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ABSTRACT
The always-on, always-connected nature of smart home devices
complicates Internet-of-Things (IoT) security and privacy. Unlike
traditional hosts, IoT devices constantly send sensor, state, and
heartbeat data to cloud-based servers. These data channels require
reliable, routine communication, which is often at odds with an
IoT device’s storage and power constraints. Although recent e�orts
such as pervasive encryption have addressed protecting data in-
transit, there remains little insight into designing mechanisms for
protecting integrity and availability for always-connected devices.
This paper seeks to better understand smart home device security
by studying the vendor design decisions surrounding IoT telemetry
messaging protocols, speci�cally, the behaviors taken when an IoT
device loses connectivity. To understand this, we hypothesize and
evaluate sensor blinding and state confusion attacks, measuring
their e�ectiveness against an array of smart home IoT device types.
Our analysis uncovers pervasive failure in designing telemetry that
reports data to the cloud, and bu�ering that fails to properly cache
undelivered data. We uncover that 22 of 24 studied devices su�er
from critical design �aws that (1) enable attacks to transparently
disrupt the reporting of device status alerts or (2) prevent the up-
loading of content integral to the device’s core functionality. We
conclude by considering the implications of these �ndings and of-
fer directions for future defense. While the state of the art is rife
with implementation �aws, there are several countermeasures IoT
vendors could take to reduce their exposure to attacks of this nature.
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1 INTRODUCTION
The rapid growth of smart-home IoT devices o�ers convenience,
connecting us to a broad-array of sensors and actuators in our
homes. The always-responsive nature of IoT provides on-demand
access to seamlessly monitor and control every aspect of our homes.
For example, smart-locks allow us to remotely schedule and control
access to our homes from a smart phone, and connected doorbells
can detect motion and send video push-noti�cations to our smart
phones. The always-on, always-connected nature of smart home
IoT devices also o�ers extensive forensic evidence for criminal
investigations and legal proceedings. For example, data from Fitbit,
Google Nest, Amazon Echo, and Ring Doorbell devices have aided
law enforcement in solving crimes [16, 26]. However, the swift
adoption of the IoT smart home market makes these devices, and
the information they provide, vulnerable to attacks that compromise
privacy and security [5, 30, 38, 45].

Most smart home IoT research focuses on protecting the con-
�dentiality of the privacy-sensitive information they generate [6,
20, 31, 36]. While such e�orts have improved the con�dentiality
of IoT devices, there remains a gap in availability and integrity of
the information they provide. Recent high-pro�le examples have
illustrated what happens when IoT availability fails, blinding or
separating the user from the device. A �awed software update for
NEST Thermostats caused a battery drain that deactivated devices,
shutting o� heat and leaving remote users disconnected [9, 29].
While the NEST failure unintentionally disrupted availability, an
adversary can craft attacks to degrade availability of smart-home
devices. A recent attack against the Amazon Key service demon-
strated a crafted 802.11 de-authentication frame could knock a
smart-lock o�ine, forcing the lock to remain unlocked and denying
remote access to the user [17].

We hypothesize that the NEST and Amazon Key incidents are
not isolated occurrences, but rather indicative of a larger systemic
design �aw in many IoT devices. Speci�cally, designers falsely as-
sume devices are always connected. By violating this assumption,
attackers may blind devices and confuse their state by selectively
suppressing device telemetry (i.e., data collected and transmitted
to the cloud). Telemetry may be classi�ed into channels for each
source of data [13]. These channels carry data from two IoT sub-
systems: the always-responsive and the on-demand subsystems [28].
To enable an always-connected environment, devices rely on the
always-responsive subsystem to present a continually connected
view of devices. In contrast, the on-demand subsystem delivers
sensor measurements to remote servers and implements actuator
functionality. By selectively suppressing one or both of these chan-
nels, IoT device functionality can be completely disrupted.

Coarse-grained and �ne-grained approaches di�er in their abil-
ity to suppress device telemetry, and therefore, it is important to
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characterize the practical implications. Transparent attacks provide
no indication to the end user. Permanent attacks eliminate upload-
ing bu�ered content after the attack. For example, coarse-grained
suppression (i.e., jamming) can blind devices and confuse a device’s
state; however, it is largely ine�ective at controlling user percep-
tion as it may trigger device alerts and in-app status changes. In
contrast, selectively dropping on-demand packets can blind devices
without an impact on user perception.

In this paper, we broadly characterize how smart home IoT de-
vices address the availability and integrity of telemetry reporting.
We analyze vulnerabilities in 24 popular consumer smart home
devices that span a breadth of device types, including connected
motion sensors, security cameras, doorbells, garage door openers,
and locks. Our analysis identi�es a systemic design �aw that en-
ables sensor blinding and state confusion attacks. In each device
we studied, we �nd instances of device implementation immaturity
that allows an IoT device to be trivially disrupted.

This paper makes the following contributions:

• We propose an attack methodology against telemetry protocols
and bu�ering for smart home IoT devices.Our attack is capable
of blinding sensors and confusing the state of actuators.

• We evaluate the susceptibility 24 popular consumer smart home
devices. We �nd that 22 su�er from design �aws that enable
attacks including: (1) transparently disrupting the reporting
of device status alerts, and (2) preventing the uploading of
content integral to the device’s core functionality.

Findings: We uncover critical design �aws that inform several
broad �ndings. First, IoT sensor devices commonly isolate the
telemetry for on-demand and always-responsive subsystems with-
out co-mingling state and sensor knowledge, allowing an attacker to
independently blind or suppress either subsystem. Second, battery
constraints often cause vendors to eliminate the always-responsive
subsystem by increasing or eliminating timeouts, allowing an at-
tacker to blind the on-demand subsystem. Third, smart home actua-
tor devices commonly fail to repudiate the delivery of state change
messages, exposing the devices to state confusion attacks. Fourth,
immature IoT implementations fail to bu�er sensor measurements
and state changes despite their computational capacity to do so.

Organization: Section 2 provides background, motivates our work,
and details the adversary threat model. In Section 3, we expand the
details of sensor blinding and state confusion attacks. In Section
4, we uncover the design �aws from a broad array of devices and
summarize our �ndings in a list of recommendation. Section 5 o�ers
insight for defense. Section 6 discusses related work. Section 7
summarizes our conclusions.

2 BACKGROUND & MOTIVATION
The o�ine actions and message telemetry protocols for smart home
devices are fundamentally di�erent. Vendors distinguish themselves
by implementing a variety of strategies for telemetry protocols and
o�ine content bu�ering and state management. For example, the
Amazon Echo is designed to exist always-connected to the cloud.
The automated speech recognition and natural language processing
algorithms for the device are exclusively processed server-side [2].

In contrast, Samsung’s SmartThings framework provides a combina-
tion of cloud and local storage and processing with the introduction
of a local controller [15]. The SmartThings controller (i.e., hub) of-
fers optional processing, memory, and storage not available at the
limited device level (e.g., a water leak sensor).

Bu�ering strategies on devices also vary. The CleverLoop Secu-
rity Camera uses a machine learning algorithm to �lter out unim-
portant movements and record only essential videos, locally storing
seven rolling days of video alerts [18]. Once reconnected, the Clev-
erLoop camera uploads up to 8GB of data to cloud-based severs. In
contrast, the WyzeCam Camera provides optional SD-Card stor-
age for the device, storing o�ine video and motion events only
locally on the card. Poor design decisions for o�ine bu�ering and
telemetry introduce two unique attack vectors: sensor blinding and
state confusion. The following section reviews the telemetry of IoT
devices to provide necessary context for these attack vectors.

2.1 Overview of IoT Telemetry
IoT devices consist of two subsystems: always-responsive and on-
demand [28]. The always-responsive subsystem maintains a per-
petual connection to remote servers to report the availability of the
device and listen for server-side instructions. In turn, the servers use
low-bandwidth messages to monitor connectivity health. We label
this message exchange heartbeats, since they periodically indicate
the connectivity health of a device. When a timeout expires without
receiving any heartbeats, servers mark the device as o�ine and
present the user with a smart phone alert. In our experiments, we
measured the timeout period as brief as forty seconds and as long
as thirty minutes. Further, some battery constrained devices en-
tirely eliminate the always-responsive subsystem due to the power
constraints of periodic messaging.

Conversely, the on-demand subsystem delivers environmental
sensor measurements and actuator state changes to remote servers.
As an example, a security camera may send an initial motion sensor
noti�cation before uploading a video recording. We describe the
initial low-bandwidth messages as on-demand event noti�cations,
since they are prioritized noti�cations of a triggered on-demand
event. We label the video recording as on-demand content messages,
since they are often high-bandwidth messages carrying the content
of a triggered event. Event noti�cations and content messages are
the primary channels for sensor reporting. Actuators commonly
use only event noti�cations to report state changes.

As depicted in Figure 1, devices may establish independent chan-
nels for heartbeats, event noti�cations, and content messages. Chan-
nel independence often occurs by network �ow division, separat-
ing channels among di�erent protocols, transport layer ports, and
servers. In contrast, some devices create channel separation through
time division by sharing time slots on the same network �ow. In this
case, a device may interleave event noti�cation and content mes-
sages between periodic heartbeats. Attacking �ow division and time
division channels require unique approaches, described in Section 3.

Sensor Blinding: Sensor blinding attacks the integrity and avail-
ability of sensor devices by preventing the delivery of sensory
measurements to always-connected IoT servers. Sensor-based IoT
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Figure 1: The systemic isolation of connectivity (e.g., heart beat), event noti�cation, and content (e.g., video recording) channels
for IoT devices present a blinding vulnerability when a channel is independently suppressed.

devices summarize raw sensory measurements (e.g., motion detec-
tion, video recording, auditory, water detection, or other environ-
mental sensors) and report this information. These devices rely on
uninterrupted and untampered delivery of messages. However, we
discovered in our experiments that devices commonly fail to ensure
server-side delivery of sensory measurements. As an example, our
evaluation identi�ed the Ring Video Doorbell did not bu�er any of
the historical events that occurred while the device lacked connec-
tivity. An attacker can exploit this design �aw to blind the device’s
noti�cation mechanism, which reports motion detection. While our
work focuses on smart home devices, contemporary research has
shown weaknesses in protection mechanisms for connected sen-
sors by maliciously spoo�ng sensor reporting, leading to isolated
attacks against the US Department of Vehicles [12] and agricultural
cyber-physical systems [39].

State Confusion: State confusion attacks the integrity of actua-
tor devices’ state reported to always-connected IoT servers. State
confusion is a special subset of sensor blinding attacks, where the
sensor blinding impacts actuators. Actuators implement mechani-
cal movement and control, changing the physical state of a device.
Disrupting connectivity for actuator devices can pin the device in
a �xed state, which can have disastrous consequences for actua-
tor devices (e.g., smart-locks, garage doors, sprinkler systems, or
smart-outlets). For example, the Amazon Key service attack demon-
strated that a simple 802.11 de-authentication frame could knock
a connected smart-lock o�ine, pinning the device in the current
unlocked state [17]. Once disconnected from the wireless network,
the device remained inde�nitely in the unlock state. Related re-
search has shown the ability to in�uence a drone’s state by GPS
spoo�ng, followed by jamming the control channel, forcing the
drone to crash while in the spoofed state [21].

2.2 Threat Model
There are many reasons why an attacker may wish to blind sensors
or confuse states of smart home IoT devices. Many smart home
devices are used to provide physical security. Therefore, criminals
may use sensor blinding and state confusion of actuators to gain
physical access to a home without creating digital forensic evidence.
Criminals may attack homes opportunistically by themselves, or
they may be part of organized crime, which may obtain access to
tens of thousands of wireless routers. Outside of this traditional
threat model, the attacker may also be the perpetrator of domestic
abuse. Recent popular media articles [10] have reported instances

of domestic abuse that involves stalking using smart home devices.
In addition to these attacks, a domestic partner may blind sensors to
eliminate forensic evidence or confuse states of actuators to retain
physical access to areas.

2.2.1 A�acker Goals. We consider an attacker whose goal is to
disable the core functionality of a device by blinding a sensor or
confusing the state of an actuator. As an illustration, we imagine an
attacker that has the goal of circumventing a security camera with-
out triggering an alert or being recorded, or preventing a smart-lock
from securing a residence. Ultimately the success of the attacker
relies on two variables: the ability to avoid producing alerts (a trans-
parent attack) and the ability to avoid leaving a record (a permanent
attack).

2.2.2 A�acker Capabilities. An attacker may execute a coarse-
grained approach of physical layer suppression (e.g, jamming). Al-
ternatively, the attacker may have or can gain access to the wireless
router to implement a �ne-grained network layer suppression. We
consider the following two attacker capabilities:

Physical Layer Suppression: A physically located attacker can
broadly jamming the wireless signal, or exploit �aws in the 802.11
networking scheme including forging un-encrypted de-authentication
frames or �ooding carrier-sense management frames. Such an ad-
versary can jam tra�c at the physical layer but will not achieve
their objective of a stealthy attack. Jamming suppresses all device
tra�c and is a coarse-grained approach that will provide the user
with an indication of the attack.

Local Network Layer Suppression: An attacker with control
over the wireless router has �ne-grained ability to selectively sup-
press packets. To compromise a wireless router, an attacker may
gain access through several di�erent attack vectors [40–44]. The
attack may be mounted remotely from the Internet, or locally from
a compromised or malicious device on the LAN. Alternatively, the
attack may have a pre-existing relationship with the victim and
been given administrative access to the router. This �ne-grained
access permits selectively suppressing on-demand tra�c without
adversely a�ecting user perception of device availability. Once
controlling the router, the attacker can control tra�c through a
variety of techniques: 1) remotely proxying device tra�c, 2) lo-
cal establishment of �rewall policies, or 3) connecting the router
to a criminally-run remote security orchestrator that selectively
suppresses on-demand security camera tra�c.
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Figure 2: The simplistic nature of IoT devices facilitates
subsystem classi�cation at the packet layer, enabling an at-
tacker to isolate on-demand events.

2.2.3 A�acker Assumptions. Our approach relies on two key as-
sumptions: 1) the attacker can �ngerprint a device and 2) the at-
tacker understands the telemetry model for the target device.

Device Fingerprinting:We assume the attacker can �ngerprint
a device. This is a reasonable assumption as several recent works
have demonstrated highly accurate device �ngerprinting with nom-
inal tra�c [1, 5, 8, 27]. Further, devices can be identi�ed using
IoT reconnaissance tools such as IoTScanner [35] or intercepting
medium access control layer headers.

Telemetry Models: We assume the attacker can learn the teleme-
try model for a speci�c device. The attack model is generic as it
applies across device types, vendors and models. However, the
attacker requires knowledge of speci�c device telemetry and mes-
saging protocols to succeed. As smart home devices are commercial
in nature, an attacker can procure and study the telemetry protocol
for any device in preparation for an attack.

3 METHODOLOGY
In this section, we discuss the di�erent design features that enable
attacks against IoT telemetry by considering telemetry division,
message timeouts, and bu�ering decisions. Further, we o�er insight
for understanding attack severity by discussing attack transparency
and permanence.

3.1 Attacking Flow Division Telemetry
Flow division telemetry, depicted in Figure 1, separates heartbeats,
noti�cations, and content across distinct network �ows. To illus-
trate this isolation, consider the Tend Secure Lynx Indoor Security
Camera, a connected surveillance camera which supports motion
detection and high de�nition video. In our observations, we de-
termined the camera sent heartbeats to an AWS server using the
TinyMessage protocol (TCP port 5104) and separately delivered
noti�cation and content messages to AWS servers over SSL. Iso-
lating the always-responsive and on-demand subsection facilitates
ideal conditions for sensor blinding and state confusion attacks by
enabling the attacker to easily identify and blind the on-demand
subsystem. An attack can bene�t from the simplistic nature of IoT
to classify the data intensive on-demand subsystem and the peri-
odic always-responsive subsystem. In the case of the Lynx Camera,
Figure 2 depicts three separate on-demand video recordings that
peak from the routine low-bandwidth heartbeat messages.

Device: Online

No Motion

Figure 3: On storage constrained IoT devices, the lack of
bu�ering event noti�cations and content in embedded chan-
nels presents a blinding vulnerability when individual pack-
ets bearing noti�cation or content are suppressed.

Transparent Blinding: The design �aw of incorrectly separating
the privilege of each subsystem enables our attack. In the case of
�ow division telemetry, devices rarely co-mingle the functionality
of the always-responsive and on-demand subsystems. Speci�cally, a
heartbeat is solely responsible for reporting connectivity health and
does not advertise on-demand events. Conversely, on-demand mes-
sages (noti�cations, and content) have no impact on connectivity
health. By their nature, on-demand subsystem messages are often
delivered without prior noti�cation. Thus, an attacker can trans-
parently suppress the on-demand �ows, creating the conditions
for sensor blinding and state confusion attacks. In the naive case
of the Lynx Camera, a �rewall rule blocking outbound SSL tra�c
will blind the camera’s on-demand subsystem. With the �rewall
rule applied, an owner’s companion app will report the camera as
online; however, the device will silently fail to report any motion
detection or video recordings. We label this attack as transparent
blinding, as the user is unaware the camera system is failing to
report on-demand events. Figure 3 depicts this transparent attack.

Semi-Transparent Blinding: A partial disruption of the always-
responsive subsystem often results in only semi-transparent blind-
ing. In this case, the companion app may display intermittent con-
nectivity but avoids overwhelming the user with alerts. In select
cases, an adversary is unable to suppress the on-demand subsys-
tem without at least partially disrupting the always-responsive
subsystem. This is common in the case of �ow-division telemetry,
as described in the following subsection. A full disruption of the
always-responsive subsystem commonly results in a smart phone
alert that informs the user of the disruption. However, a partial
disruption often results in only an in-app status message. Thus,
the user is only aware of the blinding if they have the companion
app open during the attack. In our experiments, we found that
several devices were vulnerable to semi-transparent blinding for
su�ciently long periods of time. As an example, we found the
Iris Hub displayed an intermittent connectivity message inside the
companion app after a minute of sensor blinding but waited thirty
minutes to deliver a smart phone alert. In our experiments, we also
discovered that devices did not aggregate blinded time. To illustrate
this �aw, we could blind the Iris hub for 29 minutes, permit 1 minute
and then repeat without ever triggering an alert.

Permanent Event Blinding: Event noti�cation and content mes-
sages are frequently discarded with on-demand connection failures.
The unique storage and processing constraints of IoT enables this
problem. In our experiments, we observed all device types rarely
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Figure 4: On battery constrained IoT devices, lengthy time-
outs between heartbeats present an opportunity to suppress
unbu�ered state changes of actuators.

bu�er on-demand events (even at hubs, whose purpose is to pro-
vide auxiliary storage). As a running example, the Lynx Camera
discarded video recordings while our �rewall rule was established.
After removing the �rewall rule, the camera only uploaded newly
detected on-demand events. A combination of factors including the
processing power required for data transformation, limited local
bu�er, and low-power mode/sleep requirements may contribute
to this design decision [13]. However, the device is permanently
blinded when the device fails to bu�er and deliver suppressed on-
demand events. The design decision of not bu�ering failed events
enables an adversary to selectively suppress the on-demand system
for a brief period, resulting in the device permanently failing to ever
report the suppressed events. As we discuss in Section 4, an attacker
can also leverage wireless denial-of-service attacks to permanently
blind wireless devices by forging de-authentication frames. While
several systems support auxiliary storage (e.g., secure digital mem-
ory cards) to bu�er events, an attacker can remove or physically
alter this storage while the device is blinded.

3.2 Attacking Time Division Telemetry
Attacking time division telemetry requires a more �ne-grained
approach that selectively suppresses individual packets instead of
network �ows. An attacker must permit always-responsive pack-
ets while suppressing on-demand packets to achieve the goal of
transparently and permanently blinding devices. This is trivial for
connection-less transport layer protocols which fail to maintain
state or guarantee delivery. However, most devices rely on SSL,
which uses connection-oriented TCP, guaranteeing in-order deliv-
ery. To address this challenge, an adversary can bene�t from two
key design failures: the lack of on-demand event bu�ering (as pre-
viously introduced) and lengthy timeout periods. In the following
paragraphs, we address how an attacker can leverage these design
failures to attack time division telemetry.

Packet Signatures: Time division telemetry attacks require iden-
tifying packets from the on-demand subsystem. The attacker must
be able to distinguish between always-responsive packets and on-
demand packets. An attacker can bene�t from the simplistic nature
of IoT to strengthen the classi�cation accuracy. Apthorpe et al. [5]
previously demonstrated the ability to infer privacy-sensitive, on-
demand activities from analyzing tra�c rates of IP tra�c. Further,
Celosia et al. [11] observed that artifacts of Bluetooth L2CAP layer
could be used to determine a device state change. In our experi-
ments, we discovered this classi�cation holds true for smart home
devices at the packet level.

We observed that we could identify packets based on the consis-
tent nature of the always-responsive subsystem and urgent nature
of the on-demand subsystem. To illustrate this, consider the case
of the Momentum Axel security camera which supports motion
detection, audio detection and video recording over time divided
telemetry. The camera’s always-on-subsystem sends �xed size 52,
60, or 108-byte heartbeats while the on-demand subsystem sends
617 or 761 byte noti�cation packets (depending on if audio or mo-
tion triggered the event), and 1500-byte content packets. Transport
layer options can strengthen classi�cation of on-demand activities.
We discovered several on-demand packets from several devices
(including from the Momentum Camera) set the TCP PUSH �ag in
order to promptly forward and deliver data. The transport layer uses
the TCP PSH Flag to push data out of a TCP socket immediately,
rather than waiting for additional data to �ll the bu�er [19]. Finally,
we discovered the always-responsive subsystem sends packets on
a consistent and predictive interval. In contrast, the on-demand
subsystem interleaves packets between periodic heartbeats.

Bu�er Failures: Storage and processing constrained IoT devices
often fail to bu�er suppressed on-demand content and noti�cations.
In our observations, the lack of acknowledgments for suppressed
packets terminates connection-oriented protocols. However, the
always-connected nature of IoT immediately establishes a new con-
nection. In design, this new connection should carry the suppressed
on-demand events. However, the new connection often began with
always-responsive heartbeats instead of the suppressed on-demand
content. We observed several cases of motion detectors, security
cameras, and even smart hubs simply discarding the suppressed
on-demand content and noti�cations. To amplify the severity of
the attack, we often observed a lack of user alerts since the always-
responsive subsystem succeeded in delivering a heartbeat within
timeout windows. Figure 4 illustrates this attack scenario. When
the adversary suppresses an on-demand state change, the IoT de-
vice simply discards the change and establishes a new connection.
The next section expands upon our empirical evaluation and the
�ndings and results for 24 popular smart-home devices.

4 RESULTS
In this section, we describe the experimental setup for evaluating
the vulnerability of 24 popular smart-home devices to sensor blind-
ing and state confusion attacks. We intentionally chose a simple
setup to ease reproducibility and provide all �ow modi�cations to
repeat the experiments used in our evaluation. We conclude this
section by summarizing a list of our �ndings that highlight key de-
sign failures that contribute to sensor blinding and state confusion
attacks against our data-set of devices.

4.1 Experiment Setup
We set up a laboratory smart home environment to examine the
scope and severity of attacks against a broad array of devices. In
our threat model, the adversary’s objective is to blind sensors and
confuse the state of actuators. The severity of the attack relies on
the adversary’s transparency and permanence. For each device in
our environment, we measured the impact of network layer and
physical layer suppression of tra�c for a thirty-minute window.
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Table 1: To demonstrate the broad scope of the problem, we have pro�led 24⇤ popular smart home IoT devices and measured
the e�ectiveness of sensor blinding and state confusion attacks by analyzing their transparency and permanence for these
devices. Our results indicate systemic design �aws contributed to attacks against all devices classes.

Device App
Downloads

Firmware
Version

Attack
Type

Network Layer Suppression Physical Layer Suppression

Transparent
Attack

Permanent
Attack

Transparent
Attack

Permanent
Attack

D-Link DCH-S150 Motion Sensor 100,000+ 1.23 Sensor Blinding ○ � �2 �
Belkin F7C028 Motion Sensor 500,000+ 2.00.11057 Sensor Blinding �2 ○ �2 ○
Wasserstein Motion Sensor 5,000+ 1.10 Sensor Blinding ○ ○ ○ ○
iView S200 Motion Sensor 5,000+ 1.10 Sensor Blinding ○ ○ ○ ○
TuyaSmart M01 Motion Sensor 5,000+ 1.10 Sensor Blinding ○ ○ ○ ○

D-Link DCS-8010LH Camera 100,000+ 1.02.02 Sensor Blinding � � � ○
Momentum MOCAM-720-01 Camera 100,000+ 5.1.8 Sensor Blinding �3 � �3 �4

Merkury MI-CW007-199W Camera 10,000+ 2.0.9 Sensor Blinding ○ ○ �2 ○
Geenie CN-CW003 Camera 100,000+ 1.10.16 Sensor Blinding ○ ○ �2 ○
Tend Secure Lynx Indoor 2 Camera 50,000+ 00.15.003 Sensor Blinding ○ ○ � ○
Wyze V1 Camera 100,000+ 3.9.3.72 Sensor Blinding ○ �4 �8 �4

Wyze V2 Camera 100,000+ 4.9.3.64 Sensor Blinding ○ �4 �8 �4

Canary 1 Security Camera 100,000+ 4.0.0 Sensor Blinding �5 � �5 ○

Iris Door Contact Sensor 100,000+ 2.2.0.009 Sensor Blinding �2 ○ – –
Iris Motion Sensor 100,000+ 2.2.0.009 Sensor Blinding �2 ○ – –
Iris Water Sensor 100,000+ 2.2.0.009 Sensor Blinding �6 � – –
SmartThings Contact Sensor 100,000,000+ 000.024.00022 Sensor Blinding ○ ○ – –
SmartThings Motion Sensor 100,000,000+ 000.024.00022 Sensor Blinding ○ ○ – –
SmartThings Water Sensor 100,000,000+ 000.024.00022 Sensor Blinding ○ ○ – –
SmartThings Button 100,000,000+ 000.024.00022 Sensor Blinding ○ ○ – –
Ring Pro Doorbell (Wired) 1,000,000+ Up to Date1 Sensor Blinding �2 ○ �2 ○
Ring Doorbell (Battery) 1,000,000+ Up to Date1 Sensor Blinding ○ ○ ○ ○
MyQ Garage Door Opener 500,000+ Up to Date1 State Confusion �2 �7 �2 �7

Schlage Deadbolt (w/ Iris Hub) 100,000+ 2.2.0.009 State Confusion �2 ○ – –
Schlage Deadbolt (w/ SmartThings Hub) 100,000,000+ 000.024.00022 State Confusion ○ � – –
Total 15/25 16/25 4/15 11/15

○ Attack succeeded. �Attack partially succeeded (i.e., semi-transparent blinding and/or partial event bu�ering). �Attack failed (i.e., alerted smart phone and/or bu�ered all o�ine events).

* Our data-set consists of 24 total devices and 25 con�gurations since the Schlage Deadbolt is con�gured with both the Iris and SmartThings Hubs.

1 Device only reports �rmware up to date; does not report �rmware version number. 5Smart phone only alerts o�ine when app opened.
2 Smart phone app displayed o�ine status; smart phone did not alert user. 6Hub alerts water leak via audible alarm; smart phone did not alert user.
3 Smart phone app displayed online; smart phone alerted user. 7Smart phone app is only confused for 5 minutes.
4 Device bu�ered a single motion detection event. 8Clicking a device in the smart phone app results in an error message.

Tested Devices: Our evaluation consisted of a representative set
of 24 smart home IoT devices for consumers, available during 2018
from well-known US retailers, including Walmart, Lowe’s, Target
and Amazon. These devices covered IoT classes related to security
cameras, motion sensors, smart home environmental monitoring,
connected doorbells, garage door openers and smart-locks. Most
devices connected directly through Wi-Fi to our network. In the
case of smart-hubs, they were connected to the network via Eth-
ernet and connected to their sensors and actuators via ZigBee or
Z-Wave. We did not consider suppressing ZigBee or Z-Wave tra�c
but instead focused on selectively suppressing tra�c that the smart-
hub generated to cloud servers. For each device, we downloaded
the iPhone companion app to manage the device. As an indication
of the popularity of each device, we recorded the number of ap-
plication downloads for the Android app version on the Google
Play Store. (The Apple App Store does not release app download
metrics). Note, the Geenie and Merkury devices use the same com-
panion app. Further, the Iris and SmartThings sensors are managed

by their respective singular apps. All other apps are single purpose
apps. An overview of the tested devices is shown in Table 1.

Labeling Results: Our evaluation considered the ability to blind
a device’s sensors and confuse the state (if the device maintained
state). We used full (○), half-�lled (�) and empty (�) circles to
label the severity of the transparency or permanence of the attack.
Under the transparent column, a full circle represents the attack
succeeded without an in-app status change or smart phone alert.
A half-�lled circle indicates semi-transparent blinding (e.g., the
companion app displayed an o�ine status message but failed to
provide a smart phone alert). Under the permanent column, a full
circle indicates that the sensor behavior or state change is never
reported after the attack. A half-�lled circle indicates that the attack
bu�ered a period but not all of the attack (e.g., a camera system
bu�ered the most recent event) or that the state confusion lasted
only a brief period (e.g., the companion app for a lock remained
confused for �ve minutes after the attack).
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Table 2: Packet Signatures for Eliminating the On-Demand
Subsystem of Devices

Device On-Demand Packet Signature
D-Link Motion Sensor PROTOCOL == SSL AND PAYLOAD LENGTH > 475 BYTES
Belkin Motion Sensor PROTOCOL == TCP AND (DST PORT == 8443 OR DST PORT == 3478)
Wasserstein Motion Sensor PROTOCOL == MQTT AND PAYLOAD CONTAINS "out"
iView Motion Sensor PROTOCOL == MQTT AND PAYLOAD CONTAINS "out"
TuyaSmart Motion Sensor PROTOCOL == MQTT AND PAYLOAD CONTAINS "out"
Canary Security Camera PROTOCOL == SSL AND PACKET LENGTH == 1500 BYTES
D-Link Camera PROTOCOL == SSL AND PSH/ACK SET and PAYLOAD LENGTH > 600 BYTES
Momentum Camera PROTOCOL == SSL AND PSH/ACK SET and PAYLOAD LENGTH > 600 BYTES
Merkury Camera PROTOCOL == MQTT AND PAYLOAD CONTAINS "smart/device/out"
Wyze Camera PROTOCOL == TCP AND DPORT == 8443
Tend Secure Camera PROTOCOL == SSL
Geenie Camera PROTOCOL == MQTT AND PAYLOAD CONTAINS "smart/device/out"
Iris Hub PROTOCOL == SSL AND PSH/ACK FLAGS AND PAYLOAD LENGTH > 250 BYTES
SmartThings Hub PROTOCOL == SSL AND PAYLOAD LENGTH > 359 BYTES
Ring Pro DoorBell PROTOCOL == SSL OR TCP DST PORT == 15063 OR 9999
Ring Doorbell PROTOCOL == TCP AND DPORT == 80
MyQ Garage Door Opener PROTOCOL == TCP AND PAYLOAD LENGTH == 125 BYTES

Network Layer Suppression: To suppress tra�c with the �ne-
grained approach described in Section 3, we con�gured a consumer
grade wireless router as a software de�ned switch and connected
it to a local software de�ned controller. Our controller logic imple-
mented OpenFlow �ow modi�cations that matched the appropriate
header �elds that correlated to on-demand events for each device.
For reproducibility, we have included the matching �elds in Table 2.
During the thirty-minute attack window, we stimulated on-demand
activities for each device.

Physical Layer Suppression: To determine the e�ect of phys-
ical layer suppressed, we implemented a coarse grained denial-
of-service attack by exploiting a vulnerability of the data-link
layer. This approach suppressed both the always-responsive and
on-demand subsystems. This attack replicated a local criminal from
our threat model in Section 2. For each device, we forged 802.11
de-authentication frames using the aireplay-ng packet injection
tool [14]. These forged frames disrupted the wireless connectivity
of the devices, eliminating both subsystems. We recognize there are
more subtle approaches to reactive jamming, that could selectively
suppress the on-demand subsystem, but leave these approaches for
future work [46].

4.2 Evaluation Results
Table 1 summarizes the results of our evaluation. Our results demon-
strate that 22 of 24 devices su�er from critical design �aws that
enable attacks to transparently disrupt the reporting of device status
alerts or prevent the uploading of content integral to the device’s
core functionality. These results con�rm our hypothesis that the
attacks against NEST and Amazon Key are not isolated instances.
IoT developers falsely assume devices are always connected and
are unprepared when that assumption is violated. In our data-set,
15 devices fail to provide the user any indication they are under
an attack and 16 devices fail to bu�er any content for the duration
of the attack. An additional two devices fail to bu�er any content
when the physical channel is eliminated by jamming.

We �nd that our proposed attack vector, selectively suppressing
network layer tra�c, o�ers stealth over physical layer suppression.
To this end, we demonstrate a reliable methodology for blinding
security cameras and motion sensors that relies on attacking �ow
division telemetry. Our attack methodology, purposely simple and
easily replicated, has signi�cant rami�cations about the forensic

(A) Device functioning correctly (B) Device sensor blinded

Figure 5: The design decision to isolate telemetry channels
into separate �ows that do not co-mingle state and sensor
knowledge leads to blinding and confusion vulnerabilities.
In the�gure above, theMerkury camera is functioning prop-
erly in (a) and blinded in (b).

value of the data these always-connected devices produce. Ulti-
mately, we uncover immature IoT implementations that fail to
implement telemetry protocols and bu�er sensor measurements
and state changes despite their computational capacity to do so.

In the following subsection, we summarize these �ndings by ex-
amining the problematic designs of telemetry, battery conservation,
controller storage, controller prioritization, and bu�ering during
tra�c suppression.

4.3 Evaluation Findings

Finding 1: Flow division telemetry commonly isolates the on-
demand and always-responsive subsystems. The design deci-
sion to isolate telemetry channels into separate �ows, without
co-mingling state and sensor knowledge, facilitates sensor blind-
ing vulnerabilities. We successfully blinded the availability of the
on-demand subsystem in several devices in our evaluation data-set:
including the Ring Doorbell, the Merkury, Wyze, Lynx, and Geenie
security cameras and several motion sensor devices.

Figure 5 illustrates the results of sensor blinding the Merkury
security camera. In the case of this example, we stimulated the on-
demand motion sensor by placing an object in front of the camera
system. We passively observed that the camera system sent the
motion noti�cation over a plain-text MQTT connection and sent
heartbeats and video content over SSL. We identi�ed the tra�c
from each subsystems by correlating the packet timings to the
history in the companion app. We then repeated the experiment
suppressing only the on-demand MQTT �ow. When triggered, the
camera attempted to initiate the MQTT connection but our �ow
modi�cations suppressed the corresponding packets. Despite the
device uploading a video over the SSL connection, the companion
app displayed a blank event history. Although the attack eliminated
the on-demand channel from delivering motion noti�cations, the
companion app failed to alert the user. After eliminating the �ow
modi�cation, the camera system returned to full functionality but
failed to subsequently upload the bu�ered motion noti�cations.
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on-demand on-demand

on-demandon-demand

on-demand & always-responsive

Health-reports are on-demand 
    events triggered by motion detection

Figure 6: The standard Ring uses on-demand health re-
ports, triggered via motion, to report the health of the de-
vice. The design decision to conserve battery by eliminating
the always-responsive subsystem facilitates transparently
blinding the standard Ring over the Ring Pro.

Finding 2: Ba�ery constraints o�en eliminate the always re-
sponsive subsystem. Battery constraints present a key design de-
cision in the integrity of the always-responsive subsystem. In our
experiments, we determined vendors often eliminate the always-
responsive subsystem by increasing or eliminating timeouts. This
trade-o� conserves battery power at the cost of device responsive-
ness. Table 3 enumerates the heartbeat intervals and timeouts for
all devices to provide an understanding the trade-o� made by dif-
ferent devices. To speci�cally illustrate the battery paradigm, we
compared the evaluation of the professional and standard version
of the Ring Doorbell. The professional version is connected to low
voltage power while the standard version is battery-powered. The
doorbells o�er similar functionality. However, the di�ering imple-
mentations of the always-responsive and on-demand subsystems
facilitate transparent blinding against the standard version.

Figure 6 depicts the di�ering channels for the �ow-division
telemetry. In our evaluation, both devices transmitted a health report
(carrying metrics about device power and signal strength) over SSL.
Also, both delivered on-demand content and noti�cations to remote
servers. The standard version used HTTP-over-TLS for content and
noti�cation, the professional version delivered noti�cations over
TCP Port 15063 and content separately. The key distinction is the
always responsive subsystem, which enables streaming video. The
professional version, which supports streaming video by default,
transmitted periodic heartbeats over SSL. In contrast, the standard
version did not send any periodic heartbeats and lacked streaming
video in the default con�guration. Instead of the heart-beats, the
standard version uses the health reports to determine device health
and connectivity. This problematic decision is ampli�ed by the fact
that the health reports are only delivered on-demand with motion
sense noti�cations. Thus, the server does not anticipate them on
any interval and they cannot provide ground truth about the device.

To blind the motion sensors of both devices, we enabled �ow
modi�cations that dropped noti�cation and content packets. During
the period of our �owmodi�cations, our attack blinded both devices
by preventing the delivery of on-demand noti�cations and content
for motion-triggered events. Further, nether device bu�ered the
events. However, we ran into a challenge transparently blinding
the professional version. On the professional version, we could not
distinguish between packets originating from the always responsive
subsystem (heartbeats) and the on demand subsystem (content)
since they were encapsulated in the same network �ow. However,

Table 3: Lengthy heart-beat time periods facilitate tra�c
suppression and blinding attacks without alerts.

Device Telemetry Protocols HeartBeat (s)
D-Link Motion Sensor Time Division SSL 5
Belkin Motion Sensor Flow Division STUN, SSL, MQTT 270
Wasserstein Motion Sensor Flow Division MQTT, HTTP —
iView Motion Sensor Flow Division MQTT, HTTP —
TuyaSmart Motion Sensor Flow Division MQTT, HTTP —
Canary Security Camera Time Division SSL 30
DLink Camera Time Division SSL 55
Momentum Camera Time Division SSL 30
Merkury Camera Flow Division SSL, MQTT, UDP 120
Wyze V1 Camera Flow Division SSL, MQTT-S, UDP(1001) 5
Wyze V2 Camera Flow Division SSL, MQTT-S, UDP(1001) 5
Tend Secure Camera Flow Division SSL,TinyMsg 15
Geenie Camera Flow Division MQTT, UDP 100
Iris Hub Time Division SSL 5
SmartThings Hub Time Division SSL 30
Ring Pro DoorBell Flow Division H264, SSL, RTP, TCP(9999) 30
Ring Doorbell Flow Division H264, SSL, RTP —
MyQ Garage Door Opener Time Division MQTT-S 10

this presented no issue for the standard version since it lacked an
always responsive subsystem. Thus, our �ow transparently blinded
the standard version. During the period of the attack, the companion
app reported the standard Ring doorbell as online and failed to
sense or report any motion detection events. We also found similar
vulnerabilities in theWasserstein, iView, and Tuya battery-powered
systems that eliminated the always-responsive subsystem.

Finding 3: Flawed controller designs introduce device layer
vulnerabilities. To illustrate state confusion attacks, we analyzed
the di�erent methods the Iris and SmartThings controllers handled
suppressed telemetry for the Schlage Deadbolt. We included the
Schlage touchscreen deadbolt in our data-set as it o�ers Z-Wave con-
nectivity and supports di�erent controllers including SmartThings,
Iris, Alexa, and Wink. By pairing the deadbolt with a controller, a
user can remotely control the state of the deadbolt using the con-
troller’s companion app. In our analysis, we discovered the design
of the Iris controller permitted suppressing state reporting to the
companion app.

Further, we identi�ed the two controllers distinctly handled sup-
pressed telemetry, leading to a signi�cant vulnerability in the state
reporting of the Iris controller’s companion app. To understand the
impact of controller design decisions, we suppressed the on-demand
telemetry that reported the unlock action. Both controllers reported
on-demand and always-responsive telemetry over SSL, complicat-
ing the attack. However, we determined that packets carrying the
on-demand telemetry were quite larger than the always respon-
sive heartbeat messages. Thus, our �ow modi�cations dropped
packets larger than 250 and 359 bytes for the Iris and SmartThings
controllers, respectively.

While suppressing the on-demand channel, we physically un-
locked the deadbolt. We veri�ed the deadbolt did correctly report
the state change over Z-wave to the controller. Subsequently, our
�ow modi�cations dropped the on-demand state change messages
from both controllers to their remote servers. After the �ow mod-
i�cations expired, we examined the status of the companion app.
Initially both controllers reported the deadbolt as locked as we
had suppressed the initial state change. However, after a maximum
period of 100 seconds, the SmartThings controller updated the state
as unlocked. In contrast, the Iris controller failed to subsequently
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update the state of the lock in the companion app. Figure 7 depicts
the companion app reporting the incorrect state of the lock thirty
minutes after the �ow modi�cations expired.

As we analyzed the telemetry of both devices, we discovered
the systemic design �aw that lead to the attack. The SmartThings
controller sent a periodic state update every 100 seconds. We pas-
sively observed this by locking and unlocking the deadbolt and
then correlating the subsequent network tra�c and smart phone
app status. Even without a change to the state of the device, the
SmartThings controller periodically transmitted the state of the
device every 100 seconds. However, the Iris controller treated a
state change as a single �xed event and only reported the state
change when the action physically occurred. Thus, suppressing the
single state change permanently confused the Iris smart phone app.

Finding 4: Controllers can prioritize bu�ering event noti�ca-
tion based on severity. Comparing the distinct responses for a
water leak between the Iris and SmartThings controller o�ers in-
sight about bu�ering priorities. We evaluated this distinction by
suppressing both controller’s on-demand channels for thirty min-
utes. During the attack, we stimulated an on-demand event by
placing the water leak sensors for both controllers under a running
water faucet. During tra�c suppression, the smart phone applica-
tion for the Iris controller displayed an in-app o�ine status but
failed to provide a smart phone alert.

However, the Iris controller distinguished itself by uniquely re-
sponding with an audible water leak alarm, lasting until the end
of the attack. After ending the telemetry suppression, the Iris con-
troller immediately uploaded the bu�ered water leak. In the default
con�guration, the back-end Iris services sent an email and phone
call about the water leak. In contrast, the SmartThings app dis-
played no history of a previous water leak. We further examined
the SmartThings device history using the SmartThings Groovy IDE
and learned the hub never bu�ered or uploaded suppressed teleme-
try (i.e., the water leak noti�cation). This behavior correlated to
the sensor behavior we saw for SmartThings contact, motion, and
button sensors that contained blank event histories after telemetry
suppression. The SmartThings hub has 512MB DDR3 RAM, and
4GB of Flash Memory. After operating system demands, memory
and storage exists to bu�er priority events. In our observations, the
SmartThings hub encapsulated a water leak detection message in
a single packet of 418 bytes that consisted of 20 �elds of a record.
For high priority events (e.g., water leaks, carbon monoxide or �re
alarms), the hub should bu�er the events locally and deliver when
the telemetry suppression ends.

Finding 5: Devices are less likely to bu�er when both the on-
demandandalways-responsive subsystems are suppressed.At-
tacking the physical channel is a coarse-grained approach that
reduces the transparency of the attack as it suppresses both the
on-demand and always-responsive subsystems. In our experiments,
physical layer suppression frequently resulted in smart phone alerts
and in-app status changes, indicating connectivity losses at a higher
degree than �ne-grained network layer suppression.While physical
layer suppression lacks transparency, we discovered that devices
were less likely to bu�er content when the physical channel was
suppressed. In particular, the Canary and D-Link cameras both
bu�ered content under network layer suppression but failed to

Figure 7: The Iris controller fails to bu�er and re-transmit
suppressed telemetry of the Schlage Deadbolt, facilitating
the problematic case where the Iris app falsely reports the
deadbolt as locked when an unlock action occurs during
telemetry suppression.

bu�er the same content under physical layer suppression. Without
a connection to thewireless network, the devices failed to bu�er any
triggered motion alerts until they regained connectivity. Thus an
attacker who valued attack permanence over transparency would
bene�t from physical layer suppression.

5 POTENTIAL COUNTERMEASURES
This section discusses defenses against sensor blinding and state
confusing attacks introduced in the previous sections and reserves
future work. Several countermeasures exist to defend against our
proposed attack vector. However, a full evaluation of countermea-
sures deserves a separate work with an emphasis on user studies
to understand the transparency of the attack vector and the impact
on the usability of devices.

Tra�c Shaping: Tra�c shaping solutions o�er the ability to ob-
scure on-demand activities from an attacker by manipulating tra�c.
Without the ability to isolate and identify the on-demand system,
the adversary’s attack is marginalized if not entirely defeated. Traf-
�c shaping has been widely studied as a countermeasure to secur-
ing HTTPS from leaking privacy-sensitive information [23, 48].
Tra�c shaping presents a solution as encryption is not enough
to protect user privacy for IoT devices. The packet size and fre-
quency of encrypted network tra�c between an IoT device and
the cloud is enough to reveal device-level activity [1, 5]. Our pro-
posed attack vector relies on the ability to infer packets containing
on-demand noti�cations and content. Contemporary works have
proposed methods for padding IoT device packets. Apthorpe et
al. [4] developed stochastic tra�c padding to obfuscate user level
activities. Further, Malekzadeh et al. [24] proposed Replacement
AutoEncoder, a novel algorithm that transforms and masks the
features of sensitive data. However, these methods do not address
the discriminative nature of packet timings that reveal the always-
responsive subsystem. Previous tra�c shaping works have pro-
posed random timing delays to protect privacy-sensitive disclosure
of a channel [34]. However, this solution requires further study, as
the always-responsive subsystem relies on the predictable arrival
of periodic heartbeat messages.
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Per-IoT Virtual Private Networks: Virtual Private Networks
(VPNs) o�er the ability to defend against an attacker that manip-
ulates tra�c at the border of our residential network. However,
they do not protect against the model of a locally compromised
wireless router. In this case, the IoT device itself would need to es-
tablish the VPN to bene�t from the security and privacy it provides.
This approach is similar to the per-app VPN o�ered for iPhones
since iOS 9 [3]. Per-IoT virtual private networks would provide
partial protection from an attacker inferring tra�c activities and
selectively suppressing the on-demand subsystem of IoT. However,
VPN encapsulation would still need to incorporate tra�c shaping
to prevent discovery on subsystems based on size or timing. While
applying per-IoT VPNs can guarantee security by placing a layer
of abstraction over the on-demand and always-responsive subsys-
tems, that guarantee comes at a performance cost. Further study
can examine the impact on the quality of the on-demand system
content and the user perception of device responsiveness.

Secure IoT Design: An IoT device’s battery constraints, limited
storage, and small processing capacity present challenges for se-
cure software design development. However, as we discussed in
Finding 4, they are often falsely used to motivate the challenges of
IoT. As we analyzed in our �ndings, design �aws contributed to the
severity of the attack by enabling transparency and permanence of
our attacks. IoT �rmware often isolates the on-demand and always
responsive subsystems, segregating their functionality on di�er-
ent applications that establish distinct connections. Applications
that implement network heartbeats must unify this segregation
and gain awareness of the on-demand subsystem state. Further,
the on-demand subsystem must enforce repudiation ensuring that
content and noti�cations are acknowledged by the remote back-
end application. When feasible, the on-demand system must bu�er
noti�cations and content. As identi�ed in Finding 4, IoT devices
require priority bu�er scheme to preserve preferential content and
noti�cations. Periodic re-synchronization of sensor state is a low
bandwidth solution that can mitigate the e�ects of sensor blinding
and state confusion. However, periodic re-synchronization does
not address the case of battery-constrained devices that are unable
to bene�t this approach. Finally, devices must select short-term
timeouts that balance overwhelming the user while providing a
transparent view of connectivity. All of these decisions impact the
usability of the device and require further user study.

WSN and Embedded Security Approaches: The �eld of Wire-
less Sensor Networks (WSNs) o�ers insight for securing on-demand
sensor reporting [7]. As WSN nodes have little provisions for secu-
rity, they are vulnerable to attacks that compromise the integrity
and availability of their reports. Roy et al. [32] proposed an attack-
resilient computation algorithm that minimizes communication
while verifying node integrity. Based on this approach, we con-
sider introducing message counters into the always-responsive
subsystem that maintain the on-demand subsystem state. Scian-
calepore et al. [33] proposed a distributed protocol suitable for
memory constrained devices, that guaranteed message delivery
under jamming by using decoy messages. Based on their work,
we hypothesize that on-demand decoy messages can determine
the presence of blinding or confusing attacks. Further, the �eld of
trusted scheduling for embedded systems o�ers another approach.

Masti et al. [25] proposed trusted scheduling to ensure execution of
safety-critical applications for embedded devices. From this insight,
we consider introducing a subsystem-dependent telemetry model.
This approach would delay delivery of always-responsive messages
until on-demand messages were acknowledged and repudiated. All
of these proposed approaches require further user study.

6 RELATEDWORK
Protecting IoT devices and the privacy-sensitive information they
produce is an emerging �eld of computer security. To this end, there
have been several surveys that holistically examined the security
and privacy of IoT [37, 50, 51]. In the closest related work, Ober-
maier and Hutle [31] examined the authentication and encryption
schemes of cloud-based video system surveillance. However, their
work narrowly focused on the implementation for four speci�c
camera models. Wu and Lagasse [49] demonstrated an isolated
case of the predictive nature of IoT by training a neural network to
detect a single hidden wireless camera and classify video recording
tra�c. Wood et al. [47] narrowly focused on the implementation im-
maturity of four medical devices, including one device that leaked
sensitive health information in clear-text tra�c. While these works
demonstrate the implementation immaturity and predictive nature
of IoT, they o�er little insight against a broader nature as we have
demonstrated in our work.

Concurrent work has provided threat modeling for IoT device
sensors. Chen et al. [12] examined spoo�ng attacks that confused
sensors and caused tra�c congestion to the U.S. Department of
Transportation tra�c control system. Uluagac et al. [39] analyzed
sensory channel threats for cyber physical systems. Their work
focuses on protecting the integrity of the sensory channel (e.g., light,
temperature, infrared) to prevent adversarial use as a component of
an attack. Lakshminarayana et al. [22] studied the impact of signal
jamming against communication based train control systems and
developed counter measures to limit the attacks’ impact. These
works provide insight into speci�c IoT deployments. However, we
investigate problems in device telemetry, battery conservation, and
implementation maturity that span several smart home IoT classes.

7 CONCLUSION
In this work, we hypothesized that the NEST and Amazon Key inci-
dents are not isolated occurrences, but rather indicatives of a larger
systemic design �aw in many IoT devices. This paper explored
the design �aws in smart home IoT devices that facilitate sensor
blinding and state confusion attacks. We have shown the telemetry
and messaging protocols of smart home IoT devices commonly
isolate the always-responsive and on-demand subsystems, enabling
these attacks. To demonstrate the broad scope of the problem, we
have pro�led 24 popular smart home IoT devices and measured
the severity of these attacks by analyzing their transparency and
permanence. We uncover that 22 of 24 studied devices su�er from
critical design �aws that (1) enable attacks to transparently disrupt
the reporting of device status alerts or (2) prevent the uploading of
content integral to the device’s core functionality. Further, we exam-
ined the impact and feasibility of several countermeasures including
tra�c shaping, per-IoT VPNs, and secure design approaches.
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