 2014.

[9] Jonathon T. Gi�n, Mihai Christodorescu, and Louis
Kruger. Strengthening software self-checksumming via
self-modifying code. In Computer Security
Applications Conference, 21st Annual, pages 10–pp.
IEEE, 2005.

[10] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Gerogios Portokalidis. Out of control: Overcoming
control-flow integrity. In Security and Privacy (SP),
2014 IEEE Symposium on, San Jose, CA, USA, May
2014. IEEE.

[11] Andrei Homescu, Steven Neisius, Per Larsen, Stefan
Brunthaler, and Michael Franz. Profile-guided
automated software diversity. In Proceedings of the
2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, pages
1–11, Washington, DC, USA, 2013. IEEE Computer
Society.

[12] Andrei Homescu, Michael Stewart, Per Larsen, Stefan
Brunthaler, and Michael Franz. Microgadgets: Size
does matter in turing-complete return-oriented
programming. In WOOT, pages 64–76, 2012.

[13] Intel. Intel architectures manual. Volume 3A: System
Programming Guide, Part, 1, 64.

[14] Chongkyung Kil, Jinsuk Jim, Christopher Bookholt,
Jun Xu, and Peng Ning. Address space layout
permutation (ASLP): Towards fine-grained
randomization of commodity software. In Computer
Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 339–348. IEEE, 2006.

[15] Per Larsen, Andrei Homescu, Stefan Brunthaler, and
Michael Franz. SoK: Automated software diversity. In
Proceedings of the 2014 IEEE Symposium on Security
and Privacy, SP ’14, pages 276–291, Washington, DC,
USA, 2014. IEEE Computer Society.

[16] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices,
35(11):168–177, 2000.

[17] MWR labs pwn2own 2013 write-up. MWR Labs.
https://labs.mwrinfosecurity.com/blog/2013/04/

19/mwr-labs-pwn2own-2013-write-up

---webkit-exploit/.
[18] Ryan Riley, Xuxian Jiang, and Dongyan Xu. An

architectural approach to preventing code injection
attacks. Dependable and Secure Computing, IEEE
Transactions on, 7(4):351–365, 2010.

[19] Jonathan Salwan. Ropgadget tool.
http://shell-storm.org/project/ROPgadget/.

[20] Prateek Saxena, R. Sekar, and Varun Puranik.
E�cient fine-grained binary instrumentationwith
applications to taint-tracking. In Proceedings of the 6th
annual IEEE/ACM international symposium on Code
generation and optimization, pages 74–83. ACM, 2008.

[21] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit hardening made easy. In USENIX
Security Symposium, 2011.

[22] David Seal. ARM architecture reference manual.
Pearson Education, 2001.

[23] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM conference
on Computer and communications security, pages
552–561. ACM, 2007.

[24] Kevin Z. Snow, Fabian Monrose, Lucas Davi,
Alexandra Dmitrienko, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Just-in-time code reuse: On the
e↵ectiveness of fine-grained address space layout
randomization. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, pages
574–588, Washington, DC, USA, 2013. IEEE
Computer Society.

[25] Sherri Sparks and Jamie Butler. Shadow walker:
Raising the bar for rootkit detection. Black Hat Japan,
pages 504–533, 2005.

[26] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. E�cient
memory integrity verification and encryption for
secure processors. In Proceedings of the 36th annual
IEEE/ACM International Symposium on
Microarchitecture, page 339. IEEE Computer Society,
2003.

[27] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish
Bijlani, Roxana Geambasu, and Nikhil Sarda. Cleanos:
Limiting mobile data exposure with idle eviction. In
Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI,
volume 12, 2012.

[28] PaX Team. Non executable data pages, 2004.

[29] Jacob Torrey. More: measurement of running
executables. In Proceedings of the 9th Annual Cyber
and Information Security Research Conference, pages
117–120. ACM, 2014.

[30] Paul C. Van Oorschot, Anil Somayaji, and Glenn
Wurster. Hardware-assisted circumvention of
self-hashing software tamper resistance. Dependable
and Secure Computing, IEEE Transactions on,
2(2):82–92, 2005.

[31] C+ Visual and Business Unit. Microsoft portable
executable and common object file format
specification, 2013.

[32] John Von Neumann. First draft of a report on the
edvac. IEEE Annals of the History of Computing,
15(4):27–75, 1993.

[33] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. E�cient software-based fault
isolation. In ACM SIGOPS Operating Systems Review,
volume 27, pages 203–216. ACM, 1994.

[34] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen,
and Zhiqiang Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 157–168. ACM,
2012.

[35] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat
Kantarcioglu, and Bhavani Thuraisingham.
Di↵erentiating code from data in x86 binaries. In
Machine Learning and Knowledge Discovery in
Databases, pages 522–536. Springer, 2011.

[36] David L Weaver and Tom Gremond. The SPARC
architecture manual. PTR Prentice Hall Englewood
Cli↵s, NJ 07632, 1994.

[37] Mingwei Zhang and R. Sekar. Control flow integrity
for COTS binaries. In USENIX Security Symposium,
2013.

