
Limiting Sybil Attacks in Structured P2P Networks
Hosam Rowaihy, William Enck, Patrick McDaniel, and Thomas La Porta

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
Email: {rowaihy, enck, mcdaniel, tlp}@cse.psu.edu

Abstract—One practical limitation of structured peer-to-peer
(P2P) networks is that they are frequently subject to Sybil
attacks: malicious parties can compromise the network by
generating and controlling large numbers of shadow identities.
In this paper, we propose an admission control system that
mitigates Sybil attacks by adaptively constructing a hierarchy
of cooperative peers. The admission control system vets joining
nodes via client puzzles. A node wishing to join the network is
serially challenged by the nodes from a leaf to the root of the
hierarchy. Nodes completing the puzzles of all nodes in the chain
are provided a cryptographic proof of the vetted identity. We
evaluate our solution and show that an adversary must perform
days or weeks of effort to obtain even a small percentage of nodes
in small P2P networks, and that this effort increases linearly
with the size of the network. We further show that we can place
a ceiling on the number of IDs any adversary may obtain by
requiring periodic reassertion of the IDs continued validity.

I. INTRODUCTION

Structured peer-to-peer (P2P) networks provide a coopera-
tive, stable, and robust mechanism for storing and retrieving
arbitrary content. Deployments of networks such as Chord [9],
CAN [4] and Pastry [5] can reach a massive scale, where
millions of users share content over global networks. These
networks can be used to successfully construct large-scale
applications such as file-sharing and distributed filesystems.

User identifiers (IDs) uniquely identify participant end-
points (nodes) in P2P networks. Structured networks reduce
search times by mapping content directly onto nodes based
on IDs. For this reason, the assignment and use of IDs is
essential to correct operation of the network. In particular,
it has been shown that an adversary that is able to generate
many shadow identities can arbitrarily subvert content storage
and acquisition [2]. To simplify, these Sybil attacks insert
malicious entities into the network such that any (or most)
content operations are in some way dependent on them.

Existing P2P networks provide little or no defenses against
Sybil attacks. One must limit the acquisition of multiple
identities to prevent the adversary from exploiting the sys-
tem. However, the absence of universal facilities for user
authentication makes such prevention difficult. For example,
one popular countermeasure to mitigate Sybil attacks is to
validate the uniqueness of the IP address of the joining node.
Such measures are ineffective because of the relative ease
with which IP addresses can be spoofed. The realities are
generalizable: any solution based on weak authentication of
the global and largely anonymous user community is doomed

to failure. Moreover, strongly authenticating that community
based on universally issued credentials is equally intractable.

This work presents an admission control system for struc-
tured P2P networks resilient to Sybil attacks. The system cre-
ates and maintains a self-organized hierarchy of participating
peers. A joining node appeals to a leaf node of the hierarchy
for admission which provides it with a cryptographic puzzle
[3]. After solving the provided puzzle, the joining node is
redirected to the leaf’s parent. This puzzle challenge/solution
process is recursively repeated with the parent until the joining
node reaches the root. The root node issues the joining node
a cryptographic proof of completion of the admission process.
This globally verifiable proof, called a token, encodes the
public key of the joining node and its ID. This token is then
used in subsequent operations to prove a node’s identity.

The admission control process limits the rate at which a
node can obtain IDs by controlling the amount of effort needed
to acquire them. While this effort is not overly burdensome
on a single node, it makes it difficult for an adversary to
acquire a large percentage of IDs. Our analysis shows that
an adversary must perform days or weeks of effort to obtain
a small percentage of nodes in small P2P networks, and that
this effort increases linearly with the size of the network. It
takes an adversary just over 3 days to obtain 10% of the IDs
in a network of only 8,000 nodes.

II. RELATED WORK

Douceur [2] was the first to consider multiple identity
problems in the context of P2P networks. Dubbed the “Sybil”
attack, the registration of many new nodes to take control of a
system plagues more than just P2P networks. Any distributed
system in which an entity can arbitrarily establish identities,
is subject to its effects.

The designers of the original structured P2P overlays paid
little attention to the severity of Sybil attacks; most schemes
either neglect to consider it or include limited defenses. For
example, in Chord [9] and Pastry [5], the authors assumed that
a node’s ID was the hash of its IP address. However, an adver-
sary can simultaneously spoof many IP addresses to quickly
obtain a multitude of identities. Additionally, using hashed IP
addresses limits access to the network from machines behind
NAT boxes. In CAN [4], the authors assumed that nodes pick
random IDs when they enter the network. This places trust
on all nodes in the system and easily allows an adversary to
create many IDs.

Many different types of cryptographic solutions to the Sybil
attack have been proposed. While the application of cryp-
tography potentially provides a solution, no current method
efficiently mitigates the attacks. Because Sybil attacks result
from entities misidentifying themselves, requiring all nodes to
authenticate with public keys is a one approach to securing
these networks. Douceur [2] showed that without the use of a
centralized authority [7] that certifies all nodes, it is impossible
to prevent this attack. Srivatsa and Liu [8] suggested the use
of certificates with limited lifetime issued by the bootstrap
entry point that binds a node with a unique ID. This would
limit the number of IDs an adversary can obtain during a time
period and will depend on the lifetime of the ticket. However,
requiring all nodes to obtain a certificate that will bind it
with a unique ID is not only expensive but will require either
releasing private information or paying an amount of money
for the service. Douceur [2] suggested using node validation
by storage, communication and computational challenges. He
also found theoretical bounds on the number of IDs an attacker
can accumulate if such challenges are used. However, he did
not specify how this can be done in a practical system.

III. ADMISSION CONTROL SYSTEM

In this section, we describe an Admission Control System
(ACS) for structured P2P systems. ACS defends against Sybil
attacks by adaptively constructing a hierarchy of cooperative
admission control nodes. A bootstrap node, located at the root,
allows users to join. This creates a tree structure as in Fig.
1. It is important that the upper layer nodes should be both
static and trustworthy, particularly for large and long-standing
networks. The bootstrap node in this system can be a dedicated
server and does not need to be one of the peers.

In Fig. 1, X0 is the bootstrap node and A is a joining node.
Before joining, A must gain admission from a sequence of
nodes, starting with leaf node Xn and ending with root X0.
At each stage i, A is required to successfully solve a puzzle
presented by Xi.

The remainder of this section uses the following notation:

K+
A , K−

A Node A’s public and private keys
IDA Node A’s ID
Rj Random value where j is a session ID
TSi Time Stamp
Xi Node at level i
Xi−1 Parent of node Xi

KXi Secret key known only to node Xi

KXi,Xi−1 Shared key between Xi and its parent

Note that · denotes concatenation, MAC(x, k) denotes the
keyed message authentication code of data x and key k, and
sig(x, k) denotes the signature of x using the private key k.

A. Join Protocol

Before joining the network, node A must generate a pub-
lic/private key pair K+

A /K−
A . When node, A, wishes to join the

network, it must first find a leaf node Xn. This is accomplished
by consulting a bootstrap node which will randomly select one
of the leaves in the system. Next, to gain admission from Xn,
A requests a puzzle. After A solves Xn’s puzzle, it is given a

X0

X1

Xn

A

Fig. 1. Example ACS node organization. X0 is a bootstrap node of the ACS
tree of depth n; A is a joining node.

token. This token is used to prove admission by Xn to Xn’s
parent. At tree height i, the protocol message flow proceeds
as follows:
A −→ Xi : K+

A (request)
Xi −→ A : TS1, h(K+

A · TS1 · R1), (puzzle)
MAC(K+

A · TS1 · R1, KXi)
A −→ Xi : K+

A , R1, TS1, MAC(K+
A · TS1 · R1, KXi) (solution)

Xi −→ A : IDXi , TS1, MAC(K+
A · TS1, KXi,Xi−1) (token)

In the request phase, A sends its public key K+
A which is

used to identify A during the joining process. Upon receiving
a request, the challenger, Xi, creates a cryptographic puzzle
based on a hash function. The hash puzzle contains two
parts—a known and unknown part. The unknown part consists
of an x-bit random number R1, where x is an exponentially
increasing hardness metric for the puzzle. The goal of the
solver is to determine R1, i.e., invert h(). As a cryptographic
hash function is non-invertible, this requires A to brute force
the solution, taking 2x−1 attempts on average. This may be
extended by making the length, x, dynamic, thereby allow-
ing malleable hardness as circumstances dictate. Note that
environments concerned with the computational diversity of
nodes can substitute alternative puzzles, e.g. memory-based
puzzles [1] which rely on memory-bound computations and
not on the actual computational power of a systems.

In order to provide stateless verification of puzzles, Xi

couples the puzzle with a MAC of A’s public key, a times-
tamp, and the puzzle solution R1. When A replies with
the solution, it bundles the MAC included with the puzzle.
Xi then calculates the MAC based on the received values
to verify the puzzle solution. The adversary cannot forge a
MAC, because only Xi knows its secret key. The public key
data and timestamp are included in the MAC to avoid replay.
Adding K+

A to the MAC ensures only A can use the puzzle
solution.

Once Xi has verified the puzzle solution, a token is given
to A. This token is sent to the next level admission node
along with a puzzle request. The token largely consists of a
MAC keyed with a secret known only by Xi and its parent
Xi−1. Again, to prevent replay, a timestamp and public key
are included in the MAC. Upon receiving the token, Xi−1 can
verify A has been admitted by Xi. This proof of admittance
by children is used for all subsequent requests:

A −→ Xi−1 : K+
A , IDXi , TS1, MAC(K+

A · TSi, KXi,Xi−1)

When A reaches the root, a final token format is issued by
X0 and an ID is assigned:

X0 −→ A : IDA, TSj , Sig(IDA · K+
A · TSj , K

−
X0

)

where IDA is h(K+
A ·RA). The node’s identifier is generated

from the cryptographic hash of the node’s public key and a
random value chosen by X0. The hash of the public key of
A and the random value is used instead of the hash of the
public key alone to prevent an attacker from generating enough
key pairs off-line until a desired ID is found. The hash also
uniformly distributes IDs and ultimately provides a balanced
distribution of content objects. The final token proves that A
successfully traversed the admission sequence and hence is
verifiably valid. All nodes are configured with the public key
of the root node and therefore can verify that A has IDA.

B. Security

The ACS is designed to limit Sybil attacks, not to prevent
them. Sybil attacks are still possible but, as shown in Sec-
tion V, are very expensive or intractable to mount. There are
two attack scenarios of interest: when the attacker is a member
of the ACS, and when it is not.

If the attacker is member of the ACS, it can take advantage
of its position. Instead of requiring new identities to traverse
the entire tree, the attacker can hand out tokens, reducing the
number of puzzles that must be solved. Such an attack can
be easily detected by the parent of the attacker by observing
the rate of token requests. If this rate surpasses a predefined
threshold, the node is detected and severed from the tree,
causing the entire subtree to rejoin. Because joining happens
at a random leaf, the average number of join requests seen by
a node depends on the overall average join rate and the node’s
hight in the tree. Knowing this information helps every node
in the system to determine the value of this threshold. We drop
the entire subtree because it is impossible to determine which
nodes are legitimate. After dropping the nodes from the tree,
the next task is to eject them from the P2P network. During
the join process, the intermediate tokens stores the path that
a joining node has traversed. This includes a series of IDs
representing the nodes in the path from the leaf to the root.
The path of a node can be stored in the final token provided
by the root. Using this, ejecting a full subtree from the P2P
network becomes easy; the root simply needs to broadcast a
revocation message containing the prefix of the subtree. After
receiving this message, nodes remove from their routing tables
all nodes with such a prefix in their path.

An attacker who is not a member of the ACS can slowly
obtain identities. Each time it will be required to traverse the
tree from the bottom up. The cost of solving the puzzles is
such that acquiring a significant fraction of nodes, especially if
the size of the network is large, is infeasible. An attacker who
is not member of the ACS may also choose to acquire many
nodes from one location. This attack is limited by ensuring
only a small number of tokens are released during a period of
time which limits the attack on that location without affecting
other parts of the network.

IV. IMPROVEMENTS OVER THE BASIC PROTOCOL

A. Cut-off Window

The basic protocol is designed to make obtaining enough
IDs to disrupt the normal operation of the network take a long
enough time so that it is likely an attacker will be discovered.
However, if an attacker is patient and silently accumulates
node IDs over a long period of time, it can achieve the required
number of IDs to launch a massive attack. To resolve this
weakness we propose the enforcement of a cut-off window.

This technique works as follows. In addition to requiring a
node to solve puzzles and obtain a token during the joining
process, a node is required to perform the same amount
of work again after time W from their initial join time to
maintain their membership. To do this, we define a token
expiration time. A node can anticipate when its token will
expire and reacquire a fresh one beforehand. This will allow
for uninterrupted operation of the node. However, an attacker
with n IDs will have to acquire n new tokens. This will
prohibit an attacker from accumulating many IDs.

The main drawback of this approach is that even legitimate
users may be asked to do the extra work of reacquiring tokens.
By setting the cut-off time, W , properly we can limit the
number of good users that must execute the rejoin process to a
small percentage who stay in the network for a very long time.
Finally, note that IDs are valid over multiple sessions, therefore
nodes reconnecting within W do not need to reacquire a token.

B. Multiple Roots

The single root represents a single point of failure. Hence
outages, DoS attacks, or other events that effect the availability
of root could cripple the network’s ability to add new identi-
ties. Hence, it is highly undesirable to employ a solution that
requires a single host to mediate every identity admission.

A straight forward solution is to replicate the root across
multiple hosts. In the simplest scheme, multiple instances of
the root (holding the same public/private key pair) are placed
at strategic locations in the network. Using DNS redirection a
joining member would be directed to closest root to complete
its admission to the P2P network. This not only will help
avoid the single point of failure, but may be necessary for load
balancing expensive cryptographic operations, i.e., identity
signing.

An alternate solution operates in a similar manner, except
that rather than having multiple instances of the same root, the
system allow for multiple roots. This would be accomplished
by designating a master root, which serves as a trusted CA that
issues certificates for roots that mediate independent admission
tress. Of course, one would have to be careful to balance the
size of all the root trees—perhaps by having the admission
process itself randomly select or balance root sub-trees.

V. PERFORMANCE EVALUATION

In the following subsections, we evaluate the performance
of the protocol and its enhancements in terms of fairness,
the difficulty of an attacker obtaining 10% of the nodes in
a network, and work required by normal nodes.

We assume that legitimate nodes arrive at the network
according to a Poisson distribution with an arrival rate of
λg . This is a common assumption used to model requests on
different servers. Node lifetimes are exponentially distributed
with a mean of µg . This is a heavy-tailed distribution meaning
that in our model a large fraction of nodes stay for a small
amount of time. This models actual user behavior because
most users will only be in the network for the time it takes
to download a file or two and then leave, whereas there will
be fewer server nodes which will be part of the network for
a long time. Finally, the difficulty of a puzzle is measured by
the time it takes to solve it.

In the following, we assume that an attacker is equal in
computational power to the average user. To analyze a more
powerful attacker we use the notion of multiple colluding
attackers. For example, if an attacker is twice as fast as the
average user then we consider that there are two colluding
attackers and so on. An attacker retains the node IDs it obtains
for an infinite time; whenever it obtains a node ID, the attacker
will immediately try to obtain another one. In this way, an
attacker may accumulate many node IDs over time.

A. Analysis

Puzzles and Fairness: The cost of joining the network for any
legitimate node will depend on the time it requires to traverse
the tree starting from a leaf up to the root and solving a puzzle
for each level. To make this process fair we need to fix the
time it takes the average user to join the network. To do this
we first set the joining difficulty (measured in average time)
to l. We note that, if a node must only solve a single puzzle of
average time l, it is possible that it will “get lucky” and solve
the puzzle on its first guess. In fact, because the distribution
of the time to solve the puzzle is uniform, the variance for the
time taken to solve it is high, and hence unfair.

To solve this problem, we divide the puzzle into n smaller
puzzles each of difficulty l/n such that the combined average
time is l. By dividing the large puzzle to several smaller
puzzles we can decrease the variance of the total puzzle
solving time from l2/12 to l2/12n.

We use n to be the minimum number of puzzles a node must
solve to join the network. If a node is joining on a branch of
the tree that has depth k ≥ n, the puzzle is divided into k
pieces, each of average duration l/k. In this case, the variance
will be tighter than the minimum requirement. If a node is
joining on a branch of the tree that is depth k < n, the puzzle
is divided into n pieces, and some nodes on the branch will
pose more than one puzzle.
Steady state: In the steady state the number of nodes in
the network, N , is found by considering the arrival rate of
legitimate nodes, λg , and mean lifetime µg .

N = λg × µg (1)

To be able control fraction f of the nodes, an attacker will be
required to obtain fN

(1−f) IDs. If the average joining difficulty

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 8 16 24 32 40 48 56 64 72 80 88

N
um

be
r

of
 N

od
es

Time (in hours)

Good Nodes
Attacker Nodes (8 Attackers)
Attacker Nodes (4 Attackers)
Attacker Nodes (1 Attacker)

Fig. 2. Number of good nodes and attacker nodes vs. time in a network
(attack start at steady state t = 10 hours).

is l and there are n attackers, the arrival rate of attacker nodes
will be λa = n

l and the time to launch a successful attack:

Tattack =
fN

(1 − f)λa
(2)

Cut-off window: The cut-off window optimization requires
each node to reacquire a fresh token after time W . We choose
W such that most legitimate users will not be required to
reacquire new tokens during their lifetime in the network, but
so that attackers will have to relinquish node IDs they have
accumulated and perform work to reclaim each one.

Following our assumptions on the arrival rate and node
lifetime, the percentage, P , of legitimate nodes that will be
required to reacquire fresh tokens can be found as follows:

P = 1 − 1

µg

∫
0

W

e
−x
µg dx (3)

If there are n attackers, the combined number of nodes they
can accumulate (Nattacker) is found as follows, assuming that
a cut-off window of W is used and the average join time is l.

Nattacker =
n × W

l
(4)

From (4), for a 10,000 node network, a 5 minute puzzle
provides ample protection. To protect against the same number
of attackers in a 100,000 node network, the puzzles can be as
small as 30 seconds; in a 1,000,000 node network, the puzzle
strength required is only 3 seconds. For our simulations in the
next section, we choose 5 minute puzzles, because we simulate
a small network.

B. Simulation Results

Here we show our simulation results in which we study the
resiliency of our protocol against Sybil attacks. We assume that
nodes join at random ACS leaves with uniform distribution.
Because nodes join through other nodes that are close to them,
there could be hot spots where the tree will increase in height
faster than other places; in our simulation, we do not consider
such cases. The height of the tree is then determined by the
order of the tree, the arrival rate and the average node lifetime.

We developed an ACS simulator using Java. The degree
of the tree is set to 8 meaning that no node has more than
8 children. The tree initially includes the bootstrap node
as the root and two levels of children nodes. These nodes
are assumed to have an infinite lifetime. The arrival rate of
legitimate nodes is set at 1 node/second. The average lifetime
of a legitimate node in the network is exponentially distributed

 0

 5

 10

 15

 20

 25

 30

 35

 0 8 16 24 32 40 48 56 64 72 80 88

P
er

ce
nt

ag
e

(%
)

of
 c

on
tr

ol
le

d
no

de
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(a) No cut-off window

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24

P
er

ce
nt

ag
e

(%
)

of
 c

on
tr

ol
le

d
no

de
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(b) Cut-off window of four hours

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 4 8 12 16 20 24

P
er

ce
nt

ag
e

(%
)

of
 c

on
tr

ol
le

d
no

de
s

Time (in hours)

8 Attackers
4 Attackers
1 Attacker

(c) Cut-off window of eight hours

Fig. 3. Attack on a steady network (attack starts at t = 10 hours).

with a mean of 2.3 hours. This is consistent with a study
performed on the Gnutella P2P network [6].

The average joining time, l, which is the time to traverse the
tree and solve the required puzzles was chosen to be 300 sec-
onds which is uniformly distributed. We choose 300 seconds
because of the network size; for bigger networks (100,000 and
1,000,000 nodes) puzzles would take only 30 and 3 seconds
respectively. Also, note that nodes need not reacquire tokens
for multiple sessions within W . We experiment with scenarios
that include one, four and eight attackers.
Steady State: In the first experiment, we evaluate our solution
when the network is in the steady state. The simulation is run
until the number of nodes stabilizes, and then an attack is
launched. As shown in Fig. 2, the number of legitimate nodes
stabilizes around 8280, which is consistent with our analysis.

The attack starts at t = 10 hours. Our results show that one
attacker can obtain 10% of total nodes in 77 hours (more than 3
days) whereas four attackers can achieve the same percentage
in about 20 hours. We also found that a collusion of eight
attackers can get 10% of the nodes in less than 10 hours. Fig.
3(a) shows these percentages as time progresses.
Cut-off Window: From the results of the basic protocol, we
can see that although our admission control system is able to
greatly limit a single attacker, it does not do a good job when
more attackers are involved. The cut-off window is designed
to solve this problem.

We simulated scenarios with W = 4 and 8 hours and de-
termined how many legitimate users are required to reacquire
fresh tokens and the number of IDs an attacker or multiple
attackers can maintain. As in the previous experiment, the
attack was launched after the network reached steady state.
We assume that good nodes refresh their tokens before they
expire so they are not cut off the network. The number of
good nodes in these two cases remain the same as with the
steady state experiment, i.e. around 8280 nodes.

The number of nodes that an attacker can maintain perfectly
matches the analytical results we obtain from Equation 4.
When W = 4, a single attacker is only able to maintain around
48 nodes, four attackers can maintain around 192 nodes and
eight attackers can maintain around 384 nodes; all are well
under the 10% target. The percentages of nodes attackers can
maintain are shown in Fig. 3(b).

To decrease the percentage of legitimate nodes that are
required to reacquire fresh tokens during their lifetimes we
experimented with a cut-off window of 8 hours. The results
show that the percentage of good nodes that need to do the

extra work drops to less than 2% while even 8 attackers
combined can only maintain around 8% of the nodes, still
under the 10% target. Fig. 3(c) shows the percentages of
attacker nodes in this case.

Comparing this with the steady state results we can clearly
see that the cut-off window optimization greatly improves the
limiting capability of our protocol. We see that instead of
letting the number of attacker nodes grow without bounds as
in the basic protocol, the cut-off window places a limit on
this number and prevents it from growing larger. This comes
at the cost of requiring some legitimate nodes to reacquire
their tokens after some time.

VI. CONCLUSION

In this paper, we proposed an admission control system that
mitigates Sybil attacks by adaptively constructing a hierarchy
of cooperative admission control nodes. A node wishing to
join the network is serially challenged by the nodes from a
leaf to the root of the hierarchy. In this way, we exploit the
structure of hierarchy to distribute load and increase resilience
to targeted attacks on the admission control system. We also
define a cut-off window that provides a provable ceiling to the
number of node IDs a computationally bounded adversary can
obtain independent of the life and size of the network. This is
the first practical method that provides such a hard bound for
limiting Sybil attacks.

REFERENCES

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions. Transactions on Internet Technology, 5(2):299–
327, 2005.

[2] J. Douceur. The sybil attack. In Proceedings of the First International
Workshop on Peer-to-Peer Systems 200, Cambridge, MA, March 2002.

[3] R. Merkle. Secure communications over insecure channels. In Commu-
nications of the ACM, 21(8):294–299, April 1978.

[4] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scalable content-
addressable network. In SIGCOMM 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM
Middleware. Heidelberg, Germany, 2001.

[6] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-
to-peer file sharing systems. In University of Washington Department of
Computer Science and Engineering Tech Report UW-CSE-01-06-02.

[7] E. Sit and R. Morris. Security considerations for peer-to-peer distributed
hash table. In 1st International Workshop on Peer-to-Peer Systems,
Cambridge, MA, March 2002.

[8] M. Srivatsa and L. Liu. Vulnerabilities and security threats in structured
overlay networks: A quantitative analysis. In ACSAC 2004.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM 2001, August 2001.

