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Abstract—This paper introduces a network and host-based co-
operative system for defending against code-reuse attacks that
bypass exploit mitigation strategies. While the combination of
address space layout randomization (ASLR) and data execution
prevention (DEP) provide the means for mitigating exploitation,
attackers routinely bypass these mechanisms by borrowing code
from shared libraries that lack the same protections or by abusing
memory leaks. This paper illustrates the ability to identify code-
reuse attacks through cooperation between the traffic proxy and
destination host. With the context of the host, the network has
the ability to prevent code-reuse, and ultimately, exploitation.
Through experimentation, we demonstrate that our cooperative
system can effectively defeat a wide variety of code-reuse attacks,
including newer attack vectors such as Just-in-Time-Flash or
jump-oriented gadgets. Our experiments indicate our prototype
is compatible with popular software such as Internet Explorer,
Adobe Reader, and Microsoft Office applications and proved
successful mitigating code-reuse attacks.

Keywords–code-reuse attacks; return-oriented programming; in-
trusion prevention system; proxy.

I. INTRODUCTION

Identifying and defending against exploits in the wild is an
ongoing challenge. While system protections such as Address
Space Layout Randomization (ASLR) and Data Execution Pre-
vention (DEP) make vulnerabilities more difficult to exploit,
they can be bypassed using code-reuse attacks (e.g., Return
Oriented Programming [ROP], Jump Oriented Programming
[JOP], SigReturn Oriented Programming [S-ROP], and Just In
Time Return Oriented Programming [JIT-ROP]).

In 2012, Microsoft’s BlueHat Challenge [1] awarded over
a quarter of a million dollars to three solutions that defended
against ROP. Within a year, Shacham et al. [2] successfully
bypassed every ROP protection that had been awarded a
prize. Additionally, after Microsoft integrated the BlueHat
Challenge winner solutions into their commercial product The
Enhanced Mitigation Experience Toolkit (EMET), DeMott [3]
demonstrated separate methods for bypassing all twelve system
protections included in EMET. Most defense mechanisms have
focused exclusively on the host by either compiling gadget-
free binaries, protecting critical functions [4], or performing
runtime randomization [5], control flow analysis [6], or sys-
tem caller checking [7] [8] [9]. However, all have shown
weaknesses by making the potential victim responsible for
managing its own safeguards.

In contrast to these prior approaches, we propose a system
for defending against code-reuse attacks that pushes the de-
fense to the network but still relies on the host to provide the
active context of the attack. We focus exclusively on preventing
the code-reuse attacks (e.g., ROP, JOP, S-ROP, JIT-ROP) used

to bypass system protections (e.g., ASLR, DEP). The key idea
behind our solution is the concept of parameter suspicion. We
make the assumption that a code-reuse attack will be used to
bypass memory protections by allocating a protected region
of memory as executable. Further, we make the assumption
that a code-reuse attack will borrow code in order to execute
a memory-related function. Instead of monitoring the specific
function calls that may allocate or change memory protections,
we attempt to identify the parameters used by the function
call. Parameter suspicion identifies the generic behavior that
occurs prior to a code-reuse attack. It identifies when the
attacker abuses memory to load data into registers, functioning
as parameters for a call to a critical system call or function.

In this paper, we propose and implement Code-Stop, a
collaborative system that protects an application from code-
reuse attacks that bypass system protections. Code-Stop relies
on parameter suspicion to identify a code-reuse attack. We
implement Code-Stop on top of an existing traffic proxy in
communication with destination hosts. We observe that Code-
Stop can prevent modern client-side attacks at the network
layer only with the emulated context being provided by the
host. We demonstrate that prevention can occur with minimal
overhead by reducing the critical area of traffic that must be
tested. Our prototype scans for potential code-reuse attacks
in PDF documents, JavaScript, Adobe Flash, and Microsoft
Office documents, which account for 72.9% of vulnerable file
types [10].

This paper makes the following contributions:

• We design and implement Code-Stop to protect against
the broader threat of client-side attacks that use code-
reuse attacks. Code-Stop allows the traffic proxy to make
context-aware decisions about malicious traffic based on the
emulated impact on the destination host.
• We propose the technique of parameter suspicion to identify

code-reuse attacks with low false positives. Parameter sus-
picion emulates potential gadgets to determine the impact
on the general purpose registers used as parameters when
calling Windows API functions. Specifically, parameter sus-
picion identifies the parameters used for a Windows API
function that allocates or changes memory as executable.
• We evaluate the accuracy, performance overhead, scalability

and coverage of Code-Stop. We observe Code-Stop’s abil-
ity to prevent code-reuse attacks without producing false
positives with a large set of known malware-free files.
Code-Stop’s performance overhead and delay scales with
typical proxy configurations and anti-virus scanning proxy
solutions. We evaluate that Code-Stop can detect a wide
range of code-reuse attacks without modification.



The remainder of this paper is as follows. Section II
provides a background on memory protection mechanisms
and code-reuse attacks. Section III examines the challenges
with preventing code-reuse attacks. Section IV provides an
overview of our solution. Section V examines the design of
our prototype solution. Section VI evaluates our prototype,
Code-Stop. Section VII discusses the limitations and future
work. Section VIII discusses recent related work in the field
of preventing code-reuse attacks, and Section IX concludes.

II. BACKGROUND AND MOTIVATION

To understand the defense system presented in this pa-
per, we must review common mitigation strategies, including
ASLR, DEP, and compile-time, run-time, and network-layer
exploit prevention mechanisms.

Address Space Layout Randomization: Implemented in
early 2002, ASLR provided one of the earliest means to
decrease the effectiveness of an exploit. ASLR prevents an
attacker from using a predictable and pre-calculated virtual ad-
dress for code reuse in an exploit. ASLR can randomize the lo-
cation of code by randomizing the starting address of dynamic-
linked libraries, the base address of the heap, or the location of
routines and static data in the executable [11] [12] [13]. Initial
research targeting ASLR implementations studied the effec-
tiveness of defeating the entropy of code randomization [2].
However, attackers found it far more useful to bypass ASLR
entirely. Notably, the initial release of Windows Vista Service
Pack 0 only randomized the base address of executables
and dynamic link libraries [14]. The poorly implemented
Vista design effectively allowed attackers to bypass ASLR
by partially overwriting the address offset without overwriting
the randomized base address. Another common means for
bypassing ASLR borrows code from dynamic link libraries
(DLL) that lack ASLR. Several recent attacks in the wild have
relied upon using DLLs without ASLR [15] [16]. Attackers
routinely execute these attacks by forcing the application to
load a DLL that implements extra functionality.

Data Execution Prevention: The 2004 release of Windows
XP Service Pack 2 introduced the DEP security feature [17]
[18]. In Windows OS, hardware DEP works similar to Linux
W⊕X, which uses the non-executable (NX) bit to mark
memory as executable. Under W⊕X or DEP, memory may
be executable or writable, but not both [19]. This isolation of
memory mitigates control flow hijacking by preventing stack-
based buffer overflows. Combined with ASLR, DEP defeated
control flow hijacking on the Windows OS until Shacham [20]
and Litchfield [17] proposed the first code-reuse attacks.

Code-Reuse Attacks: In 2005, Litchfield proposed the first
means of defeating DEP by returning to the VirtualAlloc()
function [17]. Litchfield borrowed heavily from a Linux tech-
nique known as to return to libc, which replaced the return
address on the stack with the address from a function call
borrowed from the libc library. Return-Oriented-Programming
(ROP) expands upon return to libc by chaining a series of
borrowed code snippets together to execute a specific purpose.
Under Windows, ROP often overwrites the return address
with a chain of addresses that point to borrowed code inside
shared libraries. ROP chains these borrowed fragments of code
together to disable the DEP security mechanisms [21]. While
the application’s sandbox may implement memory protections,

attackers often dynamically load shared libraries in order to
borrow code and escape the sandbox of protection.

Under ROP, each small fragment (gadget) borrows a small
piece of code that is followed by a return. The variable x86
instruction length eases the difficulty of gadget discovery,
since gadgets can be borrowed from the offset of a logical
address. The assembly of gadgets typically disables protection
mechanisms in order to allow malicious shell-code to execute.
This commonly involves placing specific values into general
purpose registers before calling a Windows API function that
disables the security protection of DEP.

Our solution to preventing code-reuse relies on the fact that
an attacker must use gadgets to load these values into registers
before calling the API function. In this way, we can observe
the generic behavior in order to identify attacks. The next
section examines the challenges in preventing against code-
reuse attacks.

Host and Network Based Cooperative Defense: In Sec-
tion VIII, we discuss the shortcomings of previous host-
only or network-only defense mechanisms. We argue that the
shortcomings of the host-layer and network-layer defenses can
be addressed by using the network to defend with the context
of the host. Previous work has examined emulating arbitrary
data at the network to determine if it is part of a payload
of an attack. However, code-reuse attacks rely on borrowing
code from specific memory addresses. Since these addresses
vary between application and operating system versions, the
network must be aware of the dynamic context of the host to
successfully identify a code-reuse attack.

III. CHALLENGES

Our prototype, Code-Stop, hardens the security of the host
under protection and provides new opportunities to identify at-
tacks in progress. However, enabling this protection introduces
challenges that we address:

C-1 Ability to identify dynamic sandbox escapes. One method
commonly used by attackers forces an application to load
a library lacking the same protection mechanisms as the
application, so that the attacker escapes the sandbox of
protection. This can be seen in recent attacks against
Internet Explorer (with the hxds.dll bypass) and
Adobe Reader (with icuncnv36.dll bypass.) [22],
[23] Content that forces dynamic loading presents an
interesting challenge for a host-based context emulator.
In Section V-C, we introduce the concept of disarmed
reading, which removes the content for a code-reuse
attack and allows the application to determine whether
the suspected file forces the loading of a shared library
without ASLR. Preventing dynamic attacks is where our
approach notably differs from previous approaches [24].

C-2 Ability to seamlessly protect different application and op-
eration system versions and configurations. The address
space layout protection mechanisms and fixed address
space used in various bypass mechanisms differ within
versions and configurations. Therefore, the proxy must
dynamically construct the context of the attack to detect
attacks and not be overwhelmed with a range of false
positives. In Section V-B, we outline the design of the Pa-
rameter suspicion technique that uses the context gained
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Figure 1. Overview of Code Stop

from the host to make an informed decision about the
malicious nature of content.

C-3 Impact on application performance. Security and per-
formance must always be closely balanced. Code-Stop
protects client-side applications (Adobe Reader, Internet
Explorer, Microsoft Office) from attacks where the con-
tent is rendered over the network. In Section V-A, we
introduce the concept of parsing and scanning only the
most absolutely necessary critical-space in affected file-
formats (e.g., HTML, SWF, PDF, and DOCX).

IV. APPROACH

Our goal is to prevent the exploitation of a client side
application by identifying the presence of code-reuse attacks
in arbitrary data, such as an HTML document, PDF document
stream, or Flash object. We focus on these document types
since they account for 72.9% of malicious documents used in
exploit kits in 2014 [10]. To successfully identify an attack,
each input must be inspected with regard to the actual file
format and structure to reconstruct how that data would be
allocated into application memory. Figure 1 depicts the high
level overview of our Code-Stop prototype. Our prototype is
implemented on a network proxy, that scans suspected files to
identify valid addresses that correspond to code-reuse attacks.
Our approach differs from previous approaches because it in-
cludes dynamic context from the host under attack to determine
if suspected data is part of a code-reuse attack.

Our hybrid approach combines the benefits of both the
network layer and host layer to effectively identify and mit-
igate code-reuse attacks. We discuss the benefits of several
host-based defenses [7] [8] [25] [26] and network-based de-
fenses [24] [27] [28] [29] in Section VIII. However, few works
have examined the benefits of combining the network and host
together in defense of code-reuse attacks. Tzermias et al. [30]
presented a method for the identification of ROP payloads in
arbitrary data such as network traffic. However, their work
failed to address the dynamic context of the host. The dynamic
context of the host proves extremely important to monitor
as an application can be forced to load shared libraries by
processing an arbitrary document. Our work improves upon
the design of Tzermias et al. by adding dynamic context of the
host. Several optimizations arise out of our shared approach
from Tzermias et al. By adding the network layer into the host
defense, we store the record of known malicious documents.
Further, caching the result of known-malicious documents
allows the network layer to extend protection to hosts without
our prototype software.

Assumptions and Threat Model:

We make two general assumptions in our prototype design:

1) We implement our Code-Stop prototype on the 32-bit
architecture instruction set. We make the assumption that
expanding our prototype to support a 64-bit architecture
will only decrease the probability of false alarms. Sec-
tion VI-B discusses the probability of false alarms and
further explains this assumption. Further, the vast avail-
ability of exploits and ROP Chains for 32-bit applications
provided for better testing of our prototype.

2) We do not address de-obfuscation as a topic for this
paper. Rather, our prototype relies upon pdf-parser [31]
and jsunpack [32] as means for de-obfuscating content.
We make the general assumption that the proxy can de-
obfuscate content or simply block heavily obfuscated
content as already malicious in nature. Previous works
have addressed de-obfuscating malicious code from PDF
documents [33] and browser downloads [34]. Further,
Section V-A discusses Code Stop’s design for parsing
content, supporting this assumption. Further, we expand
on the limitation of de-obfuscation in Section VII. Future
work may examine de-obfuscation of malicious content
and the likelihood obfuscated content is benign.

We make the following assumptions in our threat model.
The adversary can exploit (i.e., control the flow of execution)
of a client application (under our protection). Further, the
adversary has the ability to read or infer randomized memory
from those binary and shared libraries. However, we assume
the attacker must bypass both DEP and ASLR to complete
their exploit and execute a payload (e.g., download a remote
access toolkit, add a user, or disable processes.) The trusted
computing base (TCB) includes the network proxy software
that parses the potential gadgets and the host application
that determines the context of the gadgets. We trust that
the context determined by the host application has not been
altered by a malicious administrator. Finally, we assume that
a trusted network channel exists between the host and the
network proxy. The channel is available and preserves the
traffic integrity between the proxy and the host. Given the
above-described challenges, assumptions and threat model, the
next section examines the design in detail.

V. DESIGN

The following section describes the design of our proto-
type, Code-Stop. In Section V-A, we address how the network
proxy parses the critical space of files to identify gadgets used
in Code-Reuse attacks. Section V-B proposes the concept of
parameter suspicion to identify code-reuse attacks in progress
by using the emulated context of the host. Section V-C details
disarmed reading, which disarms a malicious file in order
to safely identify mitigation bypass techniques. Section V-D
provides an example to illustrate how our prototype prevents
an attack. Finally, Section V-E discusses how to extend Code-
Stop to identify other generic exploit behaviors and operating
systems.

A. Parsing Potential Gadgets

In our prototype design, the network proxy runs an appli-
cation that parses arbitrary data for indicators of a potential
code-reuse attack. By de-obfuscating content and further de-
compiling and de-constructing specific file formats, the pro-
totype looks for arbitrary data that represents 32-bit memory
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Figure 2. PDF streams containing ROP gadgets

addresses or references to a variable that would contain a 32-
bit address. A 32-bit memory address can be constructed many
ways in memory and our parser matches regular expressions
for several methods for allocating arbitrary data as 32-bits.

Consider Figure 2 for how our prototype parses a potential
gadget out of a PDF File. In the example, our network proxy
parser application uses pdf-parser [31] to read the embedded
JavaScript inside the document. The parser then matches a reg-
ular expression for a unicode string containing two characters.
Since unicode strings are 16-bits wide, two unicode characters
are commonly used by attacks to represent a 32-bit memory
address. The parser matches the potential gadget 0x4a82313d
against the unicode string %u313d %u4a82 and passes the
potential gadget to the paramater suspicion classifier.

For our prototype, we implemented the parser to examine
browser traffic, including Internet Explorer Javascript, Adobe
Flash Vector Objects (Actionscript) and PDF Files containing
Javascript. While there are several other client side applications
- we implemeted our prototype to cover the client applications
that presented the largest surface area for recent exploits seen
in the wild. In 2015, Trend Micro observed that Internet
Explorer, Flash, and Adobe PDFs vulnerabilities accounted for
72.9% of the exploits used in the top nine exploit kits [10].

Within those specific file formats, the parser matches
JavaScript’s binary strings (BSTR) and Adobe Flash Objects
containing ActionScript code. As illustrated with the PDF
JavaScript, an attacker can cleanly construct a gadget for In-
ternet Explorer JavaScript with a binary string of two unicode
characters that refer to a 32-bit address. Although Internet
Explorer 9 removed BSTR functionality, Yu [35] discovered a
method for calling the earlier version of JavaScript on newer
browsers by adding an HTML compatibility tag. Our prototype
also decompiles Adobe Flash files and matches the embedded
ActionScript code for gadgets. ActionScript code offers similar
means to allocate arbitrary data as 32-bit addresses [36]. With
this understanding of how our Code-Stop prototype parses
allocated gadgets, the next section examines how Code-Stop
detects the generic behavior of code-reuse attacks.

B. Parameter Suspicion Classifier

In order for a code-reuse attack to allocate or change mem-
ory protections, it must make a call to a Windows API function
that manages memory (e.g., VirtualAlloc, VirtualProtect, Set-
InfoProcess.) Calling functions that allocate or change memory
require parameters such as the location of memory, size, and
bitwise value for new memory protections. These parameters
must be placed into data registers in order to be pushed onto the
call stack as parameters to the function. Rather than targeting
specific API function calls, we propose the idea of a parameter
suspicion classifier. The parameter suspicion classifier runs
entirely on the host to emulate potential gadgets. Parameter
suspicion determines if the instructions from the suspected

TABLE I. REGISTER VALUES FOR COMMON ROP CHAINS

Register VirtualAlloc() SetInfoProcess() VirtualProtect()

EAX Ptr to
VirtualAlloc

SizeOf
0x00000004

Ptr to
VirtualProtect

EBX dwSize
0x00000001

NtCurrentProcess
0xffffffff

dwSize
0x00000001

ECX flProtect
0x00000040

&ExecuteFlags
Ptr to 0x00000002 Writable Address

EDX flAllocationType
0x00001000

ProcessExecuteFlags
0x00000022)

NewProtect
0x00000040

gadgets load values into multiple general purpose registers.
Parameter suspicion overcomes the limitations of most code-
reuse defenses by identifying the anomalous characteristics of
a bypass, rather than looking for specific dangerous function
or system calls. We expand upon how and why it works, and
the probability for false positives.

To understand how parameter suspicion works, consider
Figure 3. The ROP gadgets placed onto the stack refer to in-
structions in the msvcr71.dll used by Java 1.6. The gadgets
are part of a larger chain used to execute the VirtualProtect()
function. After the proxy has parsed and sent potential gadgets
to the host, the host emulates the effects and determines the
chain loaded values into the ECX, EBX, and EDX registers.
The key insight of parameter suspicion is that we do not
need to trap the exact jump or call to the VirtualProtect()
function. Rather, we can detect the gadgets placing parameter
values into ECX, EBX, and EDX, respectively, to match the
lpAddress, dwSize, and flNewProtect parameters required by
VirtualProtect(). Using our technique we can identify any
generic function call used to bypass DEP/ASLR.

We expand this understanding to other critical functions
used to bypass DEP. Table I depicts the register values allo-
cated for the VirtualAlloc(), SetInfoProcess(), and VirtualPro-
tect() functions from ROP Chains generated by the Mona.py
toolkit (a commonly used tool to automatically build ROP
Chains) [37]. Note that each function requires a minimum of
three parameters in addition to a pointer to the critical function.
In fact, most of the 50 critical functions checked by EMET
require a minimum of three parameters. Functions that allocate
new memory and mark it as executable (e.g., VirtualAlloc,
VirtualProtect) commonly use parameters of the following
form: (1) a bitwise value for new memory protections, (2)
an address to which one might write shellcode, and (3) a
size of the memory allocated to the new region. Ultimately,
all functions that must accomplish anything of value require
multiple parameters.

Parameter suspicion does not produce significant false
positives, because the probability that a data value matches a
gadget address is very small. Consider the protection of Adobe
Reader as an example. Assume that icucnv36.dll is the
only current library available to bypass ASLR and DEP for
the Adobe Reader application. The probability that an arbitrary
eight character string corresponds to a single POP EAX; RET
sequence of instructions is represented in Fig. 1.

P (REAX) =

(
22

94

)8

∪
(
294, 912

232

)
∪
(

28

294, 912

)
(1)

We calculate this probability given that only 94 print-



BOOL$WINAPI$VirtualProtect($_In_$$$LPVOID$lpAddress,$_In_$$$SIZE_T$dwSize,$_In_$$$DWORD$flNewProtect,$
_Out_$$PDWORD$lpflOldProtect);

0x7c3536e3$$
0xffffffff
0x7c345255$
0x7c35218e
$
0x7c345937$
0xffffffc0
0x7c351eb1

0x7c36c5b9$
0x7c391e67$

POP$EBX;$RET$
VALUE
INC$EBX$;FPATAN;$RET$
ADD$EBX,$EAX;$XOR$EAX,$EAX;$INC$EAX;$RET

POP$EDX;$RET$
VALUE
NEG$EDX;$RET$

POP$ECX;$RET$
WRITABLE$LOCATION$

EBX$=$0x00000001

EDX$=$0x00000040

ECX$=$0x7c391e67

dwSize

flNewProtect

lpAddress

Parameter'Suspicion

Figure 3. Parameter Suspicion used to identify msvcr71.dll ROP chain

TABLE II. LOADCONSTANT GADGETS FROM COMMON DLLS

DLL Application Size
(Bytes) Pop EAX Pop EBX Pop ECX Pop EDX

icucnv36.dll Adobe Reader 294,912 28 455 237 1
vgx.dll Adobe Flash 732,672 55 699 146 3

msvcrt.dll Visual C++ Runtime 184,320 86 358 164 22
msvcr71.dll Java 233,472 46 234 258 21

hxds.dll MS Office 564,224 33 481 345 7
PEhelper.dll IBM Forms 103,936 6 78 74 0

able ASCII characters exist and only 22 of them (0-9,A-
F,a-f) correspond to a memory address space. Further, the
Icucnv36.dll only has 294,912 unique memory locations
that point to executable code. And finally, only 28 of those
unique locations point to a POP EAX; RET gadget. Our
parameter suspicion classifier only matches when a chain of
gadgets loads constants into three or more separate memory
registers. While other operands exist (XCHG, MOV), the prob-
ability remains extremely small that three of these instructions
will be randomly constructed from an arbitrary data stream.

To understand how this applies to other applications, ex-
amine the results in Table II. These results show the frequency
of POP REG; RET instructions in some common shared
libraries discovered by the the Metasploit msfrop tool (a com-
mon tool used by hackers to find instructions for code-reuse
attacks.) Next, we examine how disarmed reading augments
our classifier to determine when exploits attempt to bypass
standard mitigations by loading shared libraries at runtime.

C. Disarmed Reading

One method commonly used by attackers forces an applica-
tion to load a library lacking the same protection mechanisms
as the application, so that the attacker escapes the sandbox of
protection. Content that forces dynamic loading presents an
interesting challenge for a host-based context emulator. The
emulator must be aware of the addresses of all shared libraries
that can be loaded dynamically by arbitrary data. Disarmed
reading allows parameter suspicion to determine when an
arbitrary file forces a protected application to load a shared
library without the same protection mechanisms (e.g., a library
without ASLR). To achieve this effect, disarmed reading re-
moves suspected gadgets from the formatted file and allows the
host to render the file hidden to the user. This removal includes
PDF streams, JavaScript memory allocations of BSTRs, and
ActionScript dynamic content. Disarmed reading allows the
host to safely inspect a disarmed file to understand if it loads
any shared libraries that lack the protection mechanisms of
the application. We expand upon disarmed reading using two
recent mitigation bypasses that highlight its necessity.

OBJ 1 0
TYPE /CATALOG
OBJ 2 0
TYPE /PAGES
OBJ 3 0
TYPE /PAGE
OBJ 4 0
TYPE /ACTION
OBJ 5 0
TYPE /STREAM /LEN 4449
OBJ 6 0 
<</XFA 7 0 R>>
OBJ 7 0 
TYPE /STREAM /LEN 372

OBJ 1 0
TYPE /CATALOG
OBJ 2 0
TYPE /PAGES
OBJ 3 0
TYPE /PAGE
OBJ 4 0
TYPE /ACTION

 %u313d%u4a82%ua713%u4a82 
%u1f90 %u4a80

OBJ 6 0 
<</XFA 7 0 R>>

 %u9090 %u9090 %u9090 
%u9090 %u9090 %u9090

Figure 4. Disarmed reading of a malicious PDF

The first example considers the case where Adobe Reader
suffers from a similar bypass technique. A properly crafted
XFA tag within a PDF document can force the Adobe
Reader application to load icucnv36.dll, which lacks
ASLR [38]. For parameter suspicion to identify the gadget, it
must be aware that the formatted file has loaded the additional
shared library. Figure 4 depicts how disarmed reading handles
loading a malicious PDF. The suspected file contains seven
PDF objects: a catalogue, two pages, an action, two streams,
and an object containing the XFA tag. Code-Stop removes the
two streams when disarming the file, since streams prove to
be common locations for ROP chains and shellcode. However,
Code-Stop leaves the other objects intact. Object 6 0 contains
the XFA tag that forces the Adobe Reader application to load
icucnv36.dll. This results in disarmed reading learning
of the base address of the shared library without ASLR. It
further provides this information to parameter suspicion in
order for it to have the full context of addresses that code
exists at for the application under protection.

The second example considers the protection mechanisms
of Internet Explorer, which can be bypassed by loading the
hxds.dll by making a location reference to ms-help [22].
Because hxds.dll lacks ASLR, exploits can use fixed
addresses within hxds.dll to construct an ROP chain
capable of bypassing DEP. Parameter suspicion requires
knowledge of what code exists at specific memory locations.
Without knowing that an exploit forced Internet Explorer
to load hxds.dll at the base address of 0x51BD0000,
parameter suspicion cannot determine the emulated effect
of any gadget. Ultimately, Code-Stop allows a disarmed
version of an HTML document through the proxy such that
hxds.dll loads, but does not contain any dynamic content
that could be used to exploit the application.
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<html>

…$try${
$$$$loca9on.href$=$'ms#help://'
}$catch$(e)${}$…$

sparkle+=$unescape(“…$
%u5ac3%u51c3
%u0040%00003…)$
…
</html>
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0x51000000
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0x00000040 VALUE

hdxs.dll
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34
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Figure 5. Example Detection of the Dynamically Loaded hxds.dll ROP Chain

D. Detection of an Example Attack

Figure 5 depicts how our prototype prevents an example
attack. (1) First, the victim requests the webpage evil.html that
contains an exploit with a VirtualProtect() ROP chain that loads
at runtime. (2) The proxy requests the webpage on behalf of
the client and (3) receives the html page (4) The proxy then
sends a disarmed form of the page to the client to determine
what additional libraries might be loaded when the page loads.
In this case, the location reference for ms-help:// loads a shared
library without ASLR protection. (5) The proxy parses values
that may be addresses of gadgets or part of a ROP Chain (e.g.,
- 0x51c35ac3,0x00000040). These potential gadgets are sent
to the host to determine their context. (6) The host replies with
the impact of the ROP Chain on the memory registers. In this
case, we demonstrate the part of the ROP Chain that loads the
value 0x40 into EDX as a parameter for VirtualProtect(). (7)
After classifying the malicious impact of the ROP Chain, the
proxy replies with a HTTP 301 redirect to a warning page. On
subsequent requests - the proxy replies with the HTTP 301.

E. Extending Code-Stop

We now examine how the design of Code-Stop allows us
to identify the distinct JOP code-reuse attack and other generic
exploit behavior.

JOP Classifier: Jump-Oriented Programming (JOP)
presents a unique code-reuse attack [39]. Instead of using
gadgets ending in return instructions, JOP uses register-indirect
jumps to chain together gadgets. JOP’s design contains two
types of gadgets: functional gadgets and dispatcher gadgets.
Dispatcher gadgets essentially maintain a virtual program
counter, advancing the attack and allowing functional gadgets
to execute. A dispatcher gadget may prove as simple as ADD
EDX, 4; JMP [EDX], which repeatedly advances the
virtual program counter by a constant value. Since dispatcher
gadgets must alternate functional gadgets, we implement a
classifier that identifies JOP similar to parameter suspicion.
To detect JOP, Code-Stop identifies the alternating dispatcher
gadgets by manipulation of a single register, and then a jump
instruction. As with parameter suspicion, there is a negligible
likelihood that a random string contains alternating addresses

!0x76BA9090!
^0x3C900063!
^0x3C5200B6^!!

90!90!BA!76!
35!63!00!90!3C!
35!B6!00!52!3C!35!!

90! ! ! !NOP!
90! ! ! !NOP!
BA!76356300!!MOV,!EDX!00633576!
90! ! ! !NOP!
3C!35! ! !CMP!AL,!0x35!
B6!00! ! !MOV!DH,0!
52! ! ! !PUSH!EDX!
3C!35! ! !CMP!AL,!0x35!

Figure 6. Identifying just-in-time code spraying

that point to instructions that happen to manipulate a single
register and then jump to that register.

JIT Code-Spraying Classifier: We now discuss how to
extend Code-Stop to detect other types of exploitation at-
tack vectors, including JIT-Flash. JIT-Flash sprays executable
code directly into memory. Consider the example depicted in
Figure 6. A JIT-Flash attack writes a suspected string into
memory. When Code-Stop translates the string to raw bytes,
it replaces the XOR character with the ASCII encoding value
0x35. Next, we evaluate the bytes as variable-length x86 in-
structions. Emulating the instructions determines that the attack
moves the value 0x00633576 into EDX and subsequently
pushed that value onto the stack. To detect JIT Code-Spraying,
we extend parameter suspicion to examine potential code and
determine if the value has intentionally been placed onto the
stack for malicious purposes. It is very unlikely that a benign
arrangement of bytes would accomplish the same effect.

To identify JIT Code Spraying, Code-Stop examines po-
tential JIT bytes to determine if they: 1) pop an address, 2)
push an address to the flow of execution, or 3) store values at
our heap-spray. In the case of Figure 6, the highlighted section
of code clearly pushes an address to the flow of execution and
is detected as an attack. Next, we describe our evaluation.

VI. EVALUATION

We evaluate Code-Stop by answering the following re-
search questions.

• RQ1: What is the accuracy of detecting gadgets?



• RQ2: What is the performance overhead on the client host?
• RQ3: What is the scalability of the network proxy?
• RQ4: What set of attacks can Code-Stop detect?

The following sections answers these questions and describes
the configuration of our prototype used in the evaluation.

A. Experimental Setup

We tested our prototype using the following systems, which
were configured as described below:

Network Proxy: DansGuardian 2.10.1.1, Squid Version 3.3.8
on Ubuntu 14.04 LTS. We implement our gadget parser as a
DansGuardian content-scanner via a python script that parses
suspect gadgets. The script communicates with the vulnerable
host over TCP sockets to understand the effect of the emulation
of the suspected gadgets.

Vulnerable Host: Windows 7 Service Pack 1. We installed
applications that are known to be vulnerable, including Adobe
Reader 9.0, Internet Explorer 8.0 and 11.0, JRE-1.6, and
Microsoft Office 2010. It is necessary to test using these
specific application versions to ensure we can properly test
ROP chains from icucnv36.dll, msvcr71.dll, and
hxds.dll. Additionally, we installed a third-party browser
help object IBM Forms Viewer 4.0.0, which installed the
pehelper.dll that is compiled without ASLR support. The
host runs a Python script that determines the emulated impact
of potential gadgets and communicates with the network proxy.

B. RQ1: Accuracy of Detecting Gadgets

The first part of our evaluation investigates the accuracy
of our prototype to detect gadgets in PDF documents. We
compare three cases: (a) matching a string that contains
a hexadecimal address; (b) matching a string that contains
a hexadecimal address corresponding to the address space
of Adobe Acrobat Reader and its shared libraries; and (c)
matching using parameter suspicion. In doing so, we show
the benefit of Code-Stop over naive approaches.

Datatasets: We utilize the following datasets to illustrate the
accuracy of our prototype.

• Contagio Datasets: The Contagio Benign Dataset consists of
9,000 known benign PDF documents from March 2013. The
Contagio Malware Repository Team collected the dataset
and published it for the specific purpose of testing security
products for false positives. We used the dataset to ensure
our prototype did not falsely detect benign documents as
malicious in nature. In addition, the Contagio Team pub-
lished a smaller dataset of 109 complex PDF documents
that contained shockwave flash. This dataset was included
for the specific testing of larger PDF files that contained
large amounts of arbitrary data.

• VirusTotal Dataset: The VirusTotal Dataset includes 1,000
known benign documents from September 2015. The Virus-
Total team made their private API available for testing our
prototype. Using their private API, we queried for known
benign documents that had been uploaded to their website
within the last thirty days.

• Metasploit Dataset: We extended the Metas-
ploit adobe toolbutton.rb exploit to include five additional

ROP Chains for shared libraries without ASLR. We then
randomly generated 550 unique malicious PDF documents
with different payloads and different ROP Chains. Note
that this is the only controlled dataset in our experiment
evaluation as all PDFs contain known ROP chains. Using
a controlled dataset, we can test Code-Stop’s ability to
detect code-reuse attacks since the application and operating
system versions must match that of the attack. Alternatively,
a wild dataset would encompass attacks against multiple
versions of applications and operating systems.

Results: Table III depicts the results of executing the string
matching algorithms on our dataset. The first row demonstrates
that simply matching strings containing hexadecimal addresses
produces a significant number of false positives. Refining the
matching to values that are valid address ranges significantly
reduces the number of false positives, but there are still some.
However, using parameter suspicion’s heuristic of identifying
three register changes; we do not detect false positives.

C. RQ2: Host Performance Overhead

Next, we measured the performance overhead on the client
to determine any negative impact when rendering content. We
focused on JavaScript performance, since Code-Stop heavily
parses and examines JavaScript for potential code-reuse at-
tacks. We measured JavaScript performance using the Sun
Spider JavaScript Benchmarking Suite [40]. Sun Spider mea-
sures the performance of the host executing core JavaScript
language, focusing on the typical code implemented in real-
world situations. We compared the Sun Spider results for the
following scenarios: (a) a normal host (baseline), (b) a host
using a Squid Proxy, (c) a host using the SquidClamAV Proxy
with Avast anti-virus scanning, and (d) our Code-Stop solution.
Sun Spider reports 95% confidence intervals as percentages.

Results: Table IV shows that Code-Stop suffers a minimal
performance overhead penalty, comparable to the results of the
SquidClamAV Proxy. Ultimately, the performance overhead is
negligible, since the difference between the baseline and Code-
Stop is less than 8ms, which is imperceptible to the end user.

D. RQ3: Network Proxy Scalability

In the previous experiment, we investigated the perfor-
mance overhead on a client protected by Code-Stop. However,
in a typical deployment, there will be many clients protected by
the Code-Stop proxy. Therefore, it is important to characterize
the scalability of Code-Stop to many clients. The experiment
measured the average time to download a 10MB PDF file
through the same four scenarios considered in Section VI-C.

We measured the average time to initiate and complete a
download of the PDF given 1,5,10,15,20 and 25 concurrent
users repeatedly downloading an uncached copy of the PDF
over a period of 5 minutes. During the Code-Stop test, this
resulted in the sum users downloading the 10MB file over
7,500 times over a period of 300 seconds.

Results: Figure 7 demonstrates that Code-Stop scales similar
to a typical proxy configuration and an anti-virus solution. In
an environment with 25 concurrent users, the time to download
a 10MB document averaged 0.978±0.129 seconds. In con-
trast, hosts under Code-Stop protection averaged 1.968±0.262



TABLE III. CODE-STOP PARAMETER SUSPICION DETECTION IN BENIGN AND MALICIOUS DATASETS

Total Files
Tested

Total String
Matches

Files with String
Matches

Total Strings
in Address Space

Files with Strings
in Address Space

Files Matched
by Parameter Suspicion

Contagio Benign Dataset 9,000 3,249,338 8,977 5,286 494 0
Contagio Complex Dataset 109 8,853 104 35 24 0
VirusTotal Benign Dataset 1,001 3,096,287 987 3,309 191 0
Metasploit Malicious Dataset 550 63,170 550 8,651 550 550

TABLE IV. RESULTS OF SUNSPIDER PERFORMANCE TEST

Without
Proxy

Standard
Proxy

SquidClamAV
Proxy

Code-Stop
Proxy

Time (ms) 105.9ms ± 1.2% 106.5ms ± 1.2% 112.3ms ± 3.7% 113.8ms ± 2.8%
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Figure 7. Performance impact with concurrent users

seconds. Both an anti-virus proxy and our prototype roughly
double the time to complete the request to download a doc-
ument. We argue that our solution proves superior to anti-
virus scanning since the anti-virus scanning done on the proxy
cannot take into account the full context of the host.

E. RQ4: Coverage

Finally, we evaluated the coverage of our Code-Stop proto-
type. Coverage defines the set of attacks our system can detect
under ideal conditions. We evaluated parameter suspicion
alone, as well as its use in combination with disarmed reading
to detect code-reuse attacks that rely upon loading shared
libraries without protection. Further, we measured Code-Stop
against a set of five unique shared libraries that lack ASLR. We
argue that Code-Stop is not limited to the method, the library,
or the individual gadgets used in the code-reuse attack but is
a technique that is applicable to a broader set of attacks.

Dataset: We evaluated how parameter suspicion detected ROP
chains from different shared libraries. Specifically, we sought
libraries that had one or more of the following characters: (1)
compiled without ASLR (2) used with multiple different appli-
cations (3) contains the necessary instructions to generate an
ROP chain, and (4) has been seen in use in the wild in attacks.
Thus we selected the following libraries icucnv36.dll,
cryptocme2.dll, grooveutil.dll, pehelper.dll,
and msvcr71.dll respectively. Section VI-B previously
demonstrated that our prototype detected malicious PDFs with
ROP chains from the first three libraries with a malicious PDF.
To further demonstrate the coverage, we modified the script for
the Metasploit ie cgenericelement uaf.rb exploit for Internet
Explorer to include new ROP chains from pehelper.dll,
msvcr71.dll, and grooveutil.dll. In doing this, we
demonstrate that Code-Stop is applicable to a broader set of
applications since the technique detects the general behavior

of code-reuse attacks and is not unique to any one application
or shared library.

Results: Code-Stop detected the gadgets from the shared
libraries of pehelper.dll, msvcr71.dll, and
grooveutil.dll. Since these libraries are from a
third-party application, the operating system, and a separate
Microsoft application we can argue that the results indicate
that parameter-suspicion covers the broad spectrum of shared
libraries used to implement code-reuse attacks.

VII. LIMITATIONS AND FUTURE WORK

Limitations of 32-Bit Architecture: For simplicity, we imple-
mented the Code-Stop prototype against the 32-bit architecture.
Extending Code-Stop to 64-bit increases the accuracy of the
system, by decreasing the probability that a random string
would refer to an address in the 64-bit address space.

Limitations of De-obfuscation: Additionally, we do not ad-
dress obfuscation in the design of Code-Stop. Other works
have examined the de-obfuscation of malicious JavaScript,
PDF document streams, or Adobe Flash ActionScript [32] [41].
Implemented as a proxy, Code-Stop can prevent access to files
it is unable to de-obfuscate. Future work may examine the
concept of a quarantined machine that can emulate the full
effect the result of rendering the obfuscated file and determine
if the file attempts to allocate potential gadgets into memory.

Extending to Other Operating Systems: Further, we im-
plemented the Code-Stop host software only as a Microsoft
Windows application. Extending the host software to other
platforms allows the possibility to protect against platform-
unique attacks, such as S-ROP. In this paper, we addressed
classifiers for generic code-reuse attacks and specific cases for
ROP and JOP. Future work may extend classifiers to identify
other attack vectors outside of the scope of code-reuse attacks
as demonstrated with our JIT Code-Spraying classifier.

Allowing the Host to Proxy Content: Last, we implemented
the gadget parser on the proxy and rely on the host to deliver
context. Both could be implemented on the host. Splitting
the design allows both the network and the host to share the
performance overhead and prevents the attacker from opting
out of both defense mechanisms. Future work may examine
the host both parsing gadgets and examining context.

VIII. RELATED WORK

In the following section, we describe the related work that
addresses the shortcomings of defense strategies against code-
reuse attacks. First, we examine the recent work into mitigating
code-reuse using compiler- and operating system- based mech-
anisms. Next, we examine defenses utilizing the network layer.
We believe our solution can combine the benefits of both the
host and network layer defenses to mitigate code-reuse attacks.



A. Host-Level Code-Reuse Prevention

Because of ROP’s success in bypassing DEP, several papers
have examined means for defending against ROP [4] [42] [43].
Onarlioglu et al. [5] presented G-Free to counter ROP gadgets
by removing unaligned gadgets altogether, and by removing
a portion of aligned gadgets from binaries at compile-time.
Alignment checking proved to be one of the more trivial but
successful mechanisms for defeating ROP gadgets. Gadgets
can consist of different offsets inside valid instructions. G-Free
extends GCC to ensure a gadget-free binary. However, G-Free
fails to protect already compiled binaries or shared libraries.

Other mechanisms such as kBouncer, ROPGuard, and
ROPecker use the processor’s Last Branch Recording (LBR)
functionality to heuristically examine control flow for gad-
gets [25]. kBouncer [26] examines the LBR for fifty-two
WinAPI functions considered harmful. RopGuard [7] expands
upon this by performing past and future control flow analysis
and static checks. By preceding protected API calls, it ensures
that an attacker cannot divert into a protected function. Fur-
thermore, RopGuard performs checks to ensure a process does
not attempt to make the stack executable by disabling DEP.
ROPecker [8] attempts to combine the benefits of RopGuard
and kBouncer by examining the LBR control-flow simulation.
However, the LBR defenses have proven trivial to bypass
by clearing the LBR. Schustere et al. [25] demonstrated that
both i-long-jumps and LBR flushing gadgets can defeat the
effectiveness of any mitigation strategy that relies on the LBR.

Several recent defenses have prevented memory disclosures
that could be used to create gadgets just-in-time (JIT). Hi-
deM [44] uses a split translation look-aside buffer to fetch
read and executable memory separately. However, Crane et
al. [45] noted that the split TLB technique does not work
on recent x86 processors, since most processors released after
2008 contain a unified second level TLB. In contrast, Crane et
al. [45] presented Redactor that successfully disassembles code
pages and identifies JIT-ROP gadgets dynamically at runtime.
Additionally, De Groef et al. [9] presented a countermeasure
for JIT-ROP gadgets. When faced with the difficult problem
that JIT gadgets can bypass ASLR and W⊕X policies, De
Groef and his team implemented a run-time monitor to prevent
JIT ROP. The monitor uses a series of checks against any
system call generated from the stack or heap, in order to
determine the original calling function. However, DeMott [3]
demonstrated bypassing caller check monitors by borrowing
from valid code that makes calls to protected APIs.

B. Network-Level Exploit Prevention

Several checks can be performed at the network-layer to
prevent the successful exploitation of hosts. Early, signature-
based checks identified specific x86 instructions commonly
used in malicious shellcode. However, the vast abundance
of code-obfuscation techniques made these early checks easy
for an attacker to bypass. One of the earlier methods for
detection improved on such techniques by using a NIDS-
embedded CPU emulator [27]. This emulator executed po-
tential instructions with the intent of identifying polymorphic
shellcode that evaded signature-based detection. In a similar
approach, SigFree [28] presented a model for implementing a
proxy-based firewall. This firewall successfully identified and
filtered client-side exploits by detecting code and examining

instructions using a process of code abstraction. With the
extensive amount of client-side code executing in the context
of the modern browser, the 2006 results appear to be only
applicable in theory.

In 2010, researchers developed the JSAND toolkit [29] to
emulate JavaScript and reliably identify malicious code based
on machine-learning. However, this approach is limited to
JavaScript and does not affect the large volume of exploits
delivered via modern plug-ins, such as Adobe Flash. Support
Vector Machines (SVMs) shellcode detection egingines use
modern emulation to identify key instructions commonly used
in shellcode [46]. Polychronakis and Keromytis [24] specif-
ically proposed a network tool that could identify potential
ROP Gadgets, but did so without dynamic context from the
host. We argue that the shortcomings of the host-layer and
network-layer defenses can be addressed by using the network
to defend with the context of the host.

IX. CONCLUSION

This paper presented Code-Stop, a network and host-based
cooperative system for defending against client-side attacks
that bypass exploit mitigation strategies using code-reuse.
We introduced the concept of parameter suspicion classifier
to identify code-reuse attacks. With parameter suspicion, we
introduced the idea of identifying when an attacker attempts
to call a Windows API function with specific parameters
to allocate memory or change memory protections. Rather
than identifying the specific call to a particular function,
parameter suspicion identifies code-reuse attacks by emulating
the behavior of suspected instructions, gained from the context
of the destination host. Parameter suspicion identifies when
instructions place parameters onto the stack as part of a code-
reuse attack to call a Windows API function to allocate or
change memory. By examining the host context, Code-Stop
can effectively prevent client-side attacks from reaching the
intended victim. We implemented a prototype of Code-Stop,
and verified the ability to mitigate exploits against Internet
Explorer, Adobe Reader, and Microsoft Office applications.
Our evaluation showed that Code-Stop successfully prevented
code-reuse attacks without risk of false-positives. With the
ability to detect code-reuse attacks and mitigate against previ-
ously unseen attack vectors, Code-Stop is a practical solution
for enhancing the security of client-side applications.
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