
NativeWrap: Ad Hoc Smartphone Application
Creation for End Users

Adwait Nadkarni

NC State University

Raleigh, North Carolina, USA

anadkarni@ncsu.edu

Vasant Tendulkar

NC State University

Raleigh, North Carolina, USA

tendulkar@ncsu.edu

William Enck

NC State University

Raleigh, North Carolina, USA

enck@cs.ncsu.edu

ABSTRACT
Smartphones have become a primary form of computing. As a re-
sult, nearly every consumer, company, and organization provides an
“app” for the popular smartphone platforms. Many of these apps
are little more than a WebView widget that renders downloaded
HTML and JavaScript content. In this paper, we argue that separat-
ing Web applications into separate OS principals has valuable se-
curity and privacy advantages. However, in the current smartphone
application ecosystem, many such apps are fraught with privacy
concerns. To this end, we propose NativeWrap as an alternative
model for security and privacy conscious consumers to access Web
content. NativeWrap “wraps” the domain for given URL into a
native platform app, applying best practices for security configura-
tion. We describe the design of a prototype of NativeWrap for the
Android platform and test compatibility on the top 250 Alexa Web-
sites. By using NativeWrap, third-party developers are removed
from platform code, and users are placed in control of privacy sen-
sitive operation.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols

Keywords
Web browsers; Mobile applications; Smartphone security

1. INTRODUCTION
Smartphones are now commonplace in much of the developed

world, and their popularity continues to rise. A key feature of
smartphones is the wide variety of available third-party applica-
tions, commonly known as “apps.” Users can find apps to enhance
nearly any daily activity and provide entertainment during idle pe-
riods. Indeed, the official application markets for Android and iOS
both contain over 700,000 applications [55, 4].

Privacy is a significant problem for smartphone consumers. In
the past several years, a number of research groups have identified

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’14, July 23–25, 2014, Oxford, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2972-9/14/07$15.00.
http://dx.doi.org/10.1145/2627393.2627412.

widespread privacy concerns with smartphone apps in both An-
droid [18, 32, 19, 26, 25, 51] and iOS [15, 30]. Popular media
investigators such as the Wall Street Journal have made similar in-
dependent findings [47]. Smartphone apps leak a range of privacy
sensitive information, from seemingly innocent phone identifiers
to geographic location to entire address books. Researchers often
speculate that such data is collected and sold to data brokers that
perform analytics for selling advertisements. Regardless of the ac-
tual use, it is clear that privacy sensitive data is being leaked by
smartphone apps, often without user consent or information.

The current state of the smartphone application ecosystem leaves
privacy conscious consumers with a dilemma: either use the app
while being aware of the privacy risks, or do not install the app.
Many privacy conscious consumers (including the authors) occa-
sionally decide that an application’s benefit outweighs its privacy
risks. While recent research has proposed fine-grained privacy con-
trols, none are likely to go mainstream. Solutions that modify the
OS to allow finer-grained permission control [9, 43, 58], return fake
values [6, 58, 32], or limit network connections with sensitive val-
ues [18, 32] require significant technical expertise to build and in-
stall the custom OS for a specific device. Furthermore, these re-
search prototypes have not undergone rigorous testing, nor are they
frequently updated to new OS versions that contain new features
and security patches. More recently, an array of solutions have pro-
posed adding inline reference monitors to applications [57, 37, 12,
31] rather than modifying the OS. Unfortunately, statically modify-
ing an application package either results in a painful install process
for the user, or requires an online trusted third-party to host mod-
ified apps (which to date does not exist). Finally, all of these so-
lutions risk breaking applications in unknown ways, as developers
frequently assume permissions are granted if the app is installed.

Privacy conscious consumers sometimes have third choice: use
a mobile Website in the phone’s Web browser. Many applications
are simply a convenient way to access a popular Website from a
mobile device. Increasingly, Website owners are developing and
maintaining mobile versions of their websites, often with an “m.”
or “mobile.” domain prefix. Frequently, the mobile Website
functions very similar to the mobile app. However, there are secu-
rity and privacy drawbacks to accessing the app through its corre-
sponding mobile Website. First, authentication tokens are stored in
the Web browser’s cookie store, which has a larger attack surface
than if they are stored in an app’s private data storage. Second, the
shared cookie store allows advertisers and social networking sites
to track users [14].

In this paper, we propose NativeWrap as a new alternative model
for privacy conscious consumers to use Web-based applications on
smartphones. NativeWrap balances the security and privacy risks
of using the smartphone application and the phone’s Web browser.



When a user is visiting a Website in the phone’s browser that she
would like to run as a native app, she “shares” the URL with Na-
tiveWrap. NativeWrap then “wraps” the URL into a native plat-
form app while configuring best-practice security options. In effect,
NativeWrap removes the third-party developer from the platform
code, placing the user in control.

Specifically, NativeWrap provides the following properties:

• Isolated Cookie Store: Web browsers have one cookie store
and mediate access based on the same origin policy (SOP).
Unfortunately, SOP is insufficient to prevent privacy loss when
the same advertisement firm (e.g., DoubleClick) is used on
many Websites. SOP also does not prevent large social net-
working sites (e.g., Facebook) from identifying user browser
habits by simply encouraging Website owners to include so-
cial networking integration [14]. NativeWrap prevents such
privacy loss by ensuring a separate cookie store for each
wrapped Website. It also prevents a compromised browser
from leaking authentication cookies for multiple Websites.

• Phishing Prevention: Phishing attacks are successful when
the user clicks on a link and is fooled into entering sensitive
information into a fake Website. On smartphones, phish-
ing attacks are aided by Web browsers that remove the ad-
dress bar to maximize the viewing area [22]. By using a
native platform app, the user can be trained to always use the
phone’s application launcher to access security sensitive ser-
vices (e.g., banking). NativeWrap provides the native plat-
form app experience to any Website. It also pins the wrapped
Website to a specific domain to ensure embedded elements
(e.g., ads) do not redirect the user to a malicious site.

• Correct SSL configuration: Recent research has identified
widespread misconfiguration of SSL in smartphone apps [20,
24]. NativeWrap not only ensures proper SSL verification,
but it also can pin the Website to a certificate authority to re-
move dependence on a large root CA list. Furthermore, Na-
tiveWrap adapts HTTPS Everywhere [16] to optionally allow
the user to force SSL within the wrapped Website [34].

• Limited, User-controlled Permissions: Developers of native
mobile applications frequently include extra functionality that
impinges on user privacy. NativeWrap defaults to Internet-
only permission, with the ability for the user to add several
common functional permissions when wrapping the Website.

Our Contribution: The primary contribution of this paper is the
proposal of a new conceptual approach for privacy concerned con-
sumers to access Web content from smartphones and mobile de-
vices. We provide a prototype implementation for Android and
note that the approach could be adopted by other platforms if it
was integrated into the platform OS. We survey 12,500 applica-
tions from the Google Play Store to demonstrate the need for Na-
tiveWrap. Finally, we test the compatibility of NativeWrap with
the Alexa top 250 websites.

The remainder of this paper proceeds as follows. Section 2 mo-
tivates NativeWrap. Section 3 describes the NativeWrap design.
Section 4 details its implementation. Section 5 evaluates NativeWrap
compatibility. Section 6 discusses deployment strategies. Section 7
describes related work. Section 8 concludes.

2. MOTIVATION
Before describing NativeWrap, we must first understand how

and why many applications are developed. We begin with a short

history of mobile application development while defining several
key terms used throughout the paper. We then provide a survey of
mobile apps from the Google Play Store to better characterize the
significance of the problem.

2.1 Background
The first feature-enhanced mobile phones provided an Internet

connection and a Web browser. Early users visited the same Web-
sites as provided for personal computers; however, it quickly be-
came clear that mobile versions of these Websites were required
to cater to the small display sizes on mobile phones. These Web-
sites, commonly known as mobile WebApps (or simply WebApps)
are front ends developed specifically to suit the display and user in-
terface aesthetics of mobile phones, and can be accessed by nearly
any smartphone with a Web browser.

As mobile phone platforms with native application environments
emerged, developers began porting WebApp functionality to the
popular platforms. These native applications (or native apps for
short) are platform-specific, and are hosted on application markets
such as the Google Play Store or the Apple App Store, from which
users discover, download, and install them to their devices.

Native apps possess the ability to closely interact with the user
and use the phone’s hardware features such as accelerometers and
GPS receivers to provide a rich user experience. As the useful-
ness of native apps grew, so did their popularity, ultimately leading
users to frequently choose a native app over visiting the correspond-
ing WebApp in the phone’s Web browser. In turn, more and more
companies and organizations felt compelled to provide native app
versions of their Websites to stay up-to-date and maintain company
image.

Developing and maintaining native apps requires significant re-
sources. First, the application must be developed for each popu-
lar platform. Android and iOS use vastly different programming
languages and design abstractions. Second, native app updates
must occur via the platform’s application market, which can in-
clude timely review processes (e.g., iOS) or at minimum user an-
noyance when apps are updated frequently. As a consequence, hy-
brid applications began to emerge. These hybrid applications are
essentially WebApps “wrapped” in a “WebView” class within a
native app. Both Android and iOS provide WebView primitives,
therefore only a very small amount of code needs to be written for
each platform, and updates only need to occur at the Web server.
Toolkits such as PhoneGap simplify this process even further by
providing a common template. To simplify discussion, this paper
terms these hybrid applications as WebView apps.

There are both security and privacy benefits and drawbacks to
WebView apps verses using WebApps in the Web browser. On
the positive side, WebView apps are treated as security principles
within their native platforms. This separation provides extra pro-
tection of user credentials and other sensitive data. WebView apps
can also deter phishing. Once a user downloads a native app (e.g.,
a banking app), she becomes implicitly trained to access the ser-
vice through the phone’s launcher, and potentially less likely to be
fooled by a link in an Email. Finally, WebView apps have separate
cookie storage, which limits cross-site privacy concerns. For exam-
ple, if a user is logged into Facebook in the Web browser, whenever
the users visits a Website with a Facebook “like button,” Facebook
is notified. In contrast, if the user accesses Facebook via a native
or WebView app, the user’s authenticated Facebook cookies are not
present in the Web browser. Similar privacy concerns with Website
advertisements are also mitigated.

WebView apps also have security and privacy drawbacks. Web-
View apps are generally relatively simple and their core function-



 0

 200

 400

 600

 800

 1000
A

C
C

E
S

S
_N

E
T

W
O

R
K

_S
T

A
T

E

W
R

IT
E

_E
X

T
E

R
N

A
L

_S
T

O
R

A
G

E

R
E

A
D

_P
H

O
N

E
_S

T
A

T
E

A
C

C
E

S
S

_F
IN

E
_L

O
C

A
T

IO
N

A
C

C
E

S
S

_C
O

A
R

S
E

_L
O

C
A

T
IO

N
V

IB
R

A
T

E
W

A
K

E
_L

O
C

K

A
C

C
E

S
S

_W
IF

I_
S

T
A

T
E

R
E

C
E

IV
E

_B
O

O
T

_C
O

M
P

L
E

T
E

D
G

E
T

_A
C

C
O

U
N

T
S

C
A

M
E

R
A

A
C

C
E

S
S

_L
O

C
A

T
IO

N
_E

X
T

R
A

_C
O

M
M

A
N

D
S

R
E

A
D

_C
O

N
T

A
C

T
S

C
A

L
L

_P
H

O
N

E
R

E
C

O
R

D
_A

U
D

IO
W

R
IT

E
_S

E
T

T
IN

G
S

M
O

D
IF

Y
_A

U
D

IO
_S

E
T

T
IN

G
S

C
H

A
N

G
E

_W
IF

I_
S

T
A

T
E

B
R

O
A

D
C

A
S

T
_S

T
IC

K
Y

R
E

A
D

_E
X

T
E

R
N

A
L

_S
T

O
R

A
G

E
W

R
IT

E
_C

O
N

T
A

C
T

S
G

E
T

_T
A

S
K

S
S

E
N

D
_S

M
S

R
E

A
D

_L
O

G
S

R
E

C
E

IV
E

_S
M

S
S

E
T

_W
A

L
L

P
A

P
E

R
B

L
U

E
T

O
O

T
H

U
S

E
_C

R
E

D
E

N
T

IA
L

S

M
O

U
N

T
_U

N
M

O
U

N
T

_F
IL

E
S

Y
S

T
E

M
S

D
IS

A
B

L
E

_K
E

Y
G

U
A

R
D

F
L

A
S

H
L

IG
H

T
A

C
C

E
S

S
_G

P
S

A
C

C
E

S
S

_L
O

C
A

T
IO

N

A
C

C
E

S
S

_A
S

S
IS

T
E

D
_G

P
S

R
E

A
D

_S
M

S

A
C

C
E

S
S

_M
O

C
K

_L
O

C
A

T
IO

N

M
A

N
A

G
E

_A
C

C
O

U
N

T
S

S
Y

S
T

E
M

_A
L

E
R

T
_W

IN
D

O
W

C
H

A
N

G
E

_N
E

T
W

O
R

K
_S

T
A

T
E

R
E

S
T

A
R

T
_P

A
C

K
A

G
E

S

N
u

m
b

er
 o

f 
A

p
p

li
ca

ti
o

n
s

Permissions

866

480

384

325 305
250

224
201 184

142
108

81 65 55 53 39 32 32 32 31 27 26 25 24 22 19 17 17 15 14 14 13 12 12 12 12 11 10 10 10

Figure 1: Permissions frequently requested by WebView apps (only > 10 shown)

Table 1: Application Survey Results
Characteristic # of Apps Percentage
Total Apps 12,500 100.00%
Apps that use WebViews 10,165 81.32%
WebView Apps 1,066 8.52%
Potentially over-privileged WebView Apps 999 7.99%

ality requires little more than permission to access the Internet.
However, WebView apps often contain extra permissions. Many
recent studies [18, 15, 32, 19] have identified privacy leaks of ge-
ographic location and phone identifiers, often by advertisement li-
braries [26]. Finally, WebView apps with extra permissions can
potentially do more harm if exploited [21].

2.2 Application Survey
NativeWrap is an alternative to any mobile Website or native app

that has a mobile Website. However, our primary target is to replace
WebView applications, as they are little more than a WebView wid-
get rendering the mobile version of a Website. To estimate a lower
bound on the need for NativeWrap, we performed a survey of pop-
ular Android applications. Specifically, we sought to better under-
stand (1) what percentage of apps are WebView apps? and (2) what
is the permission request profile of WebView apps?

Our survey includes the top 500 free applications from each of
the 25 application categories on the Google Play Store, as of Jan-
uary 2013. We excluded game and widget categories, as they are
rarely full screen WebView apps. We disassembled the applications
using baksmali [50] and extracted the AndroidManifest.xml
file for each app using AXMLPrinter2 [2]. We then used lightweight
static code analysis heuristics to classify the apps (described be-
low). Our survey results are summarized in Table 1.

Counting WebView apps: We identified WebView apps in two
steps. First, we used grep on the dissembled code to identify all ap-
plications that create or initialize WebView objects with URLs. We
found that roughly 81% of applications used WebViews. However,
upon closer inspection of randomly chosen applications, we found
many apps use WebViews for extra functionality such as displaying
company policies or advertisements. To estimate the lower bound
of WebView apps, we identified the applications that use WebViews
within the file that contains its main activity class. The main activ-
ity is specified in the application’s AndroidManifest.xml and
defines the first activity component started when the application is
launched. If an app uses a WebView in its main activity class, it
is highly likely that WebViews are core to the app’s functionality.
However, we stress that this is a lower bound, because developers
may place WebView initializers in other classes called by the main
activity class. This second search strategy identified 1,066 apps, or
8.52% of our sample set, which is significant enough a percentage
of applications to be concerned about.
Permission use by WebView apps: Having identified a lower
bound on the percentage of WebView apps, we turned to their secu-
rity and privacy implications. Ideally a WebView app should only
require the INTERNET permission. However, we found that nearly
all of the identified WebView apps (⇡93%) required more permis-
sions. These applications are called “potentially over-privileged
WebView apps” in Table 1. Users installing these WebView apps
have no way to deny specific undesired permissions.

The WebView apps requested a total of 436 unique extra permis-
sions, of which 333 were custom permissions declared by the ap-
plications themselves. Figure 1 further breaks down the frequency
of popularly requested permissions. The figure shows that most
WebView apps request ACCESS_NETWORK_STATE, which is
used to determine if the phone has a data connection, and can
be used to differentiate cellular and WiFi connections. Addition-



ally, WRITE_EXTERNAL_STORAGE is reasonable for WebView
apps storing caches on the SDcard. However, Figure 1 shows a
wide variety of privacy and security relevant permissions. We note
that the phone state and location permissions are the next high-
est requested permissions. These results clearly indicate WebView
apps present privacy concerns.
Stowaway [21]: To characterize how many requested permissions
are actually used by WebView app code, we analyzed 50 randomly
selected applications with Stowaway [21]. We only analyzed 50
applications because Stowaway is not a stand-alone application and
required us to manually upload the applications to a Website. The
Stowaway results are useful as they help describe the potential for
increased damage if the WebView app is compromised (e.g., due
to a vulnerability in WebKit). We found that half of the 50 apps
requested permissions that are never used. This result indicates
that NativeWrap can also help increase application security.

2.3 Threat model
A fundamental premise behind our work is that both apps and

mobile Websites have advantages and disadvantages with respect
to security and privacy. Our NativeWrap solution is designed to
leverage the advantages of each while removing the disadvantages.

Mobile applications are written by potentially untrusted third-
party developers. Recent studies have clearly demonstrated that
many legitimate (i.e., non-malware) apps leak privacy sensitive val-
ues such as phone identifiers, location, and address books [18, 32].
Often, these privacy leaks are a result of advertising and other non-
required functionality. We seek to eliminate privacy loss due to
non-required functionality.

Accessing mobile Websites through the device’s Web browser
also has security and privacy threats. We summarize these threats
as follows.
Cross-site Attacks: WebApps contain Web elements from dif-
ferent origins. These elements can store cookies with the Web
browser, and are frequently aware of the WebApp they are embed-
ded within. By storing and retrieving cookies, the owners of these
elements can track user’s browsing habits. For example, consider
a user logged into Facebook. Whenever the user visits a Website
that embeds a Facebook “like button,” Facebook is notified that the
user visited the page, even if the user does not click the button [14].
Further investigations found that logging out of Facebook is not
enough [11, 49]. To regain privacy, the user must clear the cookie
store. Similar privacy concerns arise with Web advertisements that
store cookies, i.e., a privacy concern DoubleClick is infamously
known for. Browser state, including a range of browser cache meth-
ods, can be used to track the user [35]. By having per-WebApp
cookie stores and state, NativeWrap significantly mitigates, if not
removes, such privacy threats.
Phishing: Phishing attacks commonly trick users into clicking on
URLs that direct them to a Website pretending to be the original
(e.g., a bank Website). Web browsers on smartphones often make
this easier, because the browser hides the address bar to maximize
the page viewing area [22]. An example of such an attack is “Tab-
nabbing” [46], wherein the attacker loads a fake page resembling
some recently used website’s login page into a browser tab that has
been open, but inactive for a while. If the user is convinced the
page is authentic, she may enter her credentials. NativeWrap seeks
to mitigate such attacks by always clearly displaying the WebView
app’s name. NativeWrap further pins the WebView app to a do-
main to ensure phishing does not inadvertently originate from the
domain, e.g., via advertisements that hijack the screen [1].
Browser Compromise: Upon compromising the Web browser, an
attacker potentially gains access to all of the user’s cookies, in-

Web Browser

Website

NativeWrap

Wrapper App Template

Configuration 
Settings

Security 
Enhancements

Application 
Maker

Application 
Package (APK)

Share URL

Figure 2: The NativeWrap Architecture

cluding those that are used for authentication. The compromise
could also result in a Man-in-the-Browser attack [29], wherein the
compromised browser logs all user activity and input. NativeWrap
mitigates these threats by treating each WebApp as a different secu-
rity principal in the host operating system. This includes separate
cookie stores and separate runtime principals for each WebApp.
We note that newer Web browser architectures such as Chrome for
Android also provide defenses against such attacks. A more de-
tailed comparison is provided in Section 7.

3. NATIVEWRAP DESIGN
NativeWrap provides an alternate model for accessing Web-based

content by providing a balance between installing a third-party ap-
plication and using the phone’s Web browser. NativeWrap seam-
lessly allows end users to create safe and privacy friendly appli-
cations for any Website. To do this, the user must first visit the
desired Website in the phone’s Web browser. Once loaded, the
user selects the “share” action that is often used to share a URL
with messaging and social networking applications. When the user
shares the URL, NativeWrap is available as a share target. Once
NativeWrap receives a URL, it presents configuration screen to the
user. NativeWrap uses the URL to specify best practices defaults
(e.g., forcing SSL, CA pinning). Once the configuration is con-
firmed, NativeWrap parameterizes a pre-made WebView wrapper
template and installs the newly created application package. This
architecture is shown in Figure 2.

The remainder of this section describes the objectives and de-
sign of NativeWrap. We note that while many parts of the discus-
sion are Android specific, NativeWrap is more general. We use
Android where necessary to provide simplified and concrete dis-
cussion. Android also allows us to build and distribute a working
NativeWrap prototype. We did not consider the other smartphone
platforms for the prototype, because they cannot install applications
without distributing them through the official application market.
However, this need not necessarily be a limitation of NativeWrap.
Other smartphone platforms (e.g., iOS) could easily include Na-
tiveWrap as part of the OS and provide it the ability to install the
created applications.

3.1 Design Objectives
The primary objective of NativeWrap is to provide the user with

a secure alternative to using WebView apps provided by third par-
ties or accessing a WebApp via the browser. As such, NativeWrap
seeks to achieve the following design objectives.
1. Regulated permission set: The WebView app should operate
with the bare minimum privileges, i.e., network access. If addi-
tional privilege is required (e.g., to access external storage to up-
load photographs), the user should be provided the option to grant
it. However, only network access should be enabled by default, and



the WebView app should operate correctly with only network ac-
cess (with the exception of the function requiring more privilege).
2. Separate WebApp-specific resources: In the browser, Web-
Apps share a cookie store, bookmarks, and history. If the browser
is compromised, the authentication cookies of all WebApps may be
compromised. Furthermore, the same origin policy is insufficient
to prevent privacy loss when a cookie provider is included as a page
element on many Websites. Therefore, NativeWrap seeks to ensure
separation of these resources. The resources should be specific to
the WebApp; other WebApps should not be loaded into the original
WebApp’s container.
3. Application-specific SSL configuration: Web browsers must
support the SSL needs of all Websites. In contrast, a NativeWrap
app needs only to support the SSL needs of one Website. This
feature must be leveraged to ensure the best possible SSL configu-
ration for the app, including pinning the app to a CA certificate and
forcing SSL if possible.
4. Execution of trustworthy code: The created WebView app
should be free from known vulnerabilities and execute in a pre-
dictable manner. It should also prevent malicious arbitrary code
from executing, and should be resistant to confused deputy attacks.

3.2 Design Elements
We fulfill these design objectives on Android in four parts: a

secure configurable wrapper, domain pinning, SSL pinning, and
forcing HTTPS where possible.

3.2.1 Secure Configurable Wrapper
In order to keep the resources of WebApps isolated, we wrap

WebApps into native Android applications. Each Android applica-
tion has a unique Linux UID making it a unique security principal.
Therefore, native Android apps cannot access the private storages
of other apps. By using this separation, we ensure protection for
resources such as the cookie stores, saved passwords, etc.

Our native application template is actually an Android applica-
tion built using a WebView as its primary layout view. The Web-
View is configured to display the WebApp associated with the URL
supplied by the user. An alternate approach would have been mod-
ifying the default Android Open Source Project (AOSP) browser
to support a single WebApp. After briefly considering this option,
we determined that refactoring the browser app was a complex and
error prone process that may leave unknown vulnerabilities. There-
fore, we opted for a clean design.

We configure our wrapper template to request only the INTER-
NET permission. While studying WebApps, we recognized that
some Websites allow users to upload files (e.g., photographs). Web-
Views can be programmed to relay file upload events to the Android
OS. This feature will require the READ_EXTERNAL_STORAGE
permission in future Android releases. Therefore, NativeWrap of-
fers the user the option to add this permission while configuring the
wrapper. Furthermore, the wrapper template is configured to only
upload a file via the Android OS. Hence, the resulting app cannot
directly access the external storage without the user’s knowledge.

We note that NativeWrap could be too restrictive for some appli-
cations that genuinely require certain permissions (e.g., location) to
execute their primary functionality. Our goal behind NativeWrap
is to put the user in control, and such optional permissions can be
added to NativeWrap’s implementation if necessary.

3.2.2 Domain Pinning
The wrapper template is a native Android app that ensures that

other native applications do not have access to the private resources
of the WebApp wrapped in the template. To describe domain pin-

ning, we call this wrapped WebApp the “primary WebApp” and
the corresponding URL the “primary URL.” Domain pinning only
affects the primary URL and not resources referenced by that page.

If the user navigates outside the primary WebApp, she may be
exposed to phishing or cross-site attacks. These attacks often rely
on the browser’s ability to load multiple WebApps, which then
share the same resources such as cookie stores, history and book-
marks. To prevent these attacks, we make the wrapper WebApp-
specific by configuring the WebView to only work with the primary
domain. Requests outside this domain are forwarded to the phone’s
default Web browser. To ensure the user is aware of this transition,
we always display the name of the WebView App at the top of the
screen. We also display a non-intrusive toast message when transi-
tioning to the Web browser.

NativeWrap identifies the domain for the primary WebApp from
the URL specified by the user. During our experimentation with
initial versions of NativeWrap, we found that the full domain is not
always appropriate. For example, www.bestbuy.com redirects
to www-ssl.bestbuy.com for user login. Therefore, pinning
the WebApp to www.bestbuy.com will not allow the user to log
in, because the authentication cookies will be stored in the phone’s
browser. In this case, it is better to pin the WebView to bestbuy.
com and allow all subdomains.

Pinning the WebApp to the second-level domain (e.g., bestbuy.
com) is not always appropriate. For example, if the user is wrap-
ping foo.blogspot.com, blogspot.com is too broad. How-
ever, we anecdotally observed that pinning the third-level domain is
required significantly less frequently than the second-level domain.
Therefore, we use the second-level domain as the default config-
uration, but also display the third-level domain as a clear option.
We believe the cases when the third-level domain is needed will be
obvious to most users.

Our experimentation with NativeWrap also uncovered redirec-
tion to other second-level domains. For example, blogspot.
com redirects to accounts.google.com for authentication.
Many Websites use third-parties such as Google and Facebook to
authenticate. To address third-party authentication services, we
suggest a whitelist solution. There are a relatively small number
of authentication providers, which can be easily enumerated within
the template. Furthermore, these domains generally are not the
source of phishing attacks. Our current implementation only in-
cludes accounts.google.com and facebook.com, but ad-
ditional entries can be easily added.

We note that including Facebook as trusted domain does not in-
troduce privacy concerns unless the user actually logs into the Web-
App via Facebook. In this case, Facebook may be notified of page
visits within the primary WebApp if those pages contain Facebook
like buttons.

3.2.3 SSL Pinning
Recent CA compromises have confirmed worst fears about the

flaws of the CA model. An attack on Comodo in March 2011 re-
sulted in it issuing 9 fake certificates for Websites including Google,
Microsoft and Skype [40]. DigiNotar was compromised several
months later [38], with the attacker(s) being able to issue over 500
fraudulent certificates, including a wildcard certificate for Google.

Fake SSL certificates are not limited to adversarial CA compro-
mises. Nation states and other governing bodies can also force
CAs to issue fake certificates. According to the Electronic Frontier
Foundation’s SSL Observatory, there are about 650-odd organiza-
tions that function as CAs [53]. An Android version ships 100s
of such trusted CA certificates in its KeyStore, 140 for Android
4.2 [17]. If any one of these CAs is compromised, a fake SSL cer-

www.bestbuy.com
www-ssl.bestbuy.com
www.bestbuy.com
bestbuy.com
bestbuy.com
bestbuy.com
bestbuy.com
foo.blogspot.com
blogspot.com
blogspot.com
blogspot.com
accounts.google.com
accounts.google.com
facebook.com


tificate for any Website can be created, allowing the holder of the
fake certificate to perform DNS redirection or MITM attacks.

In the wake of the CA compromises and growing cyber-political
tension, researchers have given increased attention to the CA model.
Convergence [42] is a promising solution resulting from this dis-
course. Convergence is based on the idea of “trust agility,” where
the user chooses a set of notaries to validate certificates, and multi-
ple notaries can be added or removed as needed. Notaries situated
in different geographic areas can further reduce the possibility of
an attacker fooling all notaries. One option is to include a Con-
vergence module into NativeWrap. This would need to be coupled
with defining an initial set of notaries, as well as allowing the user
to configure the notary template used for all newly created appli-
cations. However, we currently use a simpler, and perhaps more
appropriate mechanism: SSL CA pinning.

Creating WebApp-specific native applications makes NativeWrap
suitable for using SSL CA pinning. Individual WebApps com-
monly only use one CA, therefore, it becomes possible to pin a root
CA certificate to a particular wrapper application. SSL CA pinning
significantly reduces the attack surface for many WebApps. For
example, since Google uses Equifax as a CA, a compromise of Co-
modo would not affect the created WebView app. In fact, many
third-party developers have begun using SSL pinning for their na-
tive apps. Unfortunately, doing so has proved to be error prone [20].

NativeWrap uses a first-use approach to acquire the CA certifi-
cate for the WebApp loaded in the native wrapper, i.e. we extract
the CA certificate associated with the URL passed to NativeWrap.
We then configure a TrustManager for the WebView class that only
allows that root CA for SSL verification. We note that this ap-
proach is less flexible than Convergence, as the WebApp may wish
to change its CA, which would require the WebView app to be
recreated. This is not a problem for WebView apps created by third-
parties, as they could simply distribute an updated version in the ap-
plication market. The first-use approach is also subject to compro-
mise during acquisition of the CA certificate used for the pinning.
Finally, WebApps that use multiple CAs may nondeterministically
fail. However, we did not experience any such problems during our
compatibility study described in Section 5.1.

3.2.4 Force HTTPS
Many Websites provide both HTTP and HTTPS versions of their

content. Unfortunately, URL references in content do not always
use the HTTPS version of a URL when the user is visiting the
HTTPS version of the site. ForceHTTPS [34] is a solution that
allows Website owners to configure the site to inform the browser
that HTTPS should be used for all connections. However, to take
advantage of ForceHTTPS, the user must be aware that an HTTPS
version of the site is available. For example, Google Search pro-
vides both HTTP and HTTPS versions, and until only recently, the
user would need to type “https://” to visit the HTTPS version.
To take advantage of the optional HTTPS versions of Websites, the
Electronic Frontier Foundation (EFF) created the HTTPS Every-
where project [16]. This project provides an extension for Firefox
and Chrome that consults a regular expression based rule set iden-
tifying Websites that have an HTTPS version. Users using the ex-
tension can ensure that they visit the HTTPS version of a Website
whenever possible, without the need to type “https://”.

We have incorporated the HTTPS Everywhere concept into Na-
tiveWrap. When the user shares a URL with NativeWrap, Na-
tiveWrap consults the HTTPS Everywhere rule set to determine
if an HTTPS version of the Website is available. If so, the Na-
tiveWrap configuration template includes a “ForceHTTPS” check-
box, with the value selected by default.

Browser

Main 
Activity

temp.apk AppMaker

NativeWrap
Browser App

Browser

Facebook Native

http://m.facebook.com

Android Installer

A

C

B

D

A

D

C

B

: URL = http://m.facebook.com

: URL = http://m.facebook.com
  Name = Facebook Native

: APK = facebook_native.apk 

: Start App = Facebook Native

Figure 3: NativeWrap Implementation: Wrapping the Face-

book WebApp to create the Facebook Native application.

If the user creates the app with the ForceHTTPS option enabled,
the matched rule is included in the created WebView app. When the
user uses the app, the rule is matched against every visited URL,
substituting the HTTPS version whenever possible. Packaging a
single rule works, since the wrapper is pinned to a single domain.
This also works if the user selects the option to pin the wrapper to
pin to the domain of the origin (e.g., *.google.com instead of
images.google.com). In this case, the rule for *.google.
com is applied, covering all its sub-domains.

We know that there are multiple ways to maintain the HTTPS
Everywhere rule set. One option is to hard-code the rule set into
the NativeWrap app, and update it by distributing a new version
through the application market. However, this method is slow and
potentially annoying for users. Therefore, NativeWrap currently
retrieves the ruleset by making a secure connection to our remote
server, where the rules are stored and regularly updated as soon as
the EFF git repository is updated.

4. IMPLEMENTATION
In this section, we describe the implementation of NativeWrap

for the Android OS. We describe the basic flow of events that takes
place when a URL is native-wrapped. The core NativeWrap logic
is implemented as an Android application that can be installed on
any Android phone. The application includes a wrapper template
that is in and of itself an Android APK package. An example ex-
ecution using Facebook is shown in Figure 3. The source code for
NativeWrap can be found at http://research.csc.ncsu.
edu/security/nativewrap/.
1. Sharing the URL: The process begins with the user visiting
the target URL in the phone’s Web browser. Web browsers com-
monly have a “share” function that calls startActivity with
an intent addressed to the ACTION_SEND action string and a data
field containing the URL string of the current page. When Android
resolves ACTION_SEND, multiple targets are available, therefore
it opens a chooser dialog that allows the user to choose the target.
NativeWrap defines an intent filter for ACTION_SEND on its main

https://
https://
*.google.com
images.google.com
*.google.com
*.google.com
http://research.csc.ncsu.edu/security/nativewrap/
http://research.csc.ncsu.edu/security/nativewrap/


(a) NativeWrap Configuration
Screen

(b) Android Installer

Figure 4: Configuration and installation of a Facebook Native

app.

activity. As such, NativeWrap is started automatically by Android,
and there is no need for a persistent service.
2. Customizing the Wrapper: Once NativeWrap receives the in-
tent, it extracts the URL and populates the configuration template
with defaults, as described in Section 3. At this point, the user can
modify the URL, the pinned domain, specify an application name,
enable additional permissions, etc., as shown in Figure 4(a). The
user then chooses to “Make the APK”, which sends the customized
parameters to the AppMaker, which is a private activity component.
3. The AppMaker: When AppMaker receives the customized pa-
rameters, it copies the default wrapper APK file to temp.apk.
This APK is already configured to support SSL pinning, domain
pinning, and some usability features to support a maximum num-
ber of web applications. It is also designed to retrieve the URL
from an XML file in the /assets directory within the APK.

The AppMaker first extracts the AndroidManifest.xml from
temp.apk. We parse and modify the manifest file using AXML [5],
as it is in a binary XML format. We change the package name to
“com.nativewrap.wrapped<SERIAL>”, where “<SERIAL>”
is a 32 bit integer serial number that is incremented to avoid repeat-
ing package names. NativeWrap does not use part of the URL as
the package name to allow the user to make multiple WebView apps
for the same domain, e.g., with different security settings.

AppMaker changes the package name only in the manifest file. It
does not rebuild the application. To ensure that the application ex-
ecutes correctly, we use the full classname of activity components
specified in the manifest. Using the default relative class names
attempts to call a nonexistent class, since the package name in the
manifest no longer matches the prefix on the Java classes.

Next, AppMaker modifies the label attribute of the main activ-
ity. This is the activity started by the phone’s application launcher,
and changing its label to the application name specified by user
ensures the user can easily find the WebView app in the list of icons
and in the settings menus. Additionally, if the user chooses external
storage read access, AppMaker adds a <uses-permission>
specification for READ_EXTERNAL_STORAGE.

Finally, AppMaker creates a new XML file for the Website URL,
adds that file and the modified manifest file to temp.apk. The re-

Table 2: HTML5 Compatibility Score Comparison
Feature (Max points.) Google Chrome NativeWrap
Parsing rules (10) 10 10
Elements (30) 25 25
Forms (110) 106 106
Microdata (5) 0 0
Location and Orientation (20) 20 20
Output (10) 5 5
Input (20) 13 3
User Interaction (25) 20 20
Performance (25) 25 20
Security (40) 28 28
History and Navigation (10) 10 10
Communication (35) 35 35
Video (35) 35 35
Audio (30) 25 20
Peer To Peer (15) 15 0
2D Graphics (25) 19 19
3D Graphics (25) 20 0
Animation (5) 5 5
Web Applications (20) 16 15
Storage (30) 28 28
Files (10) 10 10
Other (20) 14 14
Total (555) 484 428

sulting package is signed with a prespecified key and renamed to
<application-name>.apk. In order to install the .apk, the
installer must be able to read the file. The most obvious place to
store the .apk is the SDcard, which is effectively readable by all
applications. However, the SDcard is also effectively writable by
all applications. If the .apk is writable, a malicious application
may exploit a race condition by modifying the file before it is in-
stalled. To avoid this race condition, we place the .apk in the root
of NativeWrap’s /data directory and make the file world read-
able. Passing the full file path to the installer allows the package to
be installed.
4. Installing the APK: Once the APK is created, AppMaker sends
an intent message to the system with the full path to the APK to
initiate its installation. As shown in Figure 4(b), this intent invokes
the Android’s installer, which presents the user with a screen to
install the application. Once the user approves the permission list,
the WebView app is available in the phone’s application launcher.

5. EVALUATION
We begin the evaluation by comparing the HTML5 compatibil-

ity of NativeWrap with Google Chrome for Android, studying how
NativeWrap affects the compatibility of WebApps. Then, we de-
scribe two case studies to demonstrate the functionality and secu-
rity benefits of NativeWrap.

5.1 Compatibility
We test NativeWrap compatibility in two ways. First we test

raw HTML5 compatibility using a standard benchmark. We then
manually evaluate the top 250 Alexa Websites.

5.1.1 HTML5 Compatibility Test
We performed a compatibility test for HTML5 support using

html5test.com, on a Nexus 4 running Android 4.4.2. This test
evaluates a Web browser on how well it supports the upcoming
HTML5 standard, and generates a cumulative score chart for each
aspect examined. We also compare the NativeWrap results with
Chrome for Android (available for Android 4.0 and later).

html5test.com


Table 2 gives a comparison of Chrome for Android’s and Na-
tiveWrap’s wrapper’s performance in the HTML5 compatibility test.
We also note that NativeWrap performed exactly as well as the
stock Android 4.4 browser, and much better than the reported val-
ues for the stock Android 4.0 browser (272 points as per html5test.
com1), which confirms our choice to build the wrapper from scratch
rather than refactoring the AOSP browser.

Our wrapper, and in turn the Android WebKit, only partially sup-
ports some HTML5 elements, while it does not support features
like Microdata, 3D graphics, and peer to peer. However, we do sup-
port most other aspects of the standard, including form elements,
essential parsing rules, audio, and video. NativeWrap’s wrapper
generally scores similar to Google Chrome for most of the features.
Chrome scores better only in the input (access to webcam), audio
(Web Audit API), peer to peer (WebRTC and Data Channel), 3D
Graphics (WebGL 3D graphics), and Performance (Shared Work-
ers), and Web applications (custom search providers) categories.

5.1.2 Alexa Top 250 study
To further verify our results, we manually tested NativeWrap

for compatibility with the top 250 Websites in the world (filter-
ing the duplicates, such as google.in and google.cn) from
Alexa.com as of April 2013. Note that we skip websites in for-
eign languages that require login, therefore we actually consider
the top testable 250 Websites. It is worth mentioning that as of
September 2011, 34 of the top 100 websites had already converted
to HTML5 [41]. Even by a conservative estimate, the number is
likely to have gone higher since. We used a Samsung Galaxy Nexus
phone running Android version 4.2.2 for this experiment and the
case studies described in Section 5.2.

We made a native-wrapped application for each of these web-
sites, and simultaneously tested the Website in Chrome for Android
version 25. We tested the hypertext content as well as interactive
multimedia content such as HTML5 audio and video tags, and also
the intra-website navigation. None of the websites crash or exhibit
broken functionality during our tests, with some minor exceptions2,
that exhibit similar behavior on the AOSP Browser as well due to
HTML5 incompatibilities of the Webkit API. We infer the follow-
ing from our results:
1) Websites conservatively use HTML5 features, using the ones
commonly supported by most available browsers. For example, a
developer would want to consider the Android 2.3 browser, which
is still on about 46% of all Android devices as of February 2013 [27]
and scores a modest 200 points on the compatibility test.
2) Websites detect browser compatibility and present only compat-
ible features. Websites could also redirect the user to a HTML4
version, though we did not observe any redirection on our native-
wrappers, possibly because it is compatible with most required
HTML5 features that most websites currently use.
3) Websites handle errors and exceptions silently and transparently
from the user, especially when they are related to HTML5, which
is still not supported completely by most browsers.
4) NativeWrap supports HTML4 content well, and is completely
compatible with websites that still work on HTML4.

5.2 Case Studies

5.2.1 Slick Deals
The Slick Deals WebApp keeps the user updated with the latest

information on deals and offers on various products and services.
1Results accessed May 14, 2014.
2Dailymotion plays only the audio part of a video clip occasionally.

The Android app for Slick Deals is a WebView application, and
does not use the native Android User Interface to a great extent. It
is a fairly popular application installed in around 100,000 - 500,000
devices, with a four star ranking on the Google Play store. The app
loads a WebView with the web address of the mobile WebApp, i.e.,
http://m.slickdeals.net.

Slick Deals was one of the over-privileged applications obtained
from our application survey described in Section 2. An analysis
with Stowaway detected that the app requests the Android location
permissions (both coarse and fine location), but does not use any
API that require these permissions. Even if it did call API that
requested location, its purpose of displaying online deals would
not justify the need for location information.

We created a new Slick Deals app using NativeWrap for this case
study. The Slick Deals mobile website worked just as well on the
new app as it did in the browser. At the same time, the original
Slick Deals app did not offer any more functionality than the native
wrapped app, apart from a different font and color combination, but
was in fact vulnerable to activity hijacking attacks when scanned
with ComDroid [8].

5.2.2 Facebook for Android
Facebook tops the Alexa rankings as the most visited website

worldwide as of April 2013. The Facebook app is also the most
popular free Android app based on the number of installs from the
Google Play Store, somewhere between 100-500 million as of April
2013. Based on the sheer number of users whose privacy depends
on Facebook, it is an ideal candidate for a case study.

We compared three methods of accessing Facebook from an An-
droid device: 1) the Facebook WebApp accessed via the phone’s
Web browser shown in Figure 5(a), 2) the Facebook for Android
native app (version 3.1) shown in Figure 5(b), and 3) the native-
wrapped version of the Facebook app shown in Figure 5(c). We
evaluate each approach on two main factors: usability which mea-
sures the convenience and features offered to the user, and security
which is based on the vulnerabilities in the approach, possible at-
tack surfaces and potential privacy violations.
Accessing Facebook via the browser: As described in Section
2.3, using the Facebook app in the Web browser exposes the user to
various privacy and security problems, for e.g., the Facebook ’like’
button privacy issue or phishing attacks like the ’tabnabbing’. The
other two approaches do not face such problems as they are directly
installed as independent native applications on the smartphone, and
have their own separate resources.

The browser based approach also lacks the convenience of using
a native app, as the user has to go through an additional step, i.e.,
the Web browser. The other two approaches provide dedicated apps
for Facebook, and the native Facebook for Android app also utilizes
some of the smartphone’s resources and UI elements to provide
a more immersive experience. Therefore, the Web browser-based
approach clearly does not measure up to other two approaches, both
in terms of usability and security. Hence, we now only focus on the
remaining two approaches.
Facebook for Android vs. Facebook-wrapped: For this evalu-
ation, we created a native-wrapped Facebook application with the
URL m.facebook.com. We call it “Facebook-wrapped”. We
compare both the approaches on the basis of usability and security.

Facebook-wrapped and the Facebook for Android app are iden-
tical in terms of performing all of the core Facebook functionality,
such as browsing pages and profiles, liking and sharing objects, up-
loading pictures, managing the user’s account and privacy settings,
etc. Facebook-wrapped lacks three primary features that Facebook
for Android provides: 1) Android notifications, 2) contacts inte-

html5test.com
html5test.com
google.in
google.cn
http://m.slickdeals.net
m.facebook.com


(a) Facebook WebApp in Chrome
browser

(b) Facebook for Android app (c) Facebook-wrapped

Figure 5: Facebook Privacy Settings page.

gration, and 3) geo-location checkin. However, users willing to
sacrifice these features can benefit from privacy advantages.

Both the Facebook for Android and the Facebook-wrapped app
are installed as native applications, and hence are not affected by
the threats faced by the Web browser-based approach. The Facebook-
wrapped app can perform all of the core Facebook functionality.
Therefore, ideally, Facebook for Android should also not require
more than the Internet permission. This is not the case, because
Facebook for Android has many value-add features such as taking
pictures and geo-location check-in. However, Facebook for An-
droid also requests a number of non-obvious permissions. For ex-
ample, it can access call logs, contacts, and recently added a per-
mission allowing it to track what applications the user is currently
running [45]. While there are likely reasonable justifications for all
of Facebook for Android’s permission requests based on various
integration features, the functionality is not required by all users.

Facebook-wrapped on the other hand does not require any spe-
cial privilege other than network access and the permission to read
external storage (API 17 onwards, optional). The primary observed
drawback was the inability to use geo-location check in. How-
ever, we view Facebook-wrapped as a privacy friendly alternative
to Facebook for Android. Users interested in these privacy benefits
are less likely to use the location feature.

6. DISCUSSION
When designing NativeWrap, we debated between bundling it

with a custom Android and creating a stand-alone third party appli-
cation that can be downloaded from Google Play. Clearly, a stand-
alone third party application is more desirable and will reach a
wider audience. Unfortunately, this deployment approach requires
the user to modify the “Unknown Sources” application side-loading
security setting. That is, the user has to choose to allow apps
from unknown sources to install on the phone. Considering that
most users are not security experts, allowing side-loading of apps
from unknown sources may make the user vulnerable to attacks by

malicious applications. Expert users can reduce their vulnerabil-
ity time frame by checking the option immediately before using
NativeWrap, and unchecking it immediately afterwards. Testing
showed that “Unknown Sources” was the only Android security
option that needed to be disabled. NativeWrap was successfully
tested with the “Verify Apps” feature activated.

The “Unknown Sources” limitation can be eliminated by mak-
ing NativeWrap part of the Android OS. For example, NativeWrap
could be deployed as a pre-installed system application and config-
ured with the ApplicationInfo.FLAG_PRIVILEGED set in
the package manager service. Doing so would inform the system
package installer that NativeWrap install requests are not from an
unknown source.

7. RELATED WORK
Web browser hardening: Web browsers are the central aspect of
our Internet use. Anupam et al. analyzed JavaScript and VBScript
based attacks on the Web application data in 1998 [3], and their
work was one of the first to note how operating systems security
primitives (e.g., ‘ACL’ [23], ‘capabilities’ [56, 39, 48]) apply to the
multi-application environment in the browser. Since then, many
approaches based on standard OS primitives have been proposed
for enhancing the browser’s security.

Tahoma [10] treats Web applications as first class objects, and
uses virtual machines (VM) to isolate Web applications from each
other and the browser from the underlying operating system. Each
Web application instance starts in a new VM and has its own vir-
tual disk space, screen, input devices, etc. A key difference with
respect to NativeWrap is that Tahoma allows the Web application
to specify the domains that will run in its VM instance in a manifest
file. Delegating the browser configuration (domains to pin, secu-
rity enhancements, etc.) to the Web application exposes the user to
cross-site attacks and to some extent, phishing attacks described in
Section 2.3. App Isolation [7] similarly allows web developers to
configure domain pinning, and to optionally select isolated storage.



The OP Browser [28] splits the browser design into distinct function-
specific components (e.g., webpage, storage, user interface) and
makes the communication between these subsystems explicit, trust-
ing the underlying operating system and the Java Virtual Machine
(JVM) to maintain isolation between components. Such a model
makes browser compromise difficult to achieve through exploits
in individual subsystems, and provides strong isolation guarantees.
Although OP Browser starts Web applications in new instances
(processes), it still has a common cookie store for all Web appli-
cation instances in the storage component. Although the reference
monitor will follow the same origin policy, the common cookie
store will lead to privacy issues such as the Facebook ‘like’ but-
ton problem. Instead of simply starting a new process, NativeWrap
leverages the UID based separation provided by the underlying An-
droid OS and ensures complete isolation between wrappers.

Google’s Chrome for Android also leverages the UID based sand-
boxing provided by the Android OS. Every new browser ‘tab’ is
started in a new principal instance, i.e., a process, and every such
process has a different UID. This allows Chrome to regulate per-
missions allocated to each such principal, and provides isolation
with respect to resources and data for each principal. A major lim-
itation of the Chrome for Android browser is that is puts content
from various origins in the same tab, i.e., in the same principal in-
stance, meaning that the privileges allocated to a tab may still be
accessible to the content from a different origin than the main con-
tent of the tab, leading to cross site attacks.

The Gazelle Web browser [54] recognizes the need for isolating
Web application principals into separate instances. Content from
different domains, even if accessed in the same tab or embedded
in the same webpage, is put in separate principal instances. There-
fore, Gazelle prevents embedded content of one principal execut-
ing code in another principal’s context. In spite of such protections,
principals in Chrome as well as Gazelle share common resources
like cookie stores, which can result in privacy problems, some of
which are described in this paper. The fundamental reason behind
this difference is that NativeWrap’s wrapper provides a single Web
application environment, while Chrome for Android, Gazelle, OP
browser and other similar approaches [52, 33, 36, 7] attempt to
achieve complete app-specific isolation in a multi-app environment.
Privacy violations by native apps: Most Web browsers available
today are vulnerable to many of the attacks described in our threat
model (Section 2.3). Google’s Chrome for Android is relatively
resistant to browser compromise due to its UID based sandbox-
ing, but is still vulnerable to phishing and cross-site attacks. Na-
tive WebView apps defined in Section 2.1 by default do not share
browser state and cookie stores, and hence are not vulnerable to
cross-site or browser phishing attacks. Nevertheless, native Web-
View apps that are over-privileged cause privacy concerns [18, 32,
19, 26, 25, 51].

There are different strategies for preventing privacy violations
by such applications. Aurasium [57] repackages Android apps to
make them policy compliant and to prevent privilege escalation at-
tacks. A similar approach is taken by Dr. Android [37] and Ret-
roSkeleton [12]. TISSA [58] allows the user to manage the pri-
vate information granted to the app both during and after installa-
tion. It also has a provision to supply applications fake information.
Apex [43] retrofits the Android package installer to install an appli-
cation with custom policies. TaintDroid [18] uses taint tracking to
alert the user when an application tries to export private data off the
device. AppFence [32] and MockDroid [6] give the user a choice
to provide fake information to apps that demand private data. In
case the user needs to divulge information, AppFence prohibits the
receiving app from exporting the data off the device.

Modifying an application package or its functionality may cause
an application to break. Therefore, NativeWrap instead takes the
control out of the hands of the developer, and packages a reliable
template according to the security settings configured by the user.
Other WebApp wrappers: PhoneGap [44] allows developers to
create native wrappers for HTML5 WebApps, and also provides
JavaScript API to access the phone’s resources. Thus, PhoneGap-
based applications can potentially be just as privacy invasive as
other native applications. PhoneGap is also only used by devel-
opers to wrap their HTML5 apps in native wrappers, and cannot be
used by the user without the source code for the HTML5 app.

Finally, close in implementation, but drastically different in mo-
tivation, is the Fluid app [13]. Fluid is designed to create a native
version of any Website for Mac OS X for user convenience. Na-
tiveWrap is designed specifically to address the security and pri-
vacy needs of smartphone users and is proposed as an alternate
model for accessing Web content on smartphones. As such, Fluid
does not provide the best practices security configuration provided
by NativeWrap, nor does it provide the basic facility, i.e., a separate
cookie store per wrapped WebApp in its free version.

8. CONCLUSION
Third-party native applications have become the de facto way for

users to access Web content on smartphones. In this paper, we ar-
gued that native applications offer many security and privacy bene-
fits over accessing the Web content using the phone’s Web browser.
Unfortunately, many of the native applications provided by third-
parties contain privacy concerns in and of themselves. To resolve
this tension, we proposed NativeWrap as an alternative approach
for smartphone users to access Web content. NativeWrap “wraps” a
given URL into a native application and applies security best prac-
tices configuration. In doing so, NativeWrap removes third-party
developers from platform code and places users in control of pri-
vacy sensitive operation.

Acknowledgements
This work was funded in part by the National Security Agency, and
NSF grants CNS-1222680 and CNS-1253346. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the funding agencies. We would also like to thank Tsung-Hsuan
Ho, Ashwin Shashidharan, our shepherd Aurélien Francillon, and
the anonymous reviewers for their valuable feedback during the
writing of this paper.

9. REFERENCES
[1] C. Amrutkar, K. Singh, A. Verma, and P. Traynor.

VulnerableMe: Measuring Systemic Weaknesses in Mobile
Browser Security. In Proceedings of the International
Conference on Information Systems Security (ICISS), 2012.

[2] android4me - J2ME port of Google’s Android.
https://code.google.com/p/android4me/.
Accessed August 2012.

[3] V. Anupam and A. Mayer. Security of web browser scripting
languages: vulnerabilities, attacks, and remedies. In
Proceedings of the 7th USENIX Security Symposium, pages
187–200, 1998.

[4] Apple. Apple Updates iOS to 6.1, Mar. 2013.
http://www.apple.com/pr/library/2013/01/
28Apple-Updates-iOS-to-6-1.html.

https://code.google.com/p/android4me/
http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-1.html
http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-1.html


[5] axml - Read write android binary xml files.
https://code.google.com/p/axml/. Accessed
January 2013.

[6] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application Functionality
on Smartphones. In Proceedings of the 12th Workshop on
Mobile Computing Systems and Applications (HotMobile),
2011.

[7] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson. App
Isolation: Get the Security of Multiple Browsers with Just
One. In Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 2011.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing Inter-Application Communication in Android. In
Proceedings of the 9th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2011.

[9] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-Related Policy Enforcement for Android. In
Proceedings of the 13th Information Security Conference
(ISC), Oct. 2010.

[10] R. S. Cox, J. G. Hanson, S. D. Gribble, and H. M. Levy. A
safety-oriented platform for web applications. In 2006 IEEE
Symposium on Security and Privacy, pages 15–pp, 2006.

[11] N. Cubrilovic. Logging out of Facebook is not enough.
http://www.nikcub.com/posts/
logging-out-of-facebook-is-not-enough,
2011.

[12] B. Davis and H. Chen. RetroSkeleton: Retrofitting Android
Apps. In Proceedings of the International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2013.

[13] T. Ditchendorf. Turn Your Favorite Web Apps into Real Mac
Apps. http://fluidapp.com/about/, 2012. Accessed May 5,
2013.

[14] A. Efrati. ’Like’ Button Follows Web Users.
http://online.wsj.com/article/
SB10001424052748704281504576329441432995616.
html?mod=WSJ_Tech_LEADTop, 2011.

[15] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings
of the ISOC Network and Distributed System Security
Symposium (NDSS), Feb. 2011.

[16] Electronic Frontier Foundation. HTTPS Everywhere.
https://www.eff.org/https-everywhere.
Accessed April 2013.

[17] N. Elenkov. Certificate pinning in Android 4.2.
http://nelenkov.blogspot.com/2012/12/
certificate-pinning-in-android-42.html,
2012.

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2010.

[19] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
Study of Android Application Security. In Proceedings of
the 20th USENIX Security Symposium, August 2011.

[20] S. Fahl, M. Harbach, T. Muders, L. Baumgartner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: an analysis of android SSL (in)security. In
Proceedings of the 2012 ACM conference on Computer and
communications security(CCS), 2012.

[21] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2011.

[22] A. P. Felt and D. Wagner. Phishing on Mobile Devices. In
Proceedings of the Workshop on Web 2.0 Security and
Privacy (W2SP), 2011.

[23] G. Fernandez and L. Allen. Extending the Unix Protection
Model with Access Control Lists. In Proceedings of the
USENIX Summer Symposium, pages 119–132, 1988.

[24] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 38–49, 2012.

[25] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In Trust
and Trustworthy Computing, Lecture Notes in Computer
Science Volume 7344, 2012.

[26] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
Exposure Analysis of Mobile In-App Advertisements. In
Proceedings of the ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec), 2012.

[27] D. Graziano. Jelly Bean’s market share is up but Gingerbread
just won’t die.
http://bgr.com/2013/02/08/android-
version-distribution-february-2013-316698/,
2013. Accessed April 2013.

[28] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the OP web browser. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, 2008.

[29] P. Guhring. Concepts against Man-in-the-Browser Attacks.
http://www.cacert.at/svn/sourcerer/
CAcert/SecureClient.pdf. Accessed December
2012.

[30] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng. Comparing
Mobile Privacy Protection through Cross-Platform
Applications. In Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), 2013.

[31] H. Hao, V. Singh, and W. Du. On the Effectiveness of
API-Level Access Control Using Bytecode Rewriting in
Android. In Proceedings of the ACM SIGSAC Symposium on
Information Computer and Communications Security
(ASIACCS), 2013.

[32] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These Aren’t the Droids You’re Looking For: Retrofitting
Android to Protect Data from Imperious Applications. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2011.

[33] L.-S. Huang, Z. Weinberg, C. Evans, and C. Jackson.
Protecting browsers from cross-origin CSS attacks. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 619–629, 2010.

[34] C. Jackson and A. Barth. ForceHTTPS: Protecting
High-Security Web Sites from Network Attacks. In
Proceedings of the 17th International ACM Conference on
World Wide Web, 2008.

[35] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
Proceedings of the 15th international conference on World
Wide Web, pages 733–744. ACM, 2006.

https://code.google.com/p/axml/
http://www.nikcub.com/posts/logging-out-of-facebook-is-not-enough
http://www.nikcub.com/posts/logging-out-of-facebook-is-not-enough
http://online.wsj.com/article/SB10001424052748704281504576329441432995616.html?mod=WSJ_Tech_LEADTop
http://online.wsj.com/article/SB10001424052748704281504576329441432995616.html?mod=WSJ_Tech_LEADTop
http://online.wsj.com/article/SB10001424052748704281504576329441432995616.html?mod=WSJ_Tech_LEADTop
https://www.eff.org/https-everywhere
http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html
http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html
http://bgr.com/2013/02/08/android-
version-distribution-february-2013-316698/
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
http://www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf


[36] K. Jayaraman, W. Du, B. Rajagopalan, and S. J.Chapin.
ESCUDO: A Fine-Grained Protection Model for Web
Browsers. In Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing Systems
(ICDCS), pages 231–240, 2010.

[37] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,
J. S. Foster, and T. Millstein. Dr. Android and Mr. Hide:
Fine-Grained Permissions in Android Applications. In
Proceedings of the ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM), 2012.

[38] D. Kaplan. DigiNotar breach fallout widens as more details
emerge. http://www.scmagazine.com/
diginotar-breach-fallout-widens-as-more-
details-emerge/article/211349/, 2011.

[39] P. A. Karger and A. J. Herbert. An Augmented Capability
Architecture to Support Lattice Security and Traceability of
Access. In Proceedings of the IEEE Symposium on Security
and Privacy, May 1984.

[40] W. Leonhard. Weaknesses in SSL certification exposed by
Comodo security breach. https://www.infoworld
.com/t/authentication/weaknesses-in-ssl-
certification-exposed-comodo-security-
breach-593, 2011.

[41] K. Maine. Percentage of Web sites Using HTML5.
http://www.binvisions.com/articles/
how-many-percentage-web-sites-using-html5/,
2011. Accessed April 2013.

[42] Moxie Marlinspike. Convergence.
http://convergence.io/. Accessed March 2013.

[43] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-defined Runtime Constraints. In Proceedings of
ASIACCS, 2010.

[44] PhoneGap. http://phonegap.com/about/, 2012. Accessed May
5, 2013.

[45] E. Protalinski. Facebook’s Android app can now retrieve data
about what apps you use. http://thenextweb
.com/facebook/2013/04/13/facebooks-
android-app-can-now-retrieve-data-
about-what-apps-you-use/, 2013.

[46] A. Raskin. Tabnabbing: A new type of phishing attack.
http://www.azarask.in/blog/post/
a-new-type-of-phishing-attack/, 2010.

[47] Scott Thurm and Yukari Iwatani Kane. Your Apps Are
Watching You. http://online.wsj.com/article/
SB10001424052748704694004576020083703574602.
html.

[48] J. S. Shapiro. EROS: A Capability System. PhD thesis,
University of Pennsylvania, 1999.

[49] B. Slawski. Facebook Patent Application Describes
Receiving Data from Logged-Out Users to Target Ads.
http://www.seobythesea.com/2011/09/
facebook-patent-application-target-ads/,
2011.

[50] smali - An Assembler/Disassembler for Android’s dex
Format. https://code.google.com/p/smali/.
Accessed April 2013.

[51] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Investigating user privacy in android ad libraries. In IEEE
Mobile Security Technologies (MoST), 2012.

[52] S. Tang, H. Mai, and S. T. King. Trust and Protection in the
Illinois Browser Operating System. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, 2010.

[53] The Electronic Frontier Foundation. EFF SSL Observatory.
https://www.eff.org/observatory. Accessed
October 2012.

[54] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principle OS
Construction of the Gazelle Web Browser. In Proceedings of
the USENIX Security Symposium, 2009.

[55] B. Womack. Google Says 700,000 Applications Available
for Android. Bloomberg Businessweek, Oct. 2012. http:
//www.businessweek.com/news/2012-10-29/
google-says-700-000-applications-
available-for-android-devices.

[56] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: The Kernel of a
Multiprocessor Operating Systems. Communications of the
ACM, 17(6), June 1974.

[57] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical
Policy Enforcement for Android Applications. In
Proceedings of the USENIX Security Symposium, 2012.

[58] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
Information-Stealing Smartphone Applications (on
Android). In Proceedings of the International Conference on
Trust and Trustworthy Computing (TRUST), June 2011.

http://www.scmagazine.com/
diginotar-breach-fallout-widens-as-more-
details-emerge/article/211349/
https://www.infoworld
.com/t/authentication/weaknesses-in-ssl-
certification-exposed-comodo-security-
breach-593
http://www.binvisions.com/articles/how-many-percentage-web-sites-using-html5/
http://www.binvisions.com/articles/how-many-percentage-web-sites-using-html5/
http://convergence.io/
http://thenextweb
.com/facebook/2013/04/13/facebooks-
android-app-can-now-retrieve-data-
about-what-apps-you-use/
http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/
http://www.azarask.in/blog/post/a-new-type-of-phishing-attack/
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://www.seobythesea.com/2011/09/facebook-patent-application-target-ads/
http://www.seobythesea.com/2011/09/facebook-patent-application-target-ads/
https://code.google.com/p/smali/
https://www.eff.org/observatory
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-
available-for-android-devices

	Introduction
	Motivation
	Background
	Application Survey
	Threat model

	NativeWrap Design
	Design Objectives
	Design Elements
	Secure Configurable Wrapper
	Domain Pinning
	SSL Pinning
	Force HTTPS


	Implementation
	Evaluation
	Compatibility
	HTML5 Compatibility Test
	Alexa Top 250 study

	Case Studies
	Slick Deals
	Facebook for Android


	Discussion
	Related Work
	Conclusion
	References

