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ABSTRACT
Advanced Persistent Threats (APTs) commonly use stepping stone
attacks that allow the adversary to move laterally undetected within
an enterprise network towards a target. Existing network security
techniques provide limited protection against such attacks, because
they lack intra-network mediation and the context of information
semantics. We propose P����W���, a network security defense that
extends information �ow tracking on each host into network-level
defenses. P����W��� uses a novel combination of information-�ow
tracking and Software De�ned Networking (SDN) to detect a wide
range of attacks used by advanced adversaries, including those
that abuse both application- and network-layer protocols. It further
enables a variety of attack responses including tra�c steering, as
well as advanced mechanisms for forensic analysis. We show that
P����W��� incurs minimal impact on network throughput and
latency for untainted tra�c and less than 58% overhead for tainted
tra�c. As such, we demonstrate the utility of information �ow
tracking as a defense against advanced network-level attacks.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Dis-
tributed systems security; Information �ow control; Access
control; •Networks→ Security protocols; Programmable net-
works;
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1 INTRODUCTION
The state of practice in network access control has remained largely
static for decades. The policies that govern access are tedious to
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con�gure and prone to errors [65]. As a result, network-security
administrators spend a great deal of time writing policy and �nely
tuning rules. Despite this e�ort, the result involves low-level se-
mantics, lacks context, and most often is enforced at the dividing
perimeter between networks. This leaves controls ill equipped to
defend against attacks that e�ectively originate fromwithin the net-
work. Such attacks arise from bring-your-own-device environments,
insecure wireless networks, and compromised web browsers.

Advancements in Software De�ned Networking (SDN) have
made network access control more dynamic. Ethane [10] advanced
the concept of intra-network access control and evolved into the
OpenFlow standard. SDN governs at host granularity while main-
taining a centralized policy [28, 31, 54, 67], and this versatility gives
rise to �exible and reactive defenses that consider more than the
perimeter. For example, SDN and Network Function Virtualization
(NFV) can enable per-host quarantines, provide moving target de-
fenses, and route tra�c through stricter enterprise controls. Bates
et al. demonstrated an SDN-based forensic system capable of iden-
tifying a number of previously unobservable attacks [4]. Hardware
switches and other devices from many manufacturers now sup-
port the OpenFlow speci�cation; examples include devices from
Hewlett-Packard, Cisco, and Pica8.

Operating systems security makes a distinction between access
control and information-�ow control. The latter is more context-
sensitive because it governs not only who can access information
but also what they can do with information once it is accessed. Prior
research has considered information �ow tracking in a distributed
setting [3, 69]. However, more practical proposals [46, 47, 59] are
limited to a cloud environment where there is tighter control over
hosts and their communication. Pedigree [50, 51] explored extend-
ing taint tags to an enterprise setting, but sacri�ced security by
probabilistically removing taint information.

We seek to extend information �ow tracking out from a host and
through the entire network. Similar to Pedigree [50, 51], our goal
is to reduce the semantic gap between host and network access
controls, leading to security policies that better map to the gov-
erned activities. Speci�cally, we seek to extend information �ow
tracking as a defense against stepping stone attacks within enter-
prise networks. Such attacks evade traditional network defenses by
compromising a series of hosts within a network, repeatedly pivot-
ing laterally towards the �nal target. Of key importance, tracking
�ows between and within hosts enhances both real-time defense
and post-incident forensics.

In this paper, we propose P����W���, a novel network security
defense that extends information-�ow tracking on each host into
network-level defenses. P����W��� identi�es and defends against

1



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA TJ OConnor, William Enck, W. Michael Petullo, and Akash Verma

Malicious
websiteW

PACS
host P

Nurse
host H1

Target
host H2

Attacker
host A

Firewall F

Figure 1: Scenario based on 2016 breach of hospital network

previously unobservable attacks through a novel combination of
information-�ow tracking and SDN’s centralized management and
intra-network controls. Our evaluation shows that P����W��� can
detect a wide range of attacks used by advanced adversaries, includ-
ing those that abuse both application- and network-layer protocols.
Furthermore, we show that P����W��� provides this protection
while incurring minimal impact on network throughput and latency
for untainted tra�c and less than 58% overhead for tainted tra�c.

This paper makes the following contributions:
• We extend information-�ow control into the network using
SDN. P����W��� extends information-�ow control beyond
the boundary of the host.

• We propose a policy language for practically specifying in-
formation �ow control within an enterprise network. P�����
W���’s policy language syntax builds on the popular Snort
IDS syntax and introduces unique actions that leverage the
bene�t of SDN technology.

• We prevent attacks that bypass traditional enterprise defenses.
We demonstrate that moving the information-�ow reference
monitor to the SDN/NFV increases the context available to
defenders during stepping-stone and other elaborate attacks.

The remainder of this paper proceeds as follows: Section 2 mo-
tivates our work using a recent real-world example. Section 3
overviews the P����W��� architecture. Section 4 describes its de-
sign. Section 5 evaluates accuracy and performance overhead. Sec-
tion 6 discusses limitations. Section 7 provides an overview of
related work. Section 8 concludes.

2 MOTIVATION
P����W��� is motivated by advanced persistent threats (APTs)
that use stepping stone attacks within an enterprise network. Such
attacks compromise an initial host and then move laterally within
the network, evading traditional network defenses. In this section,
we provide the necessary background and intuition behind stepping
stone attacks through a motivating example. The section concludes
with a threat model for the P����W��� design.

2.1 Motivating Example
To illustrate the problem of stepping-stone attacks, we present a sce-
nario based on a recent security breach in the healthcare industry.
TrapX Research Labs highlighted the breach in a 2016 report [58].

The victim (a hospital) used traditional enterprise defenses includ-
ing a standard �rewall, a heuristic-based intrusion detection system,
endpoint security, and anti-virus software. Despite these security
measures, attackers stole con�dential data.

Figure 1 depicts a generalization of the compromised network.
The �gure includes �ve hosts and a �rewall. The lower hosts are
part of the hospital network, and the upper hosts are outside of the
network and controlled by the attacker. We depict tra�c as directed
edges; dashed edges represent tra�c blocked by the �rewall.

This attack exempli�es a stepping-stone attack. First, the attack-
ers compromised the web browser on a vulnerable workstation H1
after the user of that workstation visited a malicious websiteW .
Next, the attacker used H1 to compromise a picture and archive
communications system (PACS) P . Ultimately, the attacker compro-
mises workstation H2 and gains access to con�dential data which
he ex�ltrates via P .

The �rewall, F , in the scenario was most likely con�gured to
prevent a direct �ow from the Internet to H1 and H2. Yet P is less
protected, because it facilitates the movement of medical imagery
such as X-rays throughout the hospital and its o�-site o�ces. Thus
information can freely �ow between A and P

The di�culty arises because F cannot distinguish data that
should �ow between P and the Internet from data that should not.
The context required for this decision is only available by examin-
ing a network information-�ow control (NIFC) graph that spans
both the activity within P and H2 as well as messages between
hosts. Only with this information could F block the con�dential
tra�c before it �ows between P and A while permitting benign in-
teraction between P and other hosts. Put another way, information
should be able to �ow between H2 and P or between an Internet
host and P , but not from H2 to a host on the Internet by way of P .

In summary, traditional approaches lack the knowledge gained
from a NIFC graph containing the �ow of con�dential access and
data throughout the network, whether between or inside hosts. This
attack can be stopped by applying data labels and implementing
�ow control across host boundaries. We capture this conceptual
approach in P����W���, a novel enterprise security architecture
that combines the logically central placement of the SDN with the
context of host-based information �ow tracking.

2.2 Threat Model and Assumptions
Our threat model assumes the attacker’s goal is to obtain con�den-
tial information. To achieve this goal, attackersmust evade intrusion
detection systems and bypass network- and host-based access con-
trols. To achieve this result, we assume the attacker will use stealthy
strategies that abuse trust by laterally pivoting through blind spots
in the network [67]. For example, an external attacker might pivot
through an employee workstation to launch an internal attack that
avoids the enterprise controls at the perimeter of the network. Sim-
ilarly, an inside attacker might ex�ltrate con�dential data from a
protected service to a globally-accessible server by routing through
blind spots. An attacker might create covert or stealthy channels by
abusing legitimate protocols including application layer protocols
(e.g, Gmail, Slack, Twitter [2]) and network layer protocols (e.g.,
TCP, ICMP, DNS [44, 53, 68].) An attacker might use tools such
as the Data Ex�ltration Toolkit [2] or DNSCat2 [9] to create these
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Figure 2: Overview: P����W��� Information Flow Control

channels. The goal of P����W��� is to prevent these and other
stealthy attacks that abuse blind spots in defenses.

Our trusted computing base (TCB) includes the SDN security
application, the network data plane devices, and each host’s core
operating system (i.e., kernel, core system daemons, and our host-
agent). We do not protect against malicious-but-trusted administra-
tors that can detect the host-agent, remove con�dentiality labels
on data and processes, or disable the host-agent packet labeling
implementation. Similarly, we assume networking devices are not
compromised to deactivate defense mechanisms. The TCB extends
to other SDN applications running on the controller that are not
segregated from the P����W��� security application. We consider
the attestation of the host-agent, the security application, and en-
terprise networking devices as important but orthogonal problems.
We leave attestation as a deployment task.

3 OVERVIEW
We designed P����W��� to extend information �ow tracking across
hosts in a distributed environment. P����W��� broadens the en-
forcement of secrecy by establishing information-�ow controls at
the SDN controller. This section describes P����W���’s architec-
ture, addresses the identi�ed challenges in centralizing information-
�ow controls, and discusses the key ideas of P����W���.

3.1 Architecture Overview
The architecture of P����W��� involves three components:

Host agent: Each host on a P����W��� network is governed by
a modi�ed S�����F��� [30] kernel. S�����F��� tracks the �ow
of con�dential information on a host. S�����F��� labels packets
which emanate from processes that might have read con�dential
information, and it taints processes that read a packet bearing a
con�dential label. The P����W��� host agent maintains provenance
and sends control messages containing the origin to the controller
as described in Section 4.2.

Network control plane and SDN controller: A lightweight Pox
OpenFlow security application creates the necessary network �ow
modi�cations that deliver �ows bearing con�dential packets to
the control plane for inspection. At the control plane, the security
application implements the policy store, network information �ow

control (NIFC) graph, and reference monitor. The security applica-
tion uses these components to inspect �ows for a violation, and it
implements eight primitive actions for handling con�dential �ows.
These actions include unique methods for redirecting, throttling,
or modifying con�dential �ows as described in Section 4.1.

Network data plane: The network hardware implements the
OpenFlow �ow modi�cations to deliver labeled �ows to the control
plane for inspection. The network hardware modi�es �ows based
on the instructions from the SDN controller.

Figure 2 summarizes the P����W��� architecture. An adminis-
trator has labelled the �le f on host H1 as con�dential (∂). When
process p1 reads from this �le, S�����F��� taints process p1. As
process p1 establishes a network �ow from H1 ! H2, the P�����
W��� agent on host H1 noti�es the SDN controller of the unique
origin label for the �ow (∑). Subsequently, process p1 writes the
con�dential information to the network in the form of a labelled
packet (∏). Upon receiving this packet, the switch observes that it
is labeled and thus queries the SDN controller (π). The SDN con-
troller acts as a reference monitor and examines the con�dentiality,
origin, and steering labels against indexed network information
�ow control (NIFC) graphs. The controller governs the return, mu-
tation, dropping, or redirection of packets based on its con�gured
policy. Here the SDN controller noti�es host H2 of the source of
the packet (∫), and it delivers the packet (ª). Finally, S�����F���
taints process p2.

3.2 Challenges
P����W��� controls the �ow of information in a distributed net-
work but is governed by a centralized policy. Practical information
�ow tracking in a distributed environment requires overcoming
the following challenges:

Practical policy enforcement: Precision is a challenge for infor-
mation �ow tracking in a network environment. A lack of accuracy
can cause label propagation to fail, violating secrecy. Conversely,
coarse precision can cause false positives leading to taint explosion.

Label Integrity: While information �ow tracking within hosts is
well studied, tracking information �ows across networks has been
limited to statistical measures that break down under even normal
operations [12, 48, 56]. Statistical correlation approaches fail when
data is compressed, encrypted, or delayed at the host. Furthermore,
broadcasting the mandatory protection state of data does not scale.

Attribution: Determining the origin of a policy violation is chal-
lenging in a distributed environment. An attacker can take several
intermediary steps on the host and the network to conceal their
origin. Thus, implementing the intent of the policy is challenging
without understanding the origin of the data encapsulated in a �ow.

3.3 Key Ideas in P����W���
P����W��� addresses the aforementioned challenges through the
following key design concepts:

Network Reference Monitor: To achieve dynamic taint analysis
at the network layer, P����W��� extends the classical host-centric
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reference monitor to establish a network access control enforce-
ment mechanism. Under P����W���, each network device modi�es
con�dential �ows to �rst pass through the SDN controller applica-
tion. There P����W���’s reference monitor determines whether or
how tra�c may �ow through the network device. While a typical
reference monitor returns a binary response, P����W��� o�ers a
range of responses. The reference monitor only evaluates tra�c
marked as con�dential; non-con�dential tra�c is not evaluated.

Practical Policy Grammar: A single policy governs the reference
monitor’s decisions. P����W��� provides the three necessary prop-
erties of dynamic taint tracking—namely, taint sources, taint sinks
and taint propagation rules—with a policy grammar focused on
performance, simplicity, and �exibility. The grammar consists of a
series of clear and concise Snort-like rules.

P����W���’s policy language expresses taint sources as the input
source where con�dential data entered the network. A taint source
can represent a single host, a subnet of hosts, or any hosts in the
exclusion of a host or subnet. P����W���’s policy represents taint
sinks using the same syntax and describes the location where P���
��W��� applies actions outlined by the rule. Finally, P����W���
de�nes taint propagation rules, describing which action must be
applied when data from a particular taint source reaches a taint sink.
This key contribution by P����W��� allows a trusted administrator
to express practical policies for reactive, �ne-grained-modi�cation
on a per-�ow basis. Rules include typical intrusion detection and
prevention systems actions, such as the ability to pass, log, drop, re-
ject, or alert on network �ows. Furthermore, the use of SDN allows
the ability to redirect, throttle, and rewrite network �ows. Section 4.1
expands upon the policy language design and the implementation
for reactive actions. Reactive taint propagation rules provides a
�exible means of mitigating a wide variety of attack vectors against
con�dential data and processes.

Persistent Labels: Information �ow tracking across distributed
hosts can fail when data is transformed—intentionally or
unintentionally—to remove con�dential labels. P����W��� over-
comes this limitation by establishing distributed persistent labels
that seamlessly transfer between the host and the network layer.
Through distributed persistent labeling, P����W��� establishes a
mandatory protection system complete with labeling, protection,
and transition states that cross over the boundary of the host and
network. In contrast to traditional MLS models [6, 14], P����W���
adopts an approach an approach similar to taint tracking systems
such as TaintDroid [15] where the label indicates if the data contains
con�dential information of a speci�c type.

P����W��� tracks information �ow within each host on its net-
work using S�����F��� [30], an information-�ow-based access-
control system built within the Linux kernel. S�����F��� permits a
trusted administrator to label system objects—such as �les, sockets,
or pseudo-terminals—as con�dential. Processes on a SimpleFlow
host that read from con�dential objects become tainted, and this
taint status follows the writes and reads that result in the �ow of
con�dential data through the system. For example, a process that
reads from a pipe shared with a tainted process will itself become
tainted. Under S�����F���, the Linux kernel will mark any packet
written to the network by a tainted process. Processes that read
from marked network packets also become tainted. S�����F���

covers a wide range of system calls [30, §4.1.2], and addresses some
of the high-bandwidth covert channels found in U��� [30, §4.1.3].

P����W��� extends S�����F��� so that its network �lter compo-
nent further labels tra�c with a network taint byte.1 The network
taint byte contains information used by P����W���’s SDN con-
troller to steer the packet through a software-de�ned network. Com-
bining S�����F���with the SDN-based steering label allows labels
to persist across in-host and network communication and thus ex-
tends information-�ow tracking to the network. It also presents the
opportunity to create increased expressibility in policy language as
we examine in the following section.

Network Information Flow Control (NIFC) Graph: In a sim-
ple classical access enforcement mechanism, data is labeled with a
single bit which represents notion such as con�dentiality or trusted.
The reference monitor interface is responsible for querying the
policy store to authorize a request. This binary label presents a
challenge when implementing a practical policy enforcement mech-
anism that queries characteristics such as the origin of the con�-
dential data. Practical policy enforcement requires the ability to
examine the entire path of a con�dentially-labeled object. P�����
W��� stores the �ow of a con�dentially-labeled object in a directed
graph G = (V ,E). The vertices, V , of the NIFC graph represent
the union of the set of subjects and objects that have interacted
with a single con�dentially-labeled object. The set of edges E, rep-
resent the �ow of information from data in a protection state to
a new object. These edges represent network �ows to a new host.
Representing the con�dential data �ow as an NIFC graph allows
P����W��� to o�er heuristics about how particular con�dential
data violated a policy. Although a simple scenario may result in a
single path, complex scenarios may include an attacker attempting
multiple data ex-�ltration points. Representing the �ow of con�den-
tial data as an NIFC o�ers visibility of the extent of the attack and
key articulation points that extend bridges to the network border.
This insight allows an administer to apply tighter controls on the
hosts discovered as articulation points. Section 4.1 expands upon
the design of the NIFC graph and the heuristics for constructing
the complete path of con�dential data prior to the policy violation.

4 PIVOTWALL
The goal of P����W��� is to protect the secrecy of data or processes
by extending information �ow tracking to a distributed architec-
ture. We focus on establishing a logically central SDN controller
to manage distributed information �ow control through a refer-
ence monitor, policy store, and a network information �ow control
(NIFC) graph. A key idea in P����W��� is to maintain a NIFC graph
that maintains the provenance propagation of con�dential objects.
By establishing a NIFC graph, we provide the ability for a system
administrator to write rules to prevent attacks that span across
multiple connected �ows.

4.1 Network Layer Design
SDN eases network administration by combining a centralized
policy with distributed enforcement. OpenFlow-enabled hardware
consults a centralized controller to determine how to handle the

1The original S�����F��� design blocked tainted packets at the subnet boundary.
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�ows it processes. In the case of P����W���, this controller appli-
cation implements a variation of the classical reference monitor to
govern network �ows. Whereas a classical reference monitor can
only permit or deny, P����W��� can leverage SDN technology to
throttle, modify, drop, reject, or redirect network �ows. An admin-
istrator de�nes these actions by writing a policy, and P����W���’s
controller application enforces this policy.

4.1.1 Network Information Flow Control Graph. A key insight of
P����W��� is its use of a provenance graph to reduce or limit false
positives and taint explosion. In contrast, Pedigree [50, 51] labeled
con�dential information with a taint tag, which can lead to taint
explosion as the network becomes strongly connected. Pedigree
addressed taint explosion by probablastically removing taint bits;
however, this design choice sacri�ces security.

P����W��� addresses this challenge by maintaining graphs that
represent each information �ow with a con�dential system object
(e.g., �le, pipe, socket) as its source. This leads to more precise
tracking while revealing many sophisticated attacks.

The NIFC is a directed graph G = (V ,E) containing the set of
vertices V = {�1,�2, ...} and set of edges E = {e1, e2, ...}. The
graph represents the �ow of a con�dential object throughout the
network. Each vertex � represents a single host or server that has
processed, accessed, or stored a con�dential object. Each directed
edge e represents the network �ows between hosts that have carried
or provided access to the con�dential object. Algorithm 1 depicts
how P����W��� adds vertices and edges to a NIFC. First P����W���
checks the policy to determine if the packet source, destination, and
protocol are permitted by the policy (1). The algorithm records the
original source and creates a unique graph for a previously unseen
con�dential object (2 � 4). The algorithm next checks if the policy
permits the path an object has taken by comparing the original
source against the packet destination (6). If the policy permits this
path, then a directed edge is added from the source and destination
in the packet header (7), a per-�ow rule is installed (8), and the
packet is forwarded to the destination (9). In the case that the policy
does not permit the action, the packet is dropped (11) or modi�ed
in accordance with the policy. We depict an example graph in the
top right hand corner of Figure 3.

Figure 3 overlays the NIFC graph on the scenario in Figure 1,
depicting the hostsW ,A,H1, P , andH2 as rectangles. Overlaid upon
this is a graph: processes s , b, p, and c (dotted rectangles) and �le f

(dashed circle) are the graph’s nodes, and the �ow of information
makes up its directed edges. Also depicted as circles are six sockets
S1–S6 that facilitate network communication.

An attacker compromises host H1 after browser process b visits
a malicious website (∂). The payload makes a connection to host
P and compromises the PACS server process p (∑). Process p then
compromises the PACS client process c on host H2 (∏). The com-
promised process c reads the con�dential �le f (π) and transmits
it over the network to host P (∫). Host P then attempts to ex�ltrate
the �le under the cover of a DNS query to host A (ª). Sensing that
this was thwarted by P����W���’s SDN controller, the illicit soft-
ware transmits the con�dential information back to host H1 (º),
but the SDN controller again blocks the ex�ltration attempt (Ω).

The directed graphs maintained by P����W��� inform the SDN
controller as it governs the network. A graph indicates a tainted

Algorithm 1: H�����T������P��
Input: A tainted packet (p), and the UUID (u)

1 if Polic�PermitsPacket(p) then
2 if u not in taintsTable then
3 taintsTable[u] [p.src,p.sport]
4 �raphTable[u] new Directed Graph()
5 if Polic�PermitsPath(p,u) then
6 if ed�e(p.src,p.dst) not in �raphTable[u].ed�es then
7 �raphTable[u].add_ed�e(p.src,p.dst)
8 installFlowRule(p)
9 send(p)

10 return

11 drop(p)
12 return

�ow, and it provides context into how the con�dential information
passed through the network. The graphs exist in a hash table that
is indexed by the UUID of the con�dential source object (described
in Section 4.2). In the example here, the solid black edges represent
the graph which P����W��� would correspond with the source
f . The dashed gray edges represent incidental communication.
Section 4.2 describes how P����W��� bridges between host-based
information-�ow tracking (e.g., tracking a read of f ) and network-
based information-�ow tracking.

Storing the provenance history in a directed graph allows for
a more expressive rule syntax for de�ning network policy. The
presence of the information-�ow graph means that the rules that
govern network �ows can consider the origin of a �ow. For example,
the denial at ª could realize the con�dential source and redirect the
DNS request to a sinkhole which would aid in a forensic analysis.
The denial at Ω could reduce the throughput of the ex�ltration
channel to the point of being useless. Very similar �ows which do
not contain illicit information could be allowed to pass.

4.1.2 Customizable Rules. A key bene�t of P����W��� is its
ability to consider the provenance propagation of con�dential ob-
jects when dynamically analyzing �ows. To achieve this in a �exible
way, P����W��� provides a syntax for specifying the rules that
govern �ows. Unlike traditional intrusion detection systems, P�����
W��� examines the entire path of con�dential �ows when matching
a rule pattern. Upon a successful match, P����W��� can respond
with the eight base actions depicted in Table 1.

The syntax that speci�es the most basic rules resembles S����
and references a �ow’s protocol, direction, and port to determine an
action [52]. For example, Listing 1 prevents con�dential data origi-
nating from HOST1 from egressing outside the local area network
by dropping packets. This rule implements data loss prevention
with full information �ow context to prevent an internal attacker
at HOST1 from ex-�ltrating con�dential data using stepping stones
inside the network.

Similar to S����, P����W��� interprets option �elds inside
parenthesis. The rule in Listing 2 redirects con�dential tra�c to a
honeypot based on the redirect destination option (rdst) speci�ed
in the rule. As seen in both examples, P����W��� o�ers matching
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Figure 3: Example Actions that Build an NIFC Graph

Listing 1: Simple P����W��� rule preventing ex�ltration of
data from a speci�c host
$HOST1 = 10.1.1.1
$HOME = 10.1.1.0/24
drop tcp $HOST1 any -> !$HOME any

Listing 2: Rule For Redirecting Tra�c to a HoneyPot
$HONEY = 10.1.1.4
redirect tcp $HOST1 any -> !$HOME any

(rdst=$HONEY)

Table 1: Customizable Actions for PivotWall

Action Description
pass Permit con�dential �ow; keep con�dential labels intact
untag Permit con�dential �ow; remove con�dential labels
log Log packets from con�dential �ow to pcap
drop Drop packets from con�dential �ow and log
reject Drop packets from �ow, log, and send TCP Reset of ICMP unreachable
redirect Redirect �ow using alternate destination or source
slow Rate throttle packets using TCP congestion window or queuing
modify Permit �ow but rewrite packets based on customizable script

a single IP address, host name, or CIDR notation. Variables can
be used to easily construct rules. The ‘!’ operator can be used to
denote tra�c outside of a particular network. Each rule begins with
a unique action to handle the violation created by the �ow.

Managing the defense at an SDN controller introduces several
unique and di�erent response methods. Since the controller man-
ages the data plane of the network, the controller has the capability
to communicate with all enterprise network devices in response
to an attack. By sending control messages across the data plane,
the SDN controller can near instantaneously communicate and
propagate knowledge of a threat to all managed enterprise network
devices. P����W��� o�ers typical basic actions for responding to
violations as well as custom-tailored advanced actions.

Basic Actions: P����W��� provides �ve primitive actions to im-
plement security directives to implement information �ow tracking.
The log, drop, and reject actions provide similar functionality to their

S���� counterpart actions and are described in Table 1. Because
the pass and untag options interact with the labels, they require
further discussion. Pass permits con�dential �ows and leaves the
network, host, and origin labels intact on the packet headers of the
�ow. In contrast, untag permits the con�dential �ow, removing the
network, host, and origin labels from packets in the �ow. Essen-
tially, the pass action propagates labels to the next hop while the
untag action removes the con�dentiality labels from the �ow.

Advanced Actions: To speci�cally address secrecy and integrity
attacks, P����W��� implements three advanced action primitives
for redirecting, throttling, isolating, and modifying �ows. SDN-
enabled tra�c redirection has shown promise as a means of mit-
igating threats by redirecting tra�c to a honeypot, sink-hole, or
hiding critical resources [22, 40, 54, 55].

Slow and modify are actions that shape tra�c and mitigate se-
crecy and integrity attacks. Slow throttles the �ow by arti�cially
queuing the �ow of IP packets. When possible, the slow action
throttles the transport layer protocol by rewriting packets to re-
duce the TCP Congestion Window Size. Reducing the throughput
of transport layer protocols degrades the e�ectiveness of the attack
channel thus slowing the propagation of an attack. Essentially, the
Slow action uses the bene�t of SDN technology to implement the
concept of a tarpit [66]. By keeping the attacker channel open but
unusable, an analyst can investigate an attack in real-time.

The modify action reduces the impact of false positives while
not decreasing true positives. Consider the speci�c cases where
an administrator may write a rule that has a high false positive
rate (e.g., HTTP, DNS, ICMP tra�c). The modify action permits the
administrator to allow the �ow of con�dential data but eliminates
optional �elds that might carry the con�dential data. To achieve
this, the administrator de�nes the handling of matched packets
with a custom modify-script.

To illustrate the utility of the modify action, consider a simple
use case of ICMP covert tra�c. Daemon9 [13] proposed using ICMP
Echo Requests to carry con�dential data in 1996 by embedding
data in the an ICMP Echo Request payload. Several common data
ex�ltration tools still use this technique [27]. Listing 3 provides a
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Listing 3: Modify-Script for Mitigating Covert ICMP
rewrite_ping_req(packet):

ipkt=packet.find(�icmp�)
if (ipkt):

if (ipkt.type == ICMP.TYPE_ECHO_REQUEST):
ipkt.payload = �A�*len(ipkt.payload)
packet.payload = ipkt

return packet

P����W��� modify-script that removes covert data from the pay-
load of an ICMP Echo Request by rewriting the payload �eld
entirely with the letter A.

P����W��� modify-scripts provide the customization to address
secrecy attacks while limiting the impact on benign tra�c on the
protocol �ows. Simply, P����W���modify-scripts de�ne how pack-
ets of a con�dential �ow are modi�ed to remove covert channels.

4.2 Host Design
In order to classify packets that are sent from a host, P����W���
must track �ows within that host. Intra-host �ows and network
�ows are inherently di�erent. Flows within a host result primarily
from software that loads, generates, transforms, or stores informa-
tion. In contrast, network �ows have more to do with transporting
information from one host to another. While information might
change in the network, manipulation is generally performed merely
to allow information to traverse the network.

Intra-host �ows result from user activities and therefore model
user intentions and the e�ect they have on con�dential information
within the host. Such �ows provide links between processes, and
they most commonly result from processes invoking system calls
such as opens, reads, andwrites. One processmight concatenate two
�les to a third, another might read information from the network
and write it to a �le, and yet another might communicate with a
peer process using a pipe. In any case, these �ows have the potential
of moving con�dential information from �le to �le, from network
socket to �le, or from process to process through a pipe.

Host Flow Tracking: Whole-system provenance, or the tracking
of con�dential data throughout the host, is a challenging prob-
lem. Several promising solutions rely on the Linux Provenance
Module (LPM) interface to gain whole-system provenance and han-
dle side channel attacks [5, 30]. P����W��� builds upon S������
F��� [30] to track the host information �ow. As a Linux kernel
modi�cation based on the Linux Security Module (LSM) interface,
S�����F��� removes many of the race conditions present in user-
space monitoring tools or tools that combine a provenance engine
with a separate access-control mechanism.

Labeling:Akey component of the P����W��� design is tomaintain
persistent labels that extend beyond the boundary of the host.When
a �le is sent over the network or a process is accessed via the
network, the label must propagate to the associated network �ow.
The controller must be able to determine the con�dentiality of the
tra�c and the origin of the con�dentiality to match the appropriate
policy. S�����F��� uses a Net�lter interface in the kernel to apply
a con�dential host label. This label is a binary representation that
depicts if the packet contains classi�ed data. The host label is created

by borrowing the extra bit in the IP fragment �eld (identi�ed as the
evil bit in RFC 3514 [7]).A packet bearing the evil bit is handled as
con�dential by any S�����F��� enabled hosts. However, to extend
this label to the network, we modi�ed the S�����F��� source by
adding a network label.

The network label provides the steering information which af-
fects how the P����W��� reference monitor should handle packets.
The network label borrows the IP Type of Service (ToS) header byte.
As identi�ed by Fayazbakhsh et al. [17], the IP ToS header provides
a full byte that we use to create matching on-demand �ow modi-
�cations that work with all legacy OpenFlow hardware. Packets
bearing the network label are brought to the controller on a per-
�ow basis. However, to apply policy and create �ow modi�cations,
P����W��� requires the origin of the con�dential packets.

The origin label uses a 128-bit universally unique identi�er
(UUID) to represent a global identi�er for each classi�ed object.
In our initial design, we padded each packet with the UUID as
a Commercial Security Option Type (6) IP Option. However as
described in [19], IP Options are rarely well supported. Further,
our initial experiment demonstrated that adding 128-bits to every
classi�ed packet introduced performance consequences. To ensure
compatibility and performance, our design labels network �ows by
sending the 128-bit UUID in a control message encapsulated in an
ICMP packet. While our current implementation has the host agent
send this message directly to the controller, it would be straight-
forward for the OpenFlow switch to capture the control message
and forward it to the controller (e.g., in the case of an out-of-band
controller). Pedigree [50, 51] also uses a separate connection to pass
provenance data to their network arbitrator.

An origin-label is generated when an administrator initially la-
bels a �le or process as con�dential. The host agent propagates the
UUID for each interaction with the con�dential-labeled �le. Con-
sider the example where a process copies data from a con�dential-
labeled �le to a new �le. As a result, both the tainted process and
the newly-tainted �le bear the origin-label of the original �le. To
implement NIFC, these unique identi�ers extend beyond the bound-
ary of the host. P����W��� accomplishes this by sending the UUID
for each tainted network-�ow to the P����W��� application at the
controller. The application updates the NIFC graph, indexed by the
UUID. Further, P����W��� sends a control message with the UUID
to the destination host. The host agent propagates the UUID from
the network �ow to interactions on the host.

It is possible that a single object might be associated with multi-
ple UUIDs. Consider when two con�dential �les are merged into
a new �le. Or a remote access toolkit process may attempt to ex-
�ltrate multiple con�dential �les over the same network �ow.When
multiple con�dential objects are merged, the host agent assigns a
new UUID to the combination. The host agent sends the updated
UUID in a control message to the P����W��� application at the
controller. Further, the controller application sends a control mes-
sage containing the updated UUID to the destination host. The
controller creates a new NIFC graph from the merger of the NIFC
graphs from each object. Since the new NIFC graph is used to check
for policy violations, P����W��� deletes the �ow modi�cations
for all edges of the merged graph. This action brings all network
�ows (represented as edges) back to the controller to re-examine
the policy implications of the UUID combination.
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Figure 4: Provenance discovery enabled by information col-
lected by the controller (NIFC graph) and host (process and
�le information).

4.3 Forensic Analysis
The P����W��� taint propagation logs are a valuable resource when
performing forensics in response to an attack. Because P����W���
uses taint analysis to detect secrecy attacks, the logs within the SDN
application and the host agent can be used to create a provenance
graph describing how the attack progressed. P����W��� raises an
alarm for the last hop of an attacker’s chain. Therefore, a forensics
tool can walk backwards to identify all of the hosts and resources
that led to the alarm. Both the network and the host maintain
provenance data about taints in SQLite databases. Therefore, tainted
objects can be easily identi�ed using SQL queries. Producing this
set and aggregating the data over the network provides an incident
response team and forensic analysts valuable information to contain
the attack and remove the attacker from the internal network. The
P����W��� heuristics provide visibility of the taint source, the
intermediate hosts involved, and the series of intermediate tainted
objects (processes, �les, and network connections).

Figure 4 abstracts the queries necessary to o�er insight into the
motivating example attack in Section 2.1. The �rst query begins
at host P , where a policy violation occurred on the �ow P ! A.
Examining the NIFC graph, an analyst can determine this violated
policy because a path exists from H2 ! A. Examining the host
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Figure 5: Diagram of Testbed Network

agent on P , provides information about the speci�cally tainted
processes, �les, and network �ows. Examining these queries, we
determine that the process p propagated the attack and wrote a
�le named dump.tar.gz. Following the graph back to the taint sink
(H2), we determine that process c read the source of the origin taint
�le records.gz. Ultimately, these heuristics and queries provide an
administrator the necessary information to determine the anatomy
of the attack and the incidental elements of the attack.

5 PERFORMANCE EVALUATION
P����W��� extends information �ow tracking to the network by
leveraging the logically central placement of the SDN controller. By
extending traditional host-based information-�ow tracking to the
network, P����W��� prevents attacks that bypass existing enter-
prise defense mechanisms. In this section, we empirically evaluate
the design and performance of our prototype by answering the
following research questions.
RQ1 (Stealthy Attack Detection): Can P����W��� detect attacks

that otherwise bypass traditional enterprise defense mecha-
nisms?

RQ2 (Attack Coverage): Can P����W��� detect against a broad
coverage of communication channels and tools?

RQ3 (Network Scalability): What is the scalability of the network
controller application?

RQ4 (Response Capability): Can an administrator extend P�����
W��� to provide a custom-tailored, �exible response to an
attack?

Experimental Setup: Figure 5 illustrates the testbed network for
our experiments. We created a virtual network infrastructure en-
vironment on a 2.8 GHz Intel Core i7 CPU with 12GB of memory
running Ubuntu 16.04.2 LTS, an OpenFlow control platform, Open
vSwitch 2.7.90 and the Pox 0.2.0 controller running our P����W���
security application. Our hosts protected by P����W��� are Virtual-
Box instances with 512MB of RAM running CentOS 7, S�����F���
0.3.0, and our P����W��� packet relabeling agent. Each host is
connected to a virtualized network, via soft SDN switches (Open
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vSwitch) that support OpenFlow. Our attacker host is a VirtualBox
VM with 512MB of RAM running Ubuntu 16.04.2 LTS.

5.1 RQ1: Stealthy Attack Detection
Attackers employ stealthy attacks [67] to exploit blind spots in en-
terprise defenses to circumvent traditional defense mechanisms.We
evaluated P����W��� against stealthy attack tools to demonstrate
how our prototype defends against attacks that bypass traditional
enterprise defenses. Our evaluation considered two speci�c stealthy
attack scenarios. We �rst examined a data-loss-prevention (DLP)
scenario where the attacker originated inside the network. Next,
we examined a stepping-stone-attack scenario where the attacker
originated external to the network to gain access to con�dential
data. In both scenarios, we compared P����W���’s ability to detect
and mitigate attacks in comparison to traditional defenses.

StealthyData Loss Prevention (DLP)Attack:To understand the
bene�ts of P����W���, we compared it to two traditional enterprise
defenses: a network intrusion detection system (Snort) and a host-
based �rewall (iptables). We applied the traditional defenses in a
conservativemanner with the goal of blocking communication from
a protected host to an external network. On the IDS, we applied
an IDS rule to block any TCP packet from our con�dential host
(10.10.1.1) to a destination outside our local network (!10.10.1.0/24).
At the host �rewall, we applied an iptables rule to block any TCP
packets to a destination outside our local network.

Using the tools listed in Table 2, we modeled a stealthy attacker
that passed data from the protected host to the intermediary host on
the local network. Although these four tools can be used in multiple
ways, we tested con�gurations that maximized coverage between
the variables of encryption and relay model. We transferred and
stored data on the intermediary host by using netcat and cryptcat
before ultimately egressing the data (store-forward). In contrast, we
used socat and meterpreter to forward TCP ports, actively relaying
the data through the intermediate host to egress the data.

In all cases, the network intrusion detection system and the host-
based �rewall failed to detect the data loss. Both conservatively
applied rules failed to detect the information �ow through the
intermediary host. To demonstrate P����W���, we labeled a �le
as con�dential, and applied a simple policy rule that prevented
con�dential information with an origin of 10.10.1.1 to �ow beyond
the boundary of the local area network.

Listing 4 displays the logging output on our prototype controller
for the netcat case. Upon identifying the origin (taint-source) from
the UUID, the reference monitor determined the �ow to the desti-
nation (taint-sink) matched a rule in the policy and subsequently
dropped the packets. As listed in Table 2, P����W��� successfully
detected and dropped packets containing the con�dential �le.

Stealthy Stepping Stone Attack:Wemodeled a stealthy stepping
stone attack scenario where an external attacker used an interme-
diate host to pivot and attack an internal con�dential host. This
experiment also con�rmed that traditional access controls and en-
terprise defenses lack the context of information �ow and fail to
detect stealthy attacks.

To illustrate traditional enterprise defenses, we enabled an
Apache web server and restricted access to the server to only local
area network hosts using an Apache access control list. To bypass

this access control list, we established a stepping stone (on the local
area network) using the socat toolkit. This tool forwarded inbound
tra�c on TCP Port 4444 on the stepping stone to an external re-
quest to TCP Port 80 on the webserver. This bypassed the ACL on
the webserver, since the stepping stone IP address was within the
permitted ACL. However, this violated the intent of our expressed
access policy since our external attacker could access information
on the webserver. We repeated the experiment with a meterpreter
port forwarder and determined the same result. Traditional access
controls cannot determine the information �ow and fail against
stealthy attacks. To illustrate the information �ow tracking aspect
of P����W���, we repeated the experiment but marked the Apache
process as con�dential. We wrote a P����W��� policy to prevent
external communication with the protected webserver.

5.2 RQ2: Attack Coverage
To test the coverage range of P����W���, we examined its ability
to detect a broad range of data ex�ltration attacks. The extensible
Data Ex�ltration Toolkit (DET) [2] provides nine di�erent commu-
nication channels for covertly ex�ltrating data out of a network,
bypassing traditional tools. The tool abuses common protocols in-
cluding DNS, HTTP and ICMP as well as commercial tools such as
Gmail, Slack, and Twitter. To test the coverage, we established an
attacker’s listening post outside the local area network.

We thenmodeled an insider attackwhere an attacker usedDET to
egress data outside the local area network. We repeated the process
for the DET covert channel plugins for DNS, Gmail, Google_Docs,
HTTP, Slack, TCP, Twitter and UDP. The results were the same
for all covert channels: P����W��� identi�ed the access of the
con�dential data and applied the P����W��� policy preventing
the egress of con�dential data outside the local area network. The
results are summarized in Table 3.

5.3 RQ3: Network Scalability
We evaluated the network performance of our prototype solution
using the iPerf3 toolkit [60]. To realize the total achievable band-
width of our solution, we measured the total MBytes transferred
during a ten second TCP connection and recorded the impact on the
congestionwindow.We repeated this experiment ten di�erent times
to determine the average and standard deviation for bandwidth and
bytes transferred during the connection. To understand the impact
of the �ow modi�cations of our prototype solutions, we compared
P����W��� against an SDN application that performed mac-layer
matching. To illustrate the impact of con�dential labels, we tainted
the iPerf3 process on the Server and repeated the experiment. Our
results are illustrated in Table 4.

As the results illustrate, both unlabeled P����W��� tra�c and
mac-layer tra�c have similar performance. However, the labeled
tra�c (e.g. the tainted iPerf3 process) is limited to 53% of the achiev-
able bandwidth. In our experiments, the most notable impact was
on the TCP congestion window of labeled tra�c. As described in
Section 4.1, labeled tra�c is brought to the controller on a per-�ow
basis. As the reference monitor matches a rule, the controller sends
a �ow modi�cation for the remainder of the �ow. Prior to the es-
tablishment of the �ow modi�cation, the TCP congestion window
does not grow at the same rate as mac-layer matched tra�c.
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Table 2: Stealthy Data Loss Evaluation Tests

Toolkit Encrypted Model Snort IDS
Detected

Ipfwadm
Firewall
Detected

PivotWall
Detected

Netcat N Store-Forward N N Y
Cryptcat Y Store-Forward N N Y
Socat Forward N Active-Relay N N Y
Meterpeter Port Forward Y Active-Relay N N Y

Listing 4: P����W��� Detection of Netcat Store-and-Forward
PivotWall: Received UUID=b0815bee -b82b -11e7-b120 -60 f81dcd0c82 for 10.1.1.2:55848 - >10.5.5.1:1337
PivotWall: UUID=b0815bee -b82b -11e7 -b120 -60 f81dcd0c82 originates at 10.1.1.1
PivotWall: Detected New Labeled Flow From 10.1.1.2 - >10.5.5.1 , 55848, 1337
PivotWall: Rule Matches: drop tcp 10.1.1.1 any -> !10.1.1.0/24 any
PivotWall: Rule Action: drop , sending flow modification for 10.1.1.2:55848 ,10.5.5.1:1337

Table 3: Coverage of DET Plugin Attacks

Plugin Description Transport
Protocol

Pivotwall
Detected

DNS DNS Record Request UDP/TCP Y
Gmail B64-encoded e-mail TCP Y
Google_Docs B64-encoded parameterized URL TCP Y
HTTP B64-encoded HTTP Header TCP Y
ICMP ICMP Echo Requests UDP Y
Slack Hex-encoded Slack chat message TCP Y
TCP Hex-encoded Raw TCP socket TCP Y
Twitter B64-encoded Direct Message to self TCP Y
UDP Hex-encoded Raw UDP socket UDP Y

Table 4: iPerf Bandwidth Results

Mac-Layer
Switch PivotWall PivotWall

(Con�dential)
Transferred

(MB) 833.6 ±30.5 836.3 ±22.3 445.2 ±62.7

Bandwidth
(Mbits/sec) 696.7 ±25.7 699.0 ±19.0 372.9 ±52.6

Figure 6 depicts the average growth of the congestionwindow for
labeled and unlabeled tra�c. Labeled tra�c su�ers for two reasons.
Labeled packets pass through a net�lter interface (when the label is
applied) and are also inspected on a per-�ow basis by the reference
monitor at the controller. These actions cause the packets to be
acknowledged at a slower rate, causing the congestion window to
grow at a slower rate compared to packets that bypass the net�lter
interface and the reference monitor. This host-introduced delay
causes the most signi�cant performance impact.

At the SDN layer, P����W��� 's SDN security application per-
formance bene�ts from the design that only labeled packets are
redirected to the controller for inspection. The implementation of
P����W��� achieves this by setting the NW_ToS �ag OFPMatch to
to a higher priority over standard �ow rules. Further, labeled pack-
ets are brought only a per-�ow basis. After the �rst labeled packet

Figure 6: P����W��� Impact on TCP Congestion Window

is inspected, only packets requiring modi�cation are redirected
through the controller. Depending on the demands of packet mod-
i�cation by Modify-Scripts, future solutions could examine using
NFV to expand the scalability of the P����W���.

5.4 RQ4: Response Capability
We examined the ability of the P����W��� modify-script function-
ality to respond to a covert attack which uses the DNS protocol
as its channel. Detection of covert DNS channels presents an in-
teresting problem, with several proposed machine-learning based
approaches for detecting the channel [25, 26, 29, 32, 53]. Examples
of DNS-based attacker tools include OzymanDNS, dns2tcp, iodine,
heyoka, element53, DeNiSe, and DNSCat.

We examined how P����W��� prevents an attacker from using
DNSCat to covertly embed an attacker channel in valid DNS re-
quests. A signi�cant challenge associated with DNSCat is that it
supports forwarding the channel through a legitimate DNS Server
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Listing 5: Modify-Script To Log/Redirect DNSCat
rewrite_dns_query(packet):

dns = packet.find(�dns �)
ip = packet.find(�ipv4 �)
for q in dns.questions:

log.info (�[+] Tainted Query: %s � % q.name)
log.info (�[+] DNS Server: %s � % ip.dstip)

redir_dst = �10.10.10.10�
return redir_pkt(packet ,redir_dst)

to an attacker-controlled authoritative server. Because C2 Tunnel-
ing redirects tra�c through the victim's default DNS servers, the
attacker can use it to bypass egress �ltering.

To demonstrate the response capability of P����W���, we con-
�gured DNSCat to ex�ltrate data from a victim host to an external
domain. In our experiments, DNSCat successfully used DNSQueries
to establish a covert channel. However, when the attacker tried to
use the established channel to ex�ltrate con�dential data, the host
agent propagated the taint from the �le to DNSCat and ultimately
to the UDP packets carrying the DNS Requests.

To address this particular attack, we created a P����W���
Modify-Script that rewrote infected queries and logged the domain
name used in the attack. Our script, which successfully logged and
redirected tainted DNS Queries is listed in Listing 5.

6 DISCUSSION

Limitations of the Host Agent: We recognize that an attacker
can disable the host agent if the attacker fully compromises the host.
From the presence of a full compromise, an attacker can un-label
con�dential data, intercept andmodify host-agent control messages,
labeled packets, and exhaust the controller resources by a denial
of service attack. Attestation of the host agent is necessary but
we consider an orthogonal problem for this work. The host agent
does not address side channel or covert channels that ex�ltrate
con�dential data outside network connections.

The host agent has di�culty dealing with monolithic applica-
tions that do not rely on the operating system to partition infor-
mation into separate objects. For example, many database engines
and web servers themselves implement access controls on infor-
mation. This is exacerbated by using a single process to manage
connections from a number of clients. These factors lead to a se-
mantic gap between monolithic application and the operating sys-
tem kernel which implements information-�ow tracking. The re-
searchers behind SELinux have encountered these same challenges,
and they have proposed a series of changes to application software
[33, 35, 43, 45]. Finally, the host agent does not address a distributed
or cloud environment where processes may move between hosts.
We refer to Pappas et. al, who have presented solutions for cloud-
based information �ow control. [46, 47]

Blind-Host Assumption Tainting:We do not address hosts that
cannot participate in the defense due to resource constraints. Em-
bedded IoT devices are often used in stepping stone attacks because
they are programmed with hard-coded credentials in the �rmware.
While an attacker might be able to construct an SSH pivot through
this device, it is highly unlikely that we would be able to modify it

to participate in the active defense like a full host. We assume that
when a host is unable to participate in the defense, the controller
would be able to use assumption-tainting. Our initial results o�er
promising results into assumption-tainting. However, we reserve
the details for future work.

Integrity Attacks: Not all attacks seek to ex�ltrate information.
An adversary may seek to, for example, modify a �le in a source
code repository to insert a back door or similar vulnerability. While
the focus of this paper is secrecy attacks, P����W��� provides
primitives that are also valuable to defend against integrity attacks.
For example, if a Git server is assigned a label, P����W��� network
tainting will follow the TCP ACK messages back to to the network
�ow returning to the attacker on the Internet. However, applying
P����W��� in this way may induce signi�cant false positives (e.g.,
if developers use code snippets from Stack Over�ow), and therefore
requires further investigation.

7 RELATEDWORK
P����W��� touches on several areas of prior work. We begin by
discussing prior approaches for detecting stepping stone attacks by
correlating network tra�c. Next we describe how SDN has been
leveraged in the past to enhance network con�guration and man-
agement. Finally, we discuss host-based provenance frameworks.

7.1 Detection Using Network Flow Correlation
Previous approaches to detect stepping stone attacks have relied
on passive observation [64, 70] or actively watermarking packets
or �ows [61–63] and using the embedded watermark to correlate
�ows. However, these approaches mostly focus on detecting in-
teractive stepping stone attacks where the attacker maintains a
command and control channel and performs the attack steps within
a maximum tolerable delay. These approaches do not necessarily
consider the methods where an attacker evades detection using tim-
ing perturbation, introducing random long delays between packets,
or adding cha� packets, �ow splitting, or repacketization.

Due to concerns that embedded watermarks are observable,
RAINBOW [24] proposed an invisible non-blind watermarking
technique. RAINBOW records both incoming and outgoing �ows
and correlates �ows using small delays. The technique, however,
does not scale to large networks with heavy tra�c. Others have
proposed techniques that use intervals in di�erent ways to correlate
network �ows. SWIRL [23] changes the locations of packets within
selected time slots to encode watermarks. Despite signi�cant e�ort,
there is no robust way of correlating network �ows with high accu-
racy. For an active network �ow watermarking technique to work,
the watermark must be preserved across stepping stones. However,
if the attacker uses store-and-forward or split-relay techniques,
the embedded watermark is lost. Store-and-forward attacks were
�rst discussed by Coskun and Memom [12]. Along with split-relay
based attacks, they necessitate a new approach for stepping stones
attack detection. P����W��� aims to address these new challenges
while tackling existing ones.
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7.2 Network Management and Monitoring for
SDN

With the increasing popularization of Software-De�ned Net-
works [11, 18], many di�erent controller frameworks have been
proposed and adopted in practice [8, 16, 21, 36, 42]. Kim et al. [34]
discuss the new possibilities for network management and con�gu-
ration methods provided by the OpenFlow protocol [20, 41]. Their
studies demonstrate that SDN signi�cantly reduces the complexity
of network management in a variety of network settings and for a
range of network policies. We leverage the �exibility and the novel
properties of SDN to enable security mechanisms that may not be
feasible in a traditional network.

There have been a number of proposals that use SDN to enhance
network security. Avant-Guard [55] speci�cally focuses on address-
ing the communication bottleneck between the control and data
planes by identifying malicious tra�c, including network scanning
and denial-of-service. Network Iron Curtain [57] also focuses on de-
tecting scanning attacks in an SDN environment by implementing
a security service that responds to network scanning prede�ned
policies and redirecting attackers to a honeynet. This confuses at-
tackers by providing fake scanning results. Further, Abaid et al. [1]
expand the SDN architecture and develop an application to allow
deep packet inspection by proposing to elastically partition net-
work tra�c on demand using a broad range of detectors. Their
research bridges the gap between distributed DPI and SDN-based
NIDS. Bates et al. [4] studied the possibility of using SDN for net-
work forensics. They designed an SDN-based forensic system that
can be used to investigate previously unobservable attacks such
as data ex�ltration and collusion between compromised nodes by
using SDN to maintain a global view of the network activities.

Apart from leveraging the properties of SDN for building secu-
rity mechanisms, several recent papers have focused on the security
aspects of software de�ned networks [49, 54]. FRESCO [54] pro-
poses an application development framework for rapidly prototyp-
ing security applications for an OpenFlow controller. The authors
propose a modular design that allows development through mini-
mal coding. Porras et al. presented SE-Floodlight [49], which is a
reference implementation of a security-enhanced controller and
proposed a role-based hierarchical resolution strategy that could
resolves con�icts, along with a Northbound API that could provide
authenticated per-message credentials.

In contrast to these prior works, P����W��� enhances the SDN
controller with information from host agents. It is also the �rst
solution to use SDN to actively perform network taint analysis to
detect stepping stone attacks.

7.3 Host Provenance Frameworks
Prior work [5, 37–39] uses audit logging and provenance propaga-
tion on hosts to investigate and detect attacks. The central idea of
these frameworks is to track the �ow of attack provenance from an
initial source and so that any future actions can be attributed back
to the source.

BEEP [37] provides e�cient, dependence explosion-free logging
for binary programs. It partitions a long running process to multiple
autonomous units that handle independent input data to perform
�ne-grained logging. BEEP-generated logs, along with the regular

audit logs, enable identifying precise causality between a root cause
(i.e. an attack) and its symptoms, avoiding the dependence explo-
sion problem with regular audit logs. In a separate work [38], the
authors of BEEP presented LogGC, which is an audit logging system
towards practical computer attack forensics that uses garbage col-
lection to along with partitioning a database �le into data units so
that dependences can be captured at tuple level. ProTracer [39] is a
lightweight provenance tracing system that alternates between sys-
tem event logging and unit level taint propagation along with event
processing. ProTracer leverages a lightweight kernel module and
a concurrent userspace daemon. The LPM interface [5] is a frame-
work for the development of provenance-aware systems. It creates
trusted provenance-aware execution environments, imposes in-
signi�cant performance overhead on normal system operation, and
responds to queries about object ancestry in tens of milliseconds.

Most the provenance tracking systems lack the network context
while performing provenance propagation. They primarily focus
on mitigating host data loss or integrity protection for a single
host. Therefore, these systems would have di�culty identifying a
stepping stone attack chain. P����W��� complements these prior
approaches in that its host agent could be enhanced by incorporat-
ing their host-based provenance frameworks.

Pedigree [50, 51] is closest to P����W��� in concept. It extends
packets with a taint tag derived from host-level information and
uses an OpenFlow-based arbiter to make security decisions. To mit-
igate taint explosion, Pedigree probabalistically removes taint bits,
which sacri�ces security for usability. P����W���’s NIFC graphs
provides an alternate design approach that puts declassi�cation of
tainted network packets more directly into the hands of network
administrators.

8 CONCLUSION
This paper presented P����W���, a new network security archi-
tecture to implement information �ow control in a distributed en-
vironment. Our solution combines the logically central placement
of the SDN Controller with the context of host-based information
�ow tracking. We implemented a prototype by implementing a
host agent and network controller application. We evaluated our
prototype by testing it against a broad coverage of stealthy attack
tools, examined the performance impacts, and demonstrated the
ability to provide unique response capabilities to real-world attacks.
We demonstrate that P����W��� is a feasible approach to enable
context-based response and prevention capabilities that would be
di�cult to realize with existing solutions. With the ability to detect
stealthy attacks and implement reactive measures with acceptable
impacts to performance, P����W��� is a promising solution for
enhancing the security of enterprise networks.
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