
ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services

Sigmund Albert Gorski III
North Carolina State University

sagorski@ncsu.edu

William Enck
North Carolina State University

whenck@ncsu.edu

ABSTRACT
Over the past decade, the security of the Android platform has
undergone significant scrutiny by both academic and industrial
researchers. This scrutiny has been largely directed towards third-
party applications and a few critical system interfaces, leaving
much of Android’s middleware unstudied. Building upon recent
efforts to more rigorously analyze authorization logic in Android’s
system services, we revisit the problem of permission re-deleg-
ation, but in the context of system service entry points. In this
paper, we propose the Android Re-delegation Finder (ARF) anal-
ysis framework for helping security analysts identify permission
re-delegation vulnerabilities within Android’s system services. ARF
analyzes an interconnected graph of entry points in system services,
deriving calling dependencies, annotating permission checks, and
identifying potentially vulnerable deputies that improperly expose
information or functionality to third-party applications. We apply
ARF to Android AOSP version 8.1.0 and find that it refines the set of
15,483 paths between entry points down to a manageable set of 490
paths. Upon manual inspection, we found that 170 paths improperly
exposed information or functionality, consisting of 86 vulnerable
deputies. Through this effort, we demonstrate the need for contin-
ued investigation of automated tools to analyze the authorization
logic within the Android middleware.

ACM Reference Format:
Sigmund Albert Gorski III and William Enck. 2019. ARF: Identifying Re-
Delegation Vulnerabilities in Android System Services. In 12th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks (WiSec ’19),
May 15–17, 2019, Miami, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3317549.3319725

1 INTRODUCTION
Android has become a dominant computing platform, running on
billions of devices world-wide. Android-based phones and Internet-
of-Things devices are used for entertainment, social networking,
finance, and business, among many other purposes. As security
vulnerabilities in the Android platform have widespread impact, it
has been the subject of a significant amount of security research
for the last decade [3, 35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3319725

At the core of Android’s security model is a permission frame-
work that prevents third-party applications from performing ma-
licious or privacy-invasive actions. Android’s permissions have
been well studied [12, 13, 41]. Moreover, research has studied the
usability of permission notifications [16, 17], contrasted permis-
sions with application descriptions [33, 34], and mapped applica-
tion programming interfaces (APIs) to the permissions that protect
them [2, 5, 6, 15]. More recently, research has used consistency
analysis to identify missing permission and related authorization
checks within system services [1, 23, 36].

Most relevant to this work is permission re-delegation [18]. Con-
ceptually, Android permissions are a form of capability. However,
permissions are primarily static capabilities and do not directly sup-
port delegation (with a few exceptions related to content provider
URIs). To date, existing work studying permission re-delegation has
focused on applications. For example, Davi et al. [8], Felt et al. [18],
and Quire [9], consider scenarios where a third-party application
with permission p creates an API that allows other third-party
applications without permission p to indirectly call a system API
protected with permission p. Woodpecker [24] and SEFA [38] ex-
tended this analysis to system applications (e.g., dialer, contacts)
and applications bundled with the firmware by an OEM.

The goal of this paper is to investigate permission re-deleg-
ation within core system services. Android’s APIs provide wrappers
around an inter-process communication (IPC) mechanism called
binder. Every system service exposes a broad set of binder remote
procedure call (RPC) interfaces, which recent literature terms entry
points. Not all entry points are accessible via APIs, but any third
party application can use reflection to attempt to call any entry
point directly (though permission checks or other authorization
checks may deny access). This paper studies permission re-deleg-
ation with respect to these entry points.

Prior work studying authorization checks in system services [1,
23, 36] only considered the logic of the first entry point called by
a third-party application. However, entry points commonly call
other entry points, creating complex inter-dependencies among
one another. These inter-dependencies reveal the challenge of static
capabilities. Consider the case where third party application a calls
entry point e1, which in turn calls entry point e2. Further, consider
the case where the authorization logic allows application a to call e1,
but not e2. In this case, e1 is privileged (i.e., a deputy) and therefore
can call e2. Sometimes this functionality is desired (e.g., e1 sanitizes
and endorses requests from application a before calling e2). How-
ever, other times e1 will improperly expose e2’s functionality to
application a. This improper exposure is the focus of this paper.

In this paper, we propose theAndroid Re-delegation Finder (ARF),
an analysis framework for identifying permission re-delegation
vulnerabilities within Android’s system services. ARF identifies

https://doi.org/10.1145/3317549.3319725
https://doi.org/10.1145/3317549.3319725

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

potentially vulnerable deputies by (1) constructing an intercon-
nected graph of entry points, (2) annotating entry points with their
permission checks, and (3) identifying when a deputy is less restric-
tive than another entry point. This list of potentially vulnerable
deputies is further refined by using a combination of insights to
eliminate instances that are highly unlikely to be vulnerabilities. In
doing so, ARF reduces the set of potentially vulnerable deputies to
a size reviewable via manual inspection.

We applied ARF to the Android system services in AOSP ver-
sion 8.1.0_r1 (API 27). Of the 15,483 entry point paths in the in-
terconnected graph, our analysis identified 490 requiring manual
inspection. The manual inspection identified 86 unique deputies
with at least one vulnerability. These vulnerabilities include system
state modification, information leaks, usability disruption, failures
to enforce multi-user separation, and the ability to keep the de-
vice from sleeping. Additionally, of the 86 vulnerable deputies, 14
were not related to re-delegation, but were weaknesses stemming
from missing authorization checks in the deputies. The discovered
vulnerabilities have been reported to Google.

The remainder of this paper proceeds as follows. Section 2 pro-
vides background and motivation. Section 3 overviews ARF. Sec-
tion 4 describes ARF’s design. Section 5 evaluates ARF and presents
our findings. Section 6 discusses limitations. Section 7 surveys re-
lated work. Section 8 concludes.

2 BACKGROUND AND MOTIVATION
While Android uses the Linux kernel, it differs significantly from
GNU/Linux distributions. The Android middleware is built using
the same four component abstractions as third-party applications:
activity, broadcast receiver, content provider, and service. This
paper focuses specifically on service components, which provide
daemon-like functionality. Interested readers are referred to prior
work [13] for detailed discussion of component functionality.

The core Android framework is built upon a set of more than 100
system services accessible to third-party apps (e.g., ActivityMana-
gerService, PackageManagerService, and LocationManagerService).
Each service defines a set of remote procedure call (RPC) interfaces,
which are invoked using Android’s binder inter-process commu-
nication (IPC) mechanism. At a low level, a process constructs a
parcel message that specifies the target service method identifier
(an integer) and the method arguments. On the server side, the
parcel is demultiplexed using the method identifier to invoke the
corresponding entry point in the service. This entry point can de-
termine the identity of the caller via system methods that return
contextual state (e.g., getCallingUid).

We build upon the ACMiner [23] program analysis framework,
which is designed to identify inconsistent authorization checks in
Android’s system services. ACMiner identifies service entry points
and constructs a call graph using Class Hierarchy Analysis (CHA).
It annotates each entry point with a flow-insensitive set of autho-
rization checks, which includes both permission checks and other
security-relevant authorization checks. To do so, ACMiner defines
two concepts: (1) a context query is a system method that either
encompasses authorization checks or returns data used in autho-
rization checks (e.g., checkPermission) and (2) a control predicate
is any conditional check that leads to an authorization denial. To

System Services

app code
(caller)

entry point e1
(deputy)

entry point e2
(target)

X

3rd Party App

Figure 1: The deputy loses the caller’s identity and may improperly
expose the target’s functionality to third-party applications.

1 void whitelistAppTemporarily(String package , long d,
2 int userId) {

3 StringBuilder reason = new StringBuilder("from:");
4 UserHandle.formatUid(reason , Binder.getCallingUid ());
5 mDeviceIdleController.addPowerSaveTempWhitelistApp(
6 package , d, userId , reason.toString ());
7 }

Figure 2: Entry point whitelistAppTemporarily performs no checks
before calling entry point addPowerSaveTempWhitelistApp, which re-
quires the system-level permission CHANGE_DEVICE_IDLE_TEMP_WHIT-
ELIST and is not accessible third-party applications.

determine which conditional checks are related to authorization
logic, ACMiner uses a semi-automated algorithm based on the tex-
tual values of strings, variable names, and method names. Readers
are referred to the ACMiner paper [23] for additional details. Of
specific note, ACMiner’s call graph analysis of an entry point stops
when it reaches another entry point, regardless of the service to
which the entry point belongs.
Problem Statement: Consider the scenario in Figure 1, where
application a calls a system service with entry point e1, which in
turn calls entry point e2 (which may or may not be in the same
service as e1). The authorization checks allow application a to di-
rectly call entry point e1 but not entry point e2. When the execution
enters entry point e1, the code can determine the calling identity
and use methods such as getCallingUid to evaluate authorization
checks (e.g., checkPermission). However, when execution transi-
tions from entry point e1 to entry point e2, application a’s calling
identity is lost (i.e., getCallingUid returns the UID of the system
service). Therefore, if the authorization checks of entry point e1
are not at least as restrictive as entry point e2, then information or
functionality may be improperly leaked to application a. However,
there is one caveat to this definition. Whenever entry point e1 and
entry point e2 share the same process (e.g., they are in the same
service), unless explicitly cleared by e1, the calling identity remains
the same for both entry points. Section 4.3.1 provides more details
of this problem as well as the solution ARF applies to filter out these
non-vulnerable paths.

In classic terms, entry point e1 in Figure 1 is a privileged deputy.
Deputies are necessary in systems without capabilities (or those
with only static capabilities). They act as gatekeepers that provide
sanity checks (i.e., endorsement) before calling security-sensitive
operations.While deputies are not inherently bad, they are often the
source of security problems (e.g., confused deputies [25]). The goal
of this paper is to identify deputies that improperly leak information
or functionality to third-party applications.
Motivating Example: Figure 2 provides a motivating example
identified by ARF. Entry points whitelistAppTemporarily and add-

PowerSaveTempWhitelistApp are in the services UsageStatsService
and DeviceIdleController respectively. As shown in the figure, whi-
telistAppTemporarily calls addPowerSaveTempWhitelistAppwithout

ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services WiSec ’19, May 15–17, 2019, Miami, FL, USA

performing any authorization checks or service-specific endorse-
ment. Entry point addPowerSaveTempWhitelistApp (definition not
shown) grants its callers the ability to access the network and
keep the device awake. It requires that the caller has the CHANGE-

_DEVICE_IDLE_TEMP_WHITELIST permission, which has the “system”
protection-level and is not grantable to third-party applications.
Therefore, a third-party application cannot call addPowerSaveTempW-
hitelistApp, but by calling whitelistAppTemporarily, it can achieve
the same functionality.

3 OVERVIEW
As described in Section 2, Android generally loses calling context
when one entry point (i.e., deputy) calls another entry point (i.e.,
target). The goal of this paper is to identify deputies that improperly
expose information or functionality from targets. As deputies are
not inherently insecure, ARF seeks to minimize the effort required
by a domain expert to identify improper re-delegation of access. To
do so, we must overcome the following research challenges.

• There are multiple ways to perform the same check. Android
frequently uses shortcuts to grant access to special callers.
Therefore, the deputy and target may semantically perform
the same checks but use different code.

• Android’s system service entry points are heavily intercon-
nected. There are tens of thousands of unique paths through
the entry points. We must reduce the set of potentially vul-
nerable paths to a reasonable size for domain expert review.

We address the first research challenge with the following key in-
sights. Android primarily uses permission checks to authorize third-
party applications. Therefore, when an entry point has permission
checks, the other authorization checks are present as shortcuts to
grant quick access for special callers. When an entry point does not
have permission checks, but does have other authorization checks,
it is only accessible to special callers (which are not third-party
applications). This insight allows ARF to primarily use permission
checks when detecting authorization re-delegation.

We address the second research challenge by observing that ARF
only needs to analyze single edges between entry points. For exam-
ple, consider the path e1 → e2 → e3. If ARF identifies that entry
point e1 is less restrictive than entry point e2, then a vulnerability
in entry point e1 may expose the information or functionality in
both entry point e2 and entry point e3. The vulnerability results
because all system entry points are privileged, and hence act as
deputies. Note that ARF must also check if entry point e2 is at
least as restrictive as e3 because, by definition, all entry points are
callable by third-party applications. Finally, ARF uses a number of
heuristics stemming from domain knowledge to eliminate paths
that would not contain re-delegation vulnerabilities.

Figure 3 overviews ARF’s five phases. (1) ARF obtains from AC-
Miner [23] the authorization checks and entry point interconnect-
ing relationships for all entry points in the system services. (2) ARF
then determines which of these entry points are callable by third-
party applications by identifying the accessible services. (3) Next,
ARF proceeds to identify all paths containing only two entry points
that represent potential permission re-delegation vulnerabilities.
These paths are output to be verified by a domain expert. (4) After
the verification, those paths identified as vulnerable are then fed

Finder

ACMiner

Path
Generation

Eliminate
NonVulner
able Paths

Permission Re
Delegation
Detection

ACMiner
Input

Restricting
Context
Queries

UserId
Regex

ChecksIntercon
nections

5

2 3 4

Identifying
Accessible
Services

Vulnerability
Verification Vulnerable

Paths

All Vulner
able Paths

1

ARF

Figure 3: ARF’s input data and analysis stages.

back into ARF as input. ARF is then run a second time to identify
all paths that represent potential permission re-delegation vulnera-
bilities and contain at least one of the vulnerable sub-paths from
(3). Once again these paths are output to be reviewed by a domain
expert. (5) The verified vulnerable paths from phases (3) and (4) are
then combined together as the final output of ARF.

4 DESIGN
The Android system is segmented into many different services that
provide binder-based entry points for returning information and
performing functionality. As described in Section 2, entry points are
highly inter-dependent resulting in many privileged deputies. This
design can introduce permission re-delegation vulnerabilities that
improperly expose information or functionality to unprivileged
third-party applications.

We designed ARF to detect permission re-delegation vulnera-
bilities in Android system services. ARF is constructed using the
Soot [28, 37] Java static analysis framework, as well as authoriza-
tion checks mined by ACMiner [23]. This section proceeds as fol-
lows: (§4.1) we formally define permission re-delegation and related
terms, (§4.2) we describe ARF’s detection methodology, and (§4.3)
we detail techniques to eliminate paths that are highly unlikely to
be re-delegation vulnerabilities.

4.1 Permission Re-Delegation
This section formally defines permission re-delegation and related
terms for their use in ARF. For these definitions, let:

E := set of all entry points in the Android system,
A := set of all possible permission (access) checks, and
A(·) := E → P(A), set of all permission checks for some entry

point, where P(A) is the power set of A.

Next, to formalize the definition of permission re-delegation we
define the key terms less restrictive and path.

Definition 1 (Less Restrictive). Entry point e1 is less restrictive than
e2 (e1 ⊑ e2) if A(e1) ⊉ A(e2) (i.e., e1 is missing one or more of the
permission checks of e2).

Definition 2 (Path). For entry points e1, e2 ∈ E, e1 , e2, there
is a path between e1 and e2 (e1 { e2) if either of the following
conditions hold: (1) the call graph of e1 directly invokes e2 or (2) the
call graph of e1 indirectly calls e2 by invoking entry point ei ∈ E,
ei , e1 and ei , e2, for which there is a path to e2 (ei { e2).

By definition, a path must contain at least two entry points but
may contain as many entry points as |E |. To differentiate these
situations, we will refer to the former as single edge paths and the

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

later as multiple edge paths.
Before defining permission re-delegation, we must formally de-

fine deputy and target.

Definition 3 (Deputy). An entry point e1 ∈ E is a deputy if ∃e2 ∈

E such that e1 , e2 and e1 { e2. Put plainly, a deputy is the first
entry point in a path.

Definition 4 (Target). An entry point e2 ∈ E is a target if ∃e1 ∈ E
such that e1 , e2 and e1 { e2. Put plainly, a target is the last entry
point in a path.

Finally, we can now define permission re-delegation.

Definition 5 (Permission Re-Delegation). If ∃e1, e2 ∈ E such that
e1 , e2, e1 { e2, and e1 ⊑ e2 then permission re-delegation occurs.
Put plainly, the deputy e1 reaches the target e2 without performing
all the permission checks of the target on the caller of the deputy,
permitting the caller of the deputy access to the target as if they
were the deputy.

4.2 Design Considerations
The following section outlines the technical considerations behind
the design of ARF. We begin by explaining why we target only
permission re-delegation instances that can be exploited by third-
party apps in Section 4.2.1. Then we detail how ARF identifies
services that are accessible to third-party apps in Section 4.2.2. In
Section 4.2.3, we discuss our reasoning for limiting ARF to the detec-
tion of permission re-delegation instances. Finally, in Section 4.2.4,
we explain how ARF reduces the number of reported permission
re-delegation instances a domain expert needs to review from the
tens of thousands to just a few thousand.

4.2.1 Third-Party Access. It is possible for permission re-delegation
to be exploited by both third-party applications and other system
entities (e.g., system applications). However, ARF focuses only on
permission re-delegation that can be exploited by third-party apps.
For an application or service to be considered part of the system,
it must be included as part of the signed system image at build
time. For the purposes of this paper, we assume these applications
are benign. Devices that include malicious applications directly
from the OEM are outside the scope of this paper and represent
larger security concerns that should be addressed via other means.
Finally, while permission re-delegation vulnerabilities in system
applications are possible, prior work [24, 38] proposes solutions.

4.2.2 Identifying Accessible Services. ARF uses ACMiner [23] to
identify all the services and their entry points that may be accessible
through binder IPC. Not every binder-capable service is accessible
to third-party applications. Only services that register with the
ServiceManager are accessible. As shown in Figure 3, ARF identifies
when system services register with the ServiceManager by stati-
cally analyzing the Android system using Soot [28, 37]. Only the
identified registered services are considered by ARF for possible
permission re-delegation vulnerabilities.

To identify the services registered with the ServiceManager, we
first used the fact that the ServiceManager contains two methods
with the name addService, whichmust be called to register a service.
We then examined the Android system source code to identify any
other methods that provide the same functionality (i.e., that wrap

the two core addService methods). This examination identified an
additional two methods in the SystemService class with the name
publishBinderService, which can be used to register a service with
the ServiceManager. Using this knowledge, ARF analyzes the system
service code to identify invocations of the four register methods.
From the arguments for each invoke statement, ARF retrieves two
values: (1) the String id for the service, which can be used to get the
service from the ServiceManager and (2) the reference to an object
representing the actual service. Next, ARF performs several inter-
procedural and intra-procedural analyses on the object references
and their definition statement(s) in an attempt to resolve the object
references to concrete types (i.e., the name of the class of the service
being registered).

For object references that cannot be resolved to concrete types,
ARF performs additional analysis on the methods used to retrieve
services from the ServiceManager, specifically getService and getS-

erviceOrThrow in the ServiceManager, getBinderService in the Syst-
emService class, and getService in the FrameworkFacade class. These
methods were discovered in a manner similar to the add services
methods. Using the String ids of the remaining unidentified object
references, ARF analyzes the system services code to identify all
statements that invoke the four get methods with one of the String
ids as an argument. As services retrieved from the ServiceManager

must be cast to the appropriate type before invoking any entry
points through binder IPC, ARF is able to infer the concrete type of
the remaining object references from the cast expressions used on
the object returned by the get methods.

4.2.3 Focusing on Permission Re-Delegation. As discussed in AC-
Miner [23], the Android system is complex and contains many
different types of authorization checks (e.g., those involving UID,
PID, GID, AppId, UserId, and package name) along with the standard
permission checks. However, these other authorization checks are
primarily used internally by Android system entities to allow access
by other system entities. Permission checks remain the dominant
way third-party apps are granted access to entry points that return
information or perform functionality.

Using this insight, ARF only needs to identify permission re-
delegation, a subset of the authorization re-delegation problem.
To perform this optimization, ARF only selects the permission
checks in the set of authorization checks identified by ACMiner for
each entry point. In other words, when evaluating a path for the
possibility of permission re-delegation, entry points without any
permission checks are treated as if they contain no authorization
checks and those with permission checks are treated as if the per-
mission checks are the only authorization checks. Note that entry
points with non-permission authorization checks may be targets
of re-delegation vulnerabilities not identified by ARF. Section 6
discusses this limitation in further detail.

Finally, ARF’s analysis focuses on deputies that only check per-
missions that can be granted to third-party applications (i.e., permis-
sions with a protection level of normal, dangerous, instant, runtime,
or pre23). A deputy that requires permissions not accessible to third-
party applications is unlikely to be accessible via other means. This
observation eliminates paths that are inaccessible to third-party
applicationss and thus do not constitute permission re-delegation.

ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services WiSec ’19, May 15–17, 2019, Miami, FL, USA

4.2.4 Multi-Edge Paths. ARF generates paths using the entry point
reaching relationships output by ACMiner [23]. These relationships
detail only the entry points directly calling other entry points (i.e.,
single edge paths). However, this information can be used to gener-
ate multiple edge paths, as multiple edge paths are a combination
of single edge paths.

Our goal when designing ARF was to detect as many instances of
permission re-delegation as possible, as any may be a vulnerability
in the Android system. Our initial design analyzed all possible paths
(i.e., both multiple edge paths and single edge paths). When ana-
lyzing AOSP 8.1.0, this design resulted in 15,483 paths containing
permission re-delegation. It is unreasonable to perform a manual
inspection to identify vulnerabilities for this many paths.

To reduce the analysis scope, we observed that the analysis does
not need to consider all possible paths. As a multiple edge path is
the combination of some number of single edge paths, if none of the
single edge paths comprising a multiple edge path are a permission
re-delegation instance, then the multiple edge path cannot result
in a permission re-delegation vulnerability.

For example, consider the path e1 { e3 defined as e1 → e2 → e3.
By Definitions 1 and 5, we know that if the multiple edge path is
not a permission re-delegation instance, then e1 @ e3 = A(e1) ⊇
A(e3). The expression A(e1) ⊇ A(e3) can be further expanded
to A(e1) ⊇ A(e2) ∧ A(e2) ⊇ A(e3) since e1 { e3 is comprised
of the single edge paths e1 → e2 and e2 → e3. By negating the
expression, we find e1 ⊑ e3 = A(e1) ⊉ A(e2) ∨ A(e2) ⊉ A(e3),
which implies that for path e1 { e3 to be a permission re-deleg-
ation instance, at least one of its single edge paths must also be a
permission re-delegation instance.

We use this insight to reduce the analysis scope by splitting
our analysis into two phases. First, ARF only analyzes single edge
paths for permission re-delegation. Then manual inspection veri-
fies if the reported permission re-delegation instances constitute a
vulnerability. Second, we take the single edge paths that are vul-
nerable and rerun ARF on all multiple edge paths that contain the
vulnerable single edge paths. Again, manual inspection is used to
verify if the reported permission re-delegation instances constitute
a vulnerability. Using this method, we significantly reduced the
number of paths containing a permission re-delegation instance
that required manual review. For AOSP 8.1.0, only 2,816 required
manual inspection, an almost 82% reduction.

4.3 Eliminating Non-Vulnerable Paths
While an 82% reduction is significant, reviewing 2,816 permission
re-delegation instances still requires considerable manual effort. To
further reduce the effort a domain expert would need to expend to
identify vulnerable paths, we manually reviewed all 2,816 paths in
a systematic manner. First, for each path, we identified the general
behavior of the target (i.e., if it returns data, performs some function,
or both). Next, we studied the deputies to determine if it is possible
to access their targets in some meaningful way (i.e., retrieve all
or a portion of the data being returned and/or manipulate the
functionality of the target from the deputy). If it seemed as if the
deputy might be exposing the data or functionality of the target,
we set them aside for later review. Otherwise, we studied the non-
vulnerable paths to determine how we might be able to automate

their elimination. Overall, the process took approximately 92 hours.
Through this analysis, we discovered that the majority of the

non-vulnerable permission re-delegation instances could be divided
into the seven general categories: paths where (§4.3.1) the deputy
and target have an equivalent calling identity, (§4.3.2) the deputy
or target are authorization checks, (§4.3.3) the target is used in an
authorization check, (§4.3.4) the deputy is restricted to a special
caller, (§4.3.5) the deputy does not operate across users, (§4.3.6) the
deputy correctly handles the multi-user enforcement already, and
(§4.3.7) the target is a result of backwards compatibility code that
can never be called by system services. Using Soot [28, 37] and the
output of ACMiner [23], we developed techniques to programmati-
cally eliminate the non-vulnerable paths of each category. Figure 3
illustrates where the noise elimination phase occurs in ARF. We
detail the seven techniques used by ARF below.

4.3.1 Equivalent Calling Identity. Within the Android system, au-
thorization checks are usually conducted using the calling identity
of the the most immediate caller of an entry point. For example, in
Figure 1, the deputy’s authorization checks would be performed
on the caller and the target’s authorization checks would be per-
formed on the deputy only. This is a result of the cross entry point
interactions being conducted through binder IPC which only stores
the calling identity of the entry point occurring immediately be-
fore the current entry point in a path. However, when two entry
points share the same process, it is possible for cross entry point
interactions to occur without going through binder IPC. For such
cross entry point interactions, unless an entry point explicitly clears
the calling identity using clearCallingIdentity in the Binder class
before calling another entry point, both entry points will conduct
authorization checks using the same calling identity, eliminating
permission re-delegation vulnerabilities. To detect such paths, ARF
uses the fact that cross entry point interactions within the same pro-
cess only ever occur when an entry point calls another (1) directly
within the same service and (2) indirectly through a reference to
the object of another service stored in a field of the calling service.
As such, all single edge paths that match the criteria above and
that do not call clearCallingIdentity before calling the target are
excluded by ARF.

4.3.2 Deputy or Target is an Authorization Check. A number of
entry points are solely used as context queries (e.g., checkPermissi-
on in ActivityManagerService and PackageManagerService). When
these entry points occur as the target of some path, they are not
part of the functionality and instead are responsible for restricting
access to the deputy. Similarly, when these entry points occur as
the deputy, all targets become a part of the larger authorization
check and thus cannot be used to expose functionality or data. In
either case, paths involving entry points that are also authorization
checks will never constitute an permission re-delegation. As such,
ARF excludes all paths that contain a deputy or target that is also a
context query, as defined by ACMiner.

4.3.3 Targets Used in Authorization Checks. There are many entry
points that return data that may be used for authorization logic. For
example, getUserInfo in the UserManagerService returns an object
containing information about a specific physical user (e.g., con-
figuration information and access rights). Depending on how the

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

data is used, getUserInfo could be a part of the functionality of an
entry point or part of its authorization checks. When occurring as
part of the authorization checks of the system, getUserInfo does
not expose functionality or data, and thus does not constitute a
permission re-delegation vulnerability. As such, ARF excludes all
paths that contain a target who is called within a context query
since by definition everything occurring within a context query is
part of the authorization checks of the system.

4.3.4 Deputy is Restricted to a Special Caller. Some entry points
are only intended to be accessed by callers within the system or by
special callers (e.g., administrative apps). Such entry points contain
authorization checks that are more restrictive than any permission
check present, if any. When these entry points occur as deputies,
the paths will not be accessible to third-party apps and thus do not
contain a permission re-delegation vulnerability.

ARF removes any path containing a deputy matching one of
the following criteria. (1) The first conditional statement within a
deputy is an authorization check for a special UID, PID, GID, AppId,
UserId, and package name whose branch leads to an exit statement
(i.e., a return statement or a SecurityException). We use Soot [28,
37] to statically analyze each deputy to detect such situations. (2) A
deputy calls a context query that performs the same authorization
checks as (1). To determine which context queries match the criteria
in (1), we examined all the context queries for all deputies. As the
number of context queries was relatively low (205), the examination
only took about 2 hours. See Appendix B for a list of all the context
queries of the examined deputies that matched criteria (1). (3) A
deputy calls a context query that only allows special callers access to
the deputy. Such context queries are unique to the service and do not
contain permission checks or the authorization checks described
in (1) (e.g., the context query getActiveAdminWithPolicyForUidLo-

cked in the DevicePolicyManagerService which requires callers to
be an active device administrator app). Appendix B contains the
complete list of context queries that match this criteria which were
determined in the same manner as (2).

4.3.5 Deputy Does Not Require Multi-User Enforcement. Recent
versions of Android support multiple physical users. Multi-user
accounts should be separate (i.e., one user cannot access the data
of or operate on behalf of another user). However, some operations
require system services and apps to access the data of multiple
users or perform functionality on behalf of a non-active user. To
allow this functionality, Android introduced the permissions INTE-
RACT_ACROSS_USERS and INTERACT_ACROSS_USERS_FULL, which grant
callers limited and full access to operate as other users, respectively.
Checks for these permissions are not needed on every entry point in
the system as many entry points do not have the ability to function
across users. In fact, for an entry point to perform operations as
another user, it must be passed a userId indicating which user it
should operate as. As such, we can detect if a entry point requires
the multi-user permissions by checking if has a userId argument.

We use the argument variable name in the entry point’s method
declaration to determine if it is passed a userId. Unfortunately, this
information is lost at compile time and is thus not available in
the compiled code available to our analysis infrastructure. How-
ever, for AOSP versions of Android, the Java source code of the
Android system is readily available. As such, we process the Java

source code using features available in the standard javac com-
piler [32] and capture the variable names of all method arguments.
We then apply text analytics in the form of the regular expression
(?i)^(?:(?:target|)user(?:id|handle|))$|^uid$ to each variable
name to detect if the argument may be a userId. To create this
regular expression, we searched for entry points that require the
multi-user permissions in the output of ACMiner [23] and then
manually inferred which argument represented the userId from
available context. Using the above procedure, ARF excludes all paths
whose deputies are not passed an argument that is a userId but
whose targets are checking for the permissions INTERACT_ACROSS_U-
SERS and/or INTERACT_ACROSS_USERS_FULL exclusively. Additionally,
we perform similar exclusions when the target checks for all of
the permissions INTERACT_ACROSS_USERS, INTERACT_ACROSS_USERS_F-
ULL, ACCESS_INSTANT_APPS, and VIEW_INSTANT_APPS, since permission
checks for ACCESS_INSTANT_APPS and VIEW_INSTANT_APPSwere found
to be a source of non-vulnerable permission re-delegation instances
when combined with checks for the multi-user permissions.

4.3.6 Deputy Already Has Multi-User Enforcement. While the main
multi-user enforcement in Android are checks for the permissions
INTERACT_ACROSS_USERS and INTERACT_ACROSS_USERS_FULL, some en-
try points require a more complex set of authorization checks. To
handle this, Android created the context query and entry point h-
andleIncomingUser in the ActivityManagerService, which includes
checks for the multi-user permissions. Since handleIncomingUse-

r is a separate entry point, the authorization checks inside this
context query do not get included in the output of ACMiner [23]
for any entry point that calls handleIncomingUser. As such, ARF is
unable to detect that checks for INTERACT_ACROSS_USERS and INTE-

RACT_ACROSS_USERS_FULL actually take place when handleIncoming-

User user is called. Therefore, ARF cannot recognize that a path
is not an permission re-delegation instance when the deputy calls
handleIncomingUser and the target checks for the multi-user per-
missions. To mitigate this, ARF excludes all paths where the deputy
calls handleIncomingUser and the target checks for the permissions
INTERACT_ACROSS_USERS and/or INTERACT_ACROSS_USERS_FULL exclu-
sively. Similar to the previous case, we also perform exclusions
when the target checks for all of the permissions INTERACT_ACR-

OSS_USERS, INTERACT_ACROSS_USERS_FULL, ACCESS_INSTANT_APPS, and
VIEW_INSTANT_APPS.

4.3.7 Backwards Compatibility. For compatibility reasons, the An-
droid system has a number of code segments that are only reachable
from apps compiled for certain API levels. One such code segment
is located in the getStringForUser method of the Settings$Secure

class and is only accessible by apps compiled for API levels below
23. The Settings class and its inner classes are wrappers around
calls to entry points and other code used to access the global system
settings. As such, all code in the Settings classes, including getStr-

ingForUser, executes in the same process as the caller until a entry
point is reached. Since getStringForUser runs in the same process
as its calling app or service and because all apps and services of
the Android system must be built using the current API (i.e., 27 for
Android 8.1.0), the compatibility code segment of getStringForUser
cannot be accessed by anything in the system. While mostly unim-
portant, the compatibility code segment does contain a call to the
entry point getString of the LockSettingsService, which performs

ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services WiSec ’19, May 15–17, 2019, Miami, FL, USA

D
ep

ut
y
Se
rv
ic
es

WIMS 1
WMS 1
USS 1
UMMS 2 2 4
USC 21
UPBC 24
TMS 3
SSS 2
SIS 3 4
SS 12
PMS 2 12
ODS 3
NMS 3 1 6 2
MSS 2
MRMS 2 1
LMS 5
JSS 4
FS 2 3
DMS 3
DPMS 2 1 1
CS 2
AS 3 4 3
AMS 12 1 2
ACMS 8

AYMS
AMS

AOS
BMS

DIL
DPMS

DMS
HCS

LSS
PMS

POMS
SSS

UMS
WSI

WIMS

Target Services

Figure 4: The deputy and target services of the paths identified with
vulnerabilities.1

a number of permission checks. As a result, ARF generates paths
for any deputy that reaches the target getString and is missing its
permission checks, even though the compatibility code segment
can never be executed. To eliminate these paths, ARF excludes all
paths where the target is getString of the LockSettingsService.

5 EVALUATION
We evaluated ARF by performing an empirical analysis of the sys-
tem services in AOSP version 8.1.0_r1 (i.e., API 27) built for a Nexus
5X device. Our analysis was performed on a machine with an Intel
Xeon E5-2620 V3 (2.40 GHz), 128 GB RAM, running Ubuntu 14.04.1
as the host OS, and OpenJDK 1.8.0_171.

As described in Section 4, we used ACMiner [23] to mine the au-
thorization checks of the AOSP 8.1.0 system services and iteratively
applied ARF to these checks to discover all possible permission
re-delegation instances. In both iterations of ARF, we manually
analyzed the possible permission re-delegation paths to determine
if the deputies are behaving correctly or represented vulnerabilities.
Our evaluation is guided by the following research questions:
RQ1 Does ARF improve a domain expert’s ability to detect permi-

ssion re-delegation vulnerabilities while reducing the manual
effort of the domain expert?

RQ2 What is the time required by ARF to analyze all the possible
permission re-delegation paths in the Android system?

RQ3 What services appear to be the most susceptible to permission
re-delegation and what services are more likely to have their
information or functionality improperly exposed?

RQ4 What are the major reasons for reported paths to not be permi-
ssion re-delegation instances?

We now highlight trends in our findings from our evaluation and
then proceed to categorically discuss the vulnerabilities identified.

5.1 Evaluation Highlights
ARF reduced the number of paths that neededmanual review during
the first iteration from 15,483 down to just 2,816, a 82% reduction.
The elimination techniques described in Section 4.3 further reduced
this number to 419 single edge paths and 71 multiple edge paths,

an overall reduction of 97%. As a result, ARF significantly enhances
a domain experts ability to detect vulnerabilities caused by permi-
ssion re-delegation in the Android system while minimizing the
manual effort required (RQ1). Furthermore, ACMiner took about
1 hour and 25 minutes to output the authorization checks for the
Android system of AOSP 8.1.0, with ARF adding an additional
overhead of about 4 minutes to produce a list of possible permi-
ssion re-delegation paths (RQ2). While optimizations of ARF may
be possible, the time required for ARF to run is negligible compared
to that of ACMiner and significantly more scalable than that of a
fully manual analysis.

Through the manual analysis of the 490 paths identified by ARF,
we discovered 170 paths containing vulnerabilities. Figure 4 sum-
marizes all 170 paths by the services of their deputies and targets.
The figure highlights services found to be more likely to improp-
erly expose information or functionality, as well as the services
more likely to have their data and functionality exposed (RQ3).
For example, the PowerManagerService (POMS) has a high number of
instances where its functionality is exposed by deputies. This is a
result of a category of vulnerabilities we identified as allowing a
caller to keep the device awake, a device state that is exclusively
maintained by the POMS. Similarly, services UiccPhoneBookControl-
ler (UPBC), UiccSmsController (USC), ActivityManagerService (AMS),
ShortcutService (SS), and PackageManagerService (PMS) all have a
relatively high number of paths with vulnerabilities exposing the
POMS because they either have a number of entry points that access
data from hardware, which requires the device to remain awake
(i.e., UPBC and USC), or that perform operations requiring the screen
to remain on (i.e., SS, PMS, and AMS). Apart from the POMS, the services
with the highest number of permission re-delegation vulnerabilities
are the core services UserManagerService (UMS), AMS, and PMS, which
are commonly accessed by many other services to perform more
complex actions. Lastly, for a variety of reasons discussed in Sec-
tion 5.2, we found the AccountManagerService (ACMS), AudioService
(AS), DevicePolicyManagerService (DPMS), NotificationManagerServ-
ice (NMS), and UiModeManagerService (UMMS) particularly susceptible
to permission re-delegation attacks. We have reported all 170 vul-
nerable paths to Google.

While ARF significantly reduces the number of paths a domain
expert must manually verify, it does not remove all non-vulnerable
paths. For AOSP 8.1.0, ARF contained 320 paths where the deputy
is performing its role correctly (RQ4). These paths can be grouped
into the following four categories. First, the deputy returns only a
portion of the data (i.e., scrubbed data) provided by the target (5
paths). As such, the restrictive permission checks required by the
target can be substituted for the less restrictive permission checks
already in place in the deputy. Second, the deputy requires a caller
to possess a special object (i.e., a token) that can only be obtained

1AYMS=AccessibilityManagerService; ACMS=AccountManagerService; AMS=ActivityManage-
rService; AOS=AppOpsService; AS=AudioService; BMS=BluetoothManagerService; CS=Cont-

entService; DIL=DeviceIdleController; DPMS=DevicePolicyManagerService; DMS=DreamM-

anagerService; FS=FingerprintService; HCS=HdmiControlService; JSS=JobSchedulerSer-

vice; LMS=LocationManagerService; LSS=LockSettingsService; MRMS=MediaResourceMoni-

torService; MSS=MediaSessionService; NMS=NotificationManagerService; ODS=OtaDexop-

tService; PMS=PackageManagerService; POMS=PowerManagerService; SS=ShortcutService;

SIS=SipService; SSS=StorageStatsService; TMS=TrustManagerService; UPBC=UiccPhoneB-

ookController; USC=UiccSmsController; UMMS=UiModeManagerService; USS=UsageStatsSe-

rvice; UMS=UserManagerService; WMS=WallpaperManagerService; WSI=WifiServiceImpl; -
WIMS=WindowManagerService

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

from another properly protected entry point (15 paths). Third, the
paths reported by ARF are not actually traversable at run time
but are instead produced as a result of noise in the call graph, a
known limitation of ACMiner which ARF relies on for entry point
relationship generation (63 paths). Fourth, for the remaining 237
paths, while a deputy does reach the target without checking for the
required permissions of the target, the deputy is structured in such
a way that the target’s data and functionality is not reachable by a
third-party app. All four categories described above illustrate hard
problems often encountered when analyzing the Android system
and are driving influences for future work.
Threats to Validity: We verified all 170 vulnerable paths through
a manual inspection of the Android middleware code base. Though
we have not created proof of concepts for these vulnerable paths,
we are currently in talks with Google to determine the validity of
the vulnerabilities and to resolve these weaknesses in platform.

5.2 Findings
Table 1 describes the vulnerabilities discovered through our analy-
sis of Android 8.1.0 with ARF, except those involving the WAKE_LOCK
permission which are detailed in Appendix A. By manually analyz-
ing the the permission re-delegation instances reported by ARF, we
discovered 170 vulnerable paths, which were distributed across 86
deputies. A majority of the paths with overlapping deputies actually
only have a single vulnerability. Only the entry points startManag-
edQuickContact, enableCarMode, and disableCarMode have multiple
vulnerabilities. For simplicity, we count each group of paths with
the same deputy as a single vulnerability unless otherwise specified.

We group the permission re-delegation vulnerabilities into the
following 5 categories: (1) system state modifications, (2) infor-
mation leaks, (3) disrupting usability, (4) user separation and re-
strictions, and (5) keeping the device awake. Additionally, when
examining the paths reported by ARF, we discovered several vul-
nerabilities that were not related to permission re-delegation, but
were weaknesses in the deputies. These deputies are categorized as
(6) non-permission re-delegation vulnerabilities.
VC1: System State Modifications: As shown in Table 1, ARF
identified 6 deputies with permission re-delegation vulnerabilities
that enable a third-party application to cause changes in the state of
the system. One such deputy is whitelistAppTemporarily of the Usa-
geStatsService. As Figure 2 shows, the deputy directly exposes the
target addPowerSaveTempWhitelistApp of the DeviceIdleController

to being called by third-party applications, bypassing the target’s
check for the system permission CHANGE_DEVICE_IDLE_TEMP_WHITEL-

IST. This missing check enables any application to be added to a
whitelist allowing access to the network and permitting it to keep
the device awake. Such permissions are normally only granted to
an application by the user or the system, but using this deputy, any
application can grant themselves access. Similarly, deputies 2→4,
expose the functionality of the target registerStateChangeCallb-
ack in the BluetoothManagerService, allowing any application to
monitor the bluetooth state changes (e.g., on and device connected)
without the BLUETOOTH permission. Lastly, deputies 5 and 6 enable
any application to adjust the HDMI volume without the permission
HDMI_CEC by exposing the targets setSystemAudioMute, sendKeyEve-
nt, and setSystemAudioVolume in the HdmiControlService.

1 /**... Note: no permissions are required when calling these
2 * APIs for your own package or UID. However , requesting
3 * details for any other package requires the permission
4 * PACKAGE_USAGE_STATS , which is a system -level permission
5 * that will not be granted to normal apps. ...*/
6 @SystemService(Context.STORAGE_STATS_SERVICE)
7 public class StorageStatsManager {...}

Figure 5: The comment above the manager for the StorageStatsSe-
rvice that states all entry points of the service must have a permis-
sion check for PACKAGE_USAGE_STATS.

VC2: Information Leaks:Missing permission checks in 2 deputies
(i.e., 7 and 8 of Table 1) cause system information from a number of
targets to be leaked to callers without the necessary permissions.
For example, isDeviceSecure of the TrustManagerService leaks if
the device is secure (i.e., has a password, lock pattern, or other
lock screen mechanism) to any caller by exposing the combined
data from havePassword, havePattern, and getLong in the LockSe-

ttingsService. All three targets normally require their caller to
have the system permission ACCESS_KEYGUARD_SECURE_STORAGE to
access the data exposed by isDeviceSecure. Similarly, getFreeBytes
of the StorageStatsService leaks a combination of the data from the
targets getCacheBytes and isQuotaSupported in the StorageStatsS-

ervice by omitting a check for the permission PACKAGE_USAGE_STATS.
Since all three entry points are in the same service, normally the
permission check within the two targets would be performed on the
same calling identity as the deputy. However, the deputy clears the
calling identity before invoking the targets, allowing third-party
applications to bypass the permission check. Moreover, omitting
the permission check in the deputy violates the policy of the service
defined in a comment (Figure 5) stating that all entry points of the
service must check for the PACKAGE_USAGE_STATS permission.
VC3: Disrupting Usability: ARF identified 8 deputies (9→16 of
Table 1) as permission re-delegation vulnerabilities that enable a
caller to disrupt device usability and possibly render a device unus-
able. The deputy dismissKeyguard of the ActivityManagerService,
for example, enables an application to render a device inaccessible
by allowing the application to dismiss the window on the Android
lock screen that asks for user input to unlock the device. This is a
result of the deputy exposing the functionality of targets dismissK-
eyguard and wakeUp in the WindowManagerService and PowerManager-

Service, respectively, by lacking checks for the system permissions
CONTROL_KEYGUARD and DEVICE_POWER. Deputy 10 has a similar vul-
nerability as there is a path that leads through dismissKeyguard to
the two targets above. On the other hand, the deputies enqueueToast
and cancelToast in the NotificationManagerService expose the tar-
get setProcessImportant in the same service, enabling a third-party
application without the system permission SET_PROCESS_LIMIT to
tell the system to keep any service in the foreground. Such an action
can be used by malicious third-party applications for purposes such
as performing CPU intensive operations, which will both drain
the battery and hinder device performance. Deputies 13→16 suf-
fer from the same vulnerability as they all have a path reaching
the above target through enqueueToast. Lastly, deputies 15 and 16
contain an additional vulnerability that exposes the target dream
of the DreamManagerService to third-party applications through the
omission of a check for system permission WRITE_DREAM_STATE. This
enables applications to cause the screen to flicker as a result of the
device switching in and out of VR mode.

ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services WiSec ’19, May 15–17, 2019, Miami, FL, USA

Table 1: A description of vulnerabilities, along with the services in which they are present.1

Deputy (Service) Vulnerability Description
VC1: System State Modifications

1. whitelistAppTemporarily (USS) Missing check for CHANGE_DEVICE_IDLE_TEMP_WHITELIST grants any app network access and allows them to keep the device awake.
2. startBluetoothSco (AS) Missing check for BLUETOOTH allows any app to monitor changes in the bluetooth hardware state (e.g., on, off, and device connected).
3. stopBluetoothSco (AS) Missing check for BLUETOOTH allows any app to monitor changes in the bluetooth hardware state (e.g., on, off, and device connected).
4. startBluetoothScoVirtualCall (AS) Missing check for BLUETOOTH allows any app to monitor changes in the bluetooth hardware state (e.g., on, off, and device connected).
5. adjustSuggestedStreamVolume (AS) Missing check for HDMI_CEC allows any app to set the HDMI volume to any value.
6. reloadAudioSettings (AS) Missing check for HDMI_CEC allows any app to set the HDMI volume to mute or unmute depending on the system default value.

VC2: Information Leaks
7. isDeviceSecure (TMS) Missing check for ACCESS_KEYGUARD_SECURE_STORAGE allows any app to determine if the device has a password, lock pattern, etc.
8. getFreeBytes (SSS) Missing check for PACKAGE_USAGE_STATS allows any app determine cache size of any other app on a volume.

VC3: Disrupting Usability
9. dismissKeyguard (AMS) Missing check for CONTROL_KEYGUARD allows any app to prevent the device from being unlocked by denying access to the keyguard input.
10. enterPictureInPictureMode (AMS) Missing check for CONTROL_KEYGUARD allows any app to prevent the device from being unlocked by denying access to the keyguard input.
11. enqueueToast (NMS) Missing check for SET_PROCESS_LIMIT allows any app to keep a service in the foreground.
12. cancelToast (NMS) Missing check for SET_PROCESS_LIMIT allows any app to keep a service in the foreground.
13. enqueueNotificationWithTag (NMS) Missing check for SET_PROCESS_LIMIT allows any app to keep a service in the foreground.
14. startManagedQuickContact (DPMS) Missing check for SET_PROCESS_LIMIT allows any app to keep a service in the foreground.
15. enableCarMode (UMMS) Missing check for WRITE_DREAM_STATE enables any app to switch the device in and out of VR mode, causing the screen to flicker.
16. disableCarMode (UMMS) Missing check for WRITE_DREAM_STATE enables any app to switch the device in and out of VR mode, causing the screen to flicker.

VC4: Multi-User Enforcement
17. getPermittedAccessibilityServicesForUser (DPMS) Missing checks for the multi-user permissions allow any user to get a list of the accessibility services enabled for another user.
18. isPackageDeviceAdminOnAnyUser (PMS) Missing checks for the multi-user permissions allow any user to determine if an app is acting as a device administrator for another user.
19. hasNamedWallpaper (WMS) Missing checks for the multi-user permissions allow any user to determine if another user has a wallpaper of a specific name.

VC6: Non-Permission Re-Delegation Vulnerabilities
20. getEnrolledFingerprints (FS) Missing checks for the multi-user permissions allow one user to get references to the fingerprints of any other user.
21. getAuthenticatorId (FS) Missing check for USE_FINGERPRINT enables any app to obtain the id of the set of fingerprints associated with another app.
22. cancelRequest (CS) Missing check for WRITE_SYNC_SETTINGS allows a caller to terminate the periodic syncing of data to cloud services.
23. areNotificationsEnabledForPackage (NMS) Missing checks for the multi-user permissions allow any user to determine if another user has enabled notifications for an app.
24. isSeparateProfileChallengeAllowed (DPMS) Missing checks for the multi-user permissions enable any user to check if another user has a work profile security lock (e.g., password).
25. getPreviousName (ACMS) Missing check isAccountManageByCaller allows any caller to get the previous name for an account (e.g., Facebook) they are not managing.
26. isCredentialsUpdateSuggested (ACMS) Missing check isAccountManageByCaller enables any non-managing caller to see if the credentials should be updated for an online account.
27. updateCredentials (ACMS) Missing check isAccountManageByCaller enables any caller to update the credentials of an online account they are not managing.
28. applyRestore (NMS) Missing checks for the multi-user permissions allow any user to set policy for the NMS that globally affects all users.
29. getBackupPayload (NMS) Missing checks for the multi-user permissions allow any user to get the policy for the NMS that globally affects all users.
30. addStatusChangeListener (CS) Missing checks for the multi-user permissions allow any user to monitor the managers used by other users to sync of data to cloud services.
31. notifyResourceGranted (MRMS) Missing checks for the multi-user permissions allow any user notify others that a media resource was used through a system-wide broadcast.
32. invalidateAuthToken (ACMS) Missing check isAccountManageByCaller enables any caller to invalidate a authorization token for an online account they do not manage.
33. switchUser (AMS) Missing checks for the multi-user permissions allow any user to trigger a switch to another which requires physical user input to complete.

VC4:Multi-user Enforcement:ARF identified 3 deputies (17→19
in Table 1) involving weaknesses in Android’s user separation and
enforcement [21]. The first, Deputy 17 leaks data from addClient

and getInstalledAccessibilityServiceList in the Accessibility-

ManagerService. This vulnerability enables an application running
under one user to get a list of the accessibility services enabled for
any other user as a result of the missing checks for the multi-user
permissions (i.e., INTERACT_ACROSS_USERS and INTERACT_ACROSS_US-

ERS_FULL). Similarly, because of omitted checks for the multi-user
permissions, Deputy 18 leaks data from getDeviceOwnerComponen-

t and packageHasActiveAdmins in the DevicePolicyManagerService,
allowing any user to determine the applications that are acting as
device administrators for any other user. Lastly, by omitting the
same permission checks, Deputy 19 reveals if a user has a wallpaper
with a given name to other users.
VC5: Keeping the Device Awake: In certain instances, it is nec-
essary to keep the device awake to perform operations (e.g., the
processing of data and accessing of data from radios and sensors).
In all such instances, an entity that will cause the device to stay
awake must hold the WAKE_LOCK permission as the five entry points
that control the device awake state require (i.e., acquireWakeLock,
releaseWakeLock, and updateWakeLockWorkSource in the PowerMana-

gerService or acquireWifiLock and releaseWifiLock in the Wifi-

ServiceImpl). However, when inspecting the output of ARF, we
found 55 instances where the deputy fails to check for the WAKE_LO-

1 /**... The part of Android Keystore which runs inside an
2 * app's process invokes this method in certain cases but the
3 * developer does not always demonstrate intent to use
4 * fingerprint functionality. Thus , to avoid throwing an
5 * unexpected SecurityException we do not check access. The
6 * permission check should be restored once Android Keystore
7 * no longer invokes this method from inside app processes.*/
8 public long getAuthenticatorId(String opPackageName) {...}

Figure 6: The comment for the getAuthenticatorId of the Fingerpr-
intService illustrating where developers compromised security to
quickly fix a bug.

CK permission, despite having a path that leads to one of the five
aforementioned entry points. As a result, there are many deputies
that, through repetitive calling, allow a caller to keep the device
awake without holding the WAKE_LOCK permission. As the list of
deputies that can be used to keep the device awake is large, we
omit them from Table 1 and instead include them in Appendix A.
VC6:Non-PermissionRe-DelegationVulnerabilities:The goal
of ARF is to identify permission re-delegation vulnerabilities. How-
ever, more generalized forms of missing checks (which were the
focus of ACMiner [23]) still exist in the system. While investi-
gating the output of ARF, we discovered 14 deputies (20→33 in
Table 1) that have vulnerabilities resulting from missing authoriza-
tion checks, but do not expose the information or functionality
of the targets to third-party applications. For example, getEnrol-
ledFingerprints of the FingerprintService allows an application
with the permission USE_FINGERPRINT running under one user to

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

obtain references to the fingerprints of any other user. This is yet
another vulnerability in the multi-user enforcement of Android
resulting from the missing checks for the multi-user permissions
(i.e., INTERACT_ACROSS_USERS and INTERACT_ACROSS_USERS_FULL). In
another example, the entry point getAuthenticatorId of the Fin-

gerprintService enables applications without the needed normal
USE_FINGERPRINT permission to obtain the id of the set of finger-
prints associated another app. These fingerprints would be those
that are application specific (e.g., Google Pay) and not used to un-
lock the device. Regardless, they should be protected by a check for
the USE_FINGERPRINT permission. Indeed, as shown in Figure 6, com-
ments in the code state that the permission should be checked but
further clarify that said check was removed to prevent ”unexpected
SecurityExceptions” from occurring because of design flaws.

6 LIMITATIONS
As ARF relies on the output of ACMiner [23] for its analysis, it
retains many of its limitations. These limitations include the re-
quirement of manually defined input, the inability to reason about
authorization check ordering in a majority of cases, and the general
limitations shared by tools that statically analyze Android (e.g.,
native code, runtime modifications, reflection, dynamic code load-
ing, and Message Handlers). In addition to these limitations, ARF
is unable to detect re-delegation vulnerabilities where the target
contains only authorization checks that are not permission checks
(e.g., the special callers from Section 4.3.4). This limitation is a result
of ARF’s narrowed focus on targets with permission checks. Fur-
thermore, ARF omits paths where the deputy contains both system
permission checks and third-party permission checks as it cannot
distinguish which occur first, a limitation stemming from ACMiner.
We plan to address both limitations future work.

7 RELATEDWORK
Several prior works have addressed permission re-delegation is-
sues in Android. However, all have focused on scenarios where
the deputy is an application. For example, Davi et al. [8] exploited
vulnerabilities in the native code environments of applications to
gain access to another applications ability to send SMS messages
without holding the appropriate permissions. Furthermore, Felt et
al. [18] and Quire [9] both developed systems for the prevention
of third-party application to application permission re-delegation
attacks through the tracking of binder IPC calls and privilege reduc-
tion. Lastly, CHEX [30], Woodpecker [24], and SEFA [38] developed
techniques for the detection of permission re-delegation vulner-
abilities in applications. CHEX analyzed third-party applications
while Woodpecker and SEFA treated system applications (e.g., set-
tings) as the deputy, with Woodpecker focusing on vulnerabilities
found in stock versions of system applications and SEFA looking a
vulnerabilities introduced as a result of vendor modifications.

Prior works focusing on Android have also considered the consis-
tency of the authorization logic of the Android system. Kratos [36]
uses call graph comparison and a small, manually defined set of au-
thorization checks to identify paths in the call graphwhere sensitive
operations could be reached with two conflicting sets of authoriza-
tion checks. AceDroid [1] expanded on Kratos by improving on
the manually defined set of authorization checks and developing

techniques to simplify the authorization logic through the com-
bination of authorization checks that physically appear different
but conceptually behave the same. Unfortunately, AceDroid greatly
over-simplifies the authorization logic in order to perform its anal-
ysis. As such, both Kratos and AceDroid did not meet the needs
of ARF, which relies on knowledge of authorization checks other
than permission checks to eliminate non-vulnerable paths. For-
tunately such information is provided by ACMiner [23], which
semi-automatically identifies authorization checks. ACMiner also
uses association rule mining to perform its consistency analysis.

The complexity of the Android middleware motivated research
that aids application analysis by creating simplified models of the
authorization logic of API calls. For example, Stowaway [15] uses
fuzzing to dynamically extract the permissions being checked when
calling an API. As a result of the limitations of dynamic analysis,
PScout [5] improves on Stowaway’s permission check model using
relatively simple static analysis. Axplorer [6] further refines this
model by addressing complexities in Android that have made static
analysis difficult. Most recently, Arcade [2] improves the precision
of the model further by including other types of authorization
checks as well logical relationships between checks.

In parallel to the above research, prior works have proposed
many static and dynamic analysis techniques to analyze third-party
applications. These works have targeted topics such as malware [14,
27, 40], privacy leaks and infringements [4, 10, 19, 20, 22, 26], and
vulnerabilities [7, 11]. Furthermore, several prior works have tack-
led challenges related to inter-component communication (ICC) in
Android (e.g., EPICC [31] and IccTA [29]). Moreover, through the
review of the platform code, Xing et al. [39] discovered vulnerabili-
ties that allowed privilege escalation on update, and Zhou et al. [42]
revealed holes in the file access control policies of firmware images.
While sharing goals with prior works, ARF uniquely provides a
semi-automated approach for discovering permission re-delegation
vulnerabilities within the Android system.

8 CONCLUSION
This paper builds upon recent efforts to more rigorously analyze au-
thorization logic in Android’s middleware. Specifically, we revisited
the problem of permission re-delegation. In contrast to prior work
that has studied permission re-delegation by third-party and system
applications, we studied permission re-delegation within system
services. We proposed ARF as an analysis framework to aid secu-
rity analysts in efficiently identifying deputies in system services
that improperly expose information or functionality to third-party
applications. We applied ARF to Android AOSP version 8.1.0 and
show that it can reduce the manual analysis effort from 15,483 paths
between entry points down to just 490. We manually reviewed this
set, identifying 170 paths that improperly exposed information or
functionality, spanning 86 deputies. This effort demonstrates the
continued need for researchers to study authorization logic within
the Android middleware and to build novel tools to identify flaws
that regularly evade manual code review.
Acknowledgements: This work was supported by the Army Re-
search Office (ARO) grant W911NF-16-1-0299. Opinions, findings,
conclusions, or recommendations in this work are those of the
authors and do not reflect the views of the funders.

ARF: Identifying Re-Delegation Vulnerabilities
in Android System Services WiSec ’19, May 15–17, 2019, Miami, FL, USA

REFERENCES
[1] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen

Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks
for Inconsistency Detection. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS).

[2] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li.
2018. Precise Android API Protection Mapping Derivation and Reasoning. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[3] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. SoK: Lessons Learned from android Security Research for
Appified Software Platforms. In Proceedings of the IEEE Symposium on Security
and Privacy.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick D McDaniel, Damien Octeau, and
Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Specification Analysis. In Proceedings of
the USENIX Security Symposium.

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-Application Communication in Android. In Proceedings of the
9th Annual International Conference on Mobile Systems, Applications, and Services.

[8] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
2010. Privilege Escalation Attacks on Android. In Proceedings of the 13th Infor-
mation Security Conference (ISC).

[9] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.
2011. Quire: Lightweight Provenance for Smart Phone Operating Systems. In
Proceedings of the USENIX Security Symposium.

[10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation.

[11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In Proceedings of the USENIX Security
Symposium.

[12] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On Lightweight
Mobile Phone Application Certification. In Proceedings of the 16th ACMConference
on Computer and Communications Security (CCS).

[13] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. Understanding
Android Security. IEEE Security & Privacy Magazine 7, 1 (January/February 2009).

[14] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward Wu. 2014. Collaborative Verification of Information
Flow for a High-Assurance App Store. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

[15] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

[16] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdata Akhawe, and
David Wagner. 2012. How to Ask for Permission. In Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec).

[17] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. 2012. Android Permissions: User Attention, Comprehension
and Behavior. In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS).

[18] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In Proceedings
of the USENIX Security Symposium.

[19] Xinming Ou Fengguo Wei, Sankardas Roy and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[20] Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks:
Automatically Detecting Potential Privacy Leaks In Android Applications on a
Large Scale. In Proceedings of the International Conference on Trust and Trustworthy
Computing (TRUST).

[21] Google. 2018. Supporting Multiple Users. https://source.android.com/devices/tec
h/admin/multi-user. Accessed Sep. 11, 2018.

[22] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen,
and Martin Rinard. 2015. Information Flow Analysis of Android Applications in
DroidSafe. In Proceedings of the ISOC Network and Distributed Systems Symposium

(NDSS).
[23] Sigmund Albert Gorski III, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,

William Enck, Eric Bodden, and Alexandre Bartel. 2019. ACMiner: Extraction and
Analysis of Authorization Checks in Android’s Middleware. In Proceedings of the
Ninth ACM Conference on Data and Application Security and Privacy (CODASPY).

[24] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In Proceedings of
the ISCO Network and Distributed System Security Symposium (NDSS).

[25] N. Hardy. 1988. The Confused Deputy: (or why capabilities might have been
invented). SIGOPS Operating Systems Review 22, 4 (1988), 36–38.

[26] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. 2011. These Aren’t the Droids You’re Looking For: Retrofitting Android
to Protect Data from Imperious Applications. In Proceedings of the ACMConference
on Computer and Communications Security (CCS).

[27] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the International Confer-
ence on Software Engineering (ICSE).

[28] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java Program Analysis: A Retrospective. In Proceedings of the
Cetus Users and Compiler Infrastructure Workshop (CETUS).

[29] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. 2014. I Know
What Leaked in Your Pocket: Uncovering Privacy Leaks on Android Apps with
Static Taint Analysis. In CoRR.

[30] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:
Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the ACM Conference on Computer and Communications Security.

[31] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-component Commu-
nication Mapping in Android with EPPIC: An Essential Step Towards Holistic
Security Analysis. In Proceedings of the USENIX Security Symposium.

[32] Oracle. 2019. Obtaining Names of Method Parameters. https://docs.oracle.com/
javase/tutorial/reflect/member/methodparameterreflection.html. Accessed Jan.
15, 2019.

[33] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment ofMobile Applications. In Proceedings
of the USENIX Security Symposium.

[34] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. AutoCog: Measuring the Description-to-permission Fidelity
in Android Applications. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[35] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul
Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachiwala,
Nolen Scaife, Byron Wright, Kevin Butler, William Enck, and Patrick Traynor.
2016. *Droid: Assessment and Evaluation of Android Application Analysis Tools.
ACM Computing Surveys (CSUR) 49, 3 (Oct. 2016).

[36] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2016.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS).

[37] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - A Java Bytecode Optimization Framework. In Proc.
of the Conference of the Centre for Advanced Studies on Collaborative Research.

[38] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
Impact of Vendor Customizations on Android Security. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). 623–634.

[39] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. 2014. Upgrad-
ing Your Android, Elevating My Malware: Privilege Escalation through Mobile
OS Updating. In Proceedings of the IEEE Symposium on Security and Privacy.

[40] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS).

[41] Yury Zhauniarovich and Olga Gadyatskaya. 2016. Small Changes, Big changes:
An Updated View on the Android Permission System. In Proceedings of the
International Symposium on Research in Attacks, Intrusions, and Defenses (RAID).

[42] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The Peril of Fragmentation: Security Hazards in Android Device
Driver Customizations. In Proc. of the IEEE Symposium on Security and Privacy.

https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html
https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html

WiSec ’19, May 15–17, 2019, Miami, FL, USA Sigmund Albert Gorski III and William Enck

A DEPUTIES TO KEEP THE DEVICE AWAKE
Table 2 provides a list of all deputies that were found to have paths
to the targets that control the device awake state (i.e., acquireWa-
keLock, releaseWakeLock, and updateWakeLockWorkSource in the Po-

werManagerService or acquireWifiLock and releaseWifiLock in the
WifiServiceImpl).
Table 2: The deputies that can be used to keep the device awake.

Service Method Names
ActivityManagerService activityPaused

activitySlept
addAppTask
setTaskResizeable
setVoiceKeepAwake
startLockTaskModeById

AudioService handleBluetoothA2dpDeviceConfigChange
setBluetoothA2dpDeviceConnectionState
setWiredDeviceConnectionState

DreamManagerService$BinderService finishSelf
startDozing
stopDozing

JobSchedulerService$JobSchedulerStub cancel
cancelAll

LocationManagerService locationCallbackFinished
removeUpdates
sendExtraCommand

MediaSessionService$SessionManagerImpl dispatchMediaKeyEvent
OtaDexoptService prepare
PackageManagerService performDexOptMode

performDexOptSecondary
registerDexModule
runBackgroundDexoptJob

ShortcutService addDynamicShortcuts
disableShortcuts
enableShortcuts
getDynamicShortcuts
getManifestShortcuts
getPinnedShortcuts
getRemainingCallCount
removeAllDynamicShortcuts
removeDynamicShortcuts
reportShortcutUsed
setDynamicShortcuts
updateShortcuts

SipService close
open3

UiccPhoneBookController getAdnRecordsInEf
getAdnRecordsInEfForSubscriber
getAdnRecordsSize
getAdnRecordsSizeForSubscriber
updateAdnRecordsInEfByIndex
updateAdnRecordsInEfByIndexForSubscriber
updateAdnRecordsInEfBySearch
updateAdnRecordsInEfBySearchForSubscriber

UiccSmsController copyMessageToIccEfForSubscriber
disableCellBroadcastForSubscriber
disableCellBroadcastRangeForSubscriber
enableCellBroadcastForSubscriber
enableCellBroadcastRangeForSubscriber
getAllMessagesFromIccEfForSubscriber
updateMessageOnIccEfForSubscriber

UiModeManagerService$6 disableCarMode
enableCarMode

WindowManagerService updateRotation

B CONTEXT QUERIES RESTRICTING ACCESS
TO SPECIAL CALLERS

Table 3 provides a complete list of all context queries we discovered
that restrict a caller to either the system or other special callers
(e.g., administrative apps).

Table 3: The context queries restricting access to deputies.
Service Method Names

System Restricting Context Queries
AppOpsService checkSystemUid

checkPackage
DevicePolicyManagerService enforceShell

isCallerWithSystemUid
NotificationManagerService checkCallerIsSystem

checkCallerIsSystemOrSameApp
checkCallerIsSystemOrShell

PackageManagerService enforceSystemOrRoot
enforceSystemOrPhoneCaller

UserManagerService checkSystemOrRoot
ShortcutService verifyCaller

enforceSystem
enforceSystemOrShell

LockSettingsService ensureCallerSystemUid
SmsUsageMonitor checkCallerIsSystemOrPhoneOrSameApp

Special Caller Restricting Context Queries
AccountManagerService permissionIsGranted

isAccountManagedByCaller
canUserModifyAccounts
canUserModifyAccountsForType

DevicePolicyManagerService getActiveAdminWithPolicyForUidLocked
LocationManagerService canCallerAccessMockLocation
NetworkScoreService isCallerActiveScorer
NotificationManagerService$7 verifyPrivilegedListener

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Overview
	4 Design
	4.1 prd
	4.2 Design Considerations
	4.3 Eliminating Non-Vulnerable path

	5 Evaluation
	5.1 Evaluation Highlights
	5.2 Findings

	6 Limitations
	7 Related Work
	8 Conclusion
	References
	A Deputies to Keep the Device Awake
	B Context Queries Restricting Access to Special Callers

