
SCIFFS: Enabling Secure Third-Party Security Analytics using
Serverless Computing

Isaac Polinsky
North Carolina State University

Raleigh, NC, USA
ipolins@ncsu.edu

Pubali Datta
University of Illinois at Urbana-Champaign

Champaign, IL, USA
pdatta2@illinois.edu

Adam Bates
University of Illinois at Urbana-Champaign

Champaign, IL, USA
batesa@illinois.edu

William Enck
North Carolina State University

Raleigh, NC, USA
whenck@ncsu.edu

Abstract
Third-party security analytics allow companies to outsource threat
monitoring tasks to teams of experts and avoid the costs of in-
house security operations centers. By analyzing telemetry data
from many clients these services are able to offer enhanced insights,
identifying global trends and spotting threats before they reach
most customers. Unfortunately, the aggregation that drives these
insights simultaneously risks exposing sensitive client data if it is
not properly sanitized and tracked.

In this work, we present SCIFFS, an automated information flow
monitoring framework for preventing sensitive data exposure in
third-party security analytics platforms. SCIFFS performs decen-
tralized information flow control over customer data in a serverless
setting, leveraging the innate polyinstantiated nature of serverless
functions to assure precise and lightweight tracking of data flows.
Evaluating SCIFFS against a proof-of-concept security analytics
framework on the widely-used OpenFaaS platform, we demonstrate
that our solution supports common analyst workflows (data inges-
tion, custom dashboards, threat hunting) while imposing just 3.87%
runtime overhead on event ingestion and the overhead on aggre-
gation queries grows linearly with the number of records in the
database (e.g., 18.75% for 50,000 records and 104.27% for 500,000
records) as compared to an insecure baseline. Thus, SCIFFS not only
establishes a privacy-respecting model for third-party security ana-
lytics, but also highlights the opportunities for security-sensitive
applications in the serverless computing model.

CCS Concepts
• Security and privacy → Information flow control; Access
control; Distributed systems security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’21, June 16–18, 2021, Virtual Event, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00
https://doi.org/10.1145/3450569.3463567

Keywords
Serverless Computing; Security Analytics; Decentralized Informa-
tion Flow Control
ACM Reference Format:
Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck. 2021. SCIFFS:
Enabling Secure Third-Party Security Analytics using Serverless Computing.
In Proceedings of the 26th ACM Symposium on Access Control Models and
Technologies (SACMAT ’21), June 16–18, 2021, Virtual Event, Spain. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3450569.3463567

1 Introduction
A key component of maintaining a good security posture is contin-
uously monitoring your environment for security-related events.
To detect threats in security event logs, it is necessary to first have
threat intelligence (e.g., signatures) that can be used to generate
alerts. Due to the high cost of in-house security operation cen-
ters and the complexity of security monitoring, companies are
out-sourcing monitoring and threat intelligence gathering to third-
party security analytics services. Not only do these service providers
make security monitoring accessible to companies of all sizes, but
more importantly, these providers have greater insights to global
security trends than an in-house security operations center. For
example, by aggregating data over all of their customers, a third-
party security analytics provider can identify more threats and
proactively apply responses to new threats found in one customer’s
environment to their entire customer base.

Unfortunately, the benefits of third-party services come with
risk. Security event logs are sensitive; if data is not properly sani-
tized and tracked, performing aggregation over data from multiple
sources can expose sensitive customer data. For example, in 2018
Facebook accidentally sent developer analytics to app testers [9]. In
general, accidental data leaks are a growing concern of IT security
professionals [1]. To illustrate this risk, consider a report created
by an analyst who inadvertently includes sensitive data from a cus-
tomer. If this report is shared with a competitor or the public, the
analyst has unintentionally exposed the customer’s data, potentially
violating the customer’s privacy or Service Level Agreement (SLA).
This risk is exacerbated when data is shared with analysts who are
not familiar with a company’s internal procedures, an important
issue as there is a push for greater collaboration between security
companies in the wake of the SolarWinds hack [16]. To mitigate
this risk, analysts must track data from each source client to all

https://doi.org/10.1145/3450569.3463567
https://doi.org/10.1145/3450569.3463567

derived reports (i.e., sinks). Manually tracking data is not only diffi-
cult and error prone, but also slows analyst workflows. Therefore,
we need automated mechanisms to (1) track data and derived data
and (2) prevent sharing of data without explicitly acknowledging
the sources of the data and how the data was handled.

We envision a security analytics platform that allows third-
parties to automatically track security-related event telemetry and
derived results in order to prevent accidental data exposure. While
decentralized information flow control (DIFC) [25, 32, 38, 54] is well-
suited to perform this tracking and access control, incorporating
DIFC into real systems often results in label creep, high overhead,
and significant restrictions on functionality. Consider a canonical
example DIFC logic where data sensitivities are represented as tags
and data and processes are assigned labels, which are sets of tags.
Over its lifetime, a process will read information from files and inter-
act with other processes that have read information from other files.
During this execution, the DIFC system will propagate tags from
one label to another to indicate the flow of information. However,
this tracking is often imprecise (e.g., conducted at the OS process
layer), which causes a phenomenon commonly referred to as label
creep or label explosion. Label creep is particularly problematic in
server environments where long-running processes receive data
frommany clients with different labels. In such scenarios, the result-
ing over-approximated label is often meaningless and unnecessarily
restricts functionality. Applied naïvely, DIFC may artificially limit
the utility of third-party security analytics.

In this work, we propose SCIFFS: Securing Client Information
Flows using Function-as-a-Service. SCIFFS is an automated de-
centralized information flow control framework for preventing
accidental sensitive data exposure in third-party security analytics
platforms. Our key insight for overcoming label creep is the use of
serverless computing, an emerging cloud computing runtime where
functionality is separated into small functions that are reentrant
and ephemeral. This polyinstantiated nature of serverless comput-
ing significantly reduces the potential for label creep. However,
simply tracking DIFC labels within the serverless runtime is not in-
and-of-itself sufficient for a third-party security analytics platform.
We augment an existing DIFC logic (Flume [32]) with workflow
caps, which define an upper-bound for label propagation to restrict
analysts to investigating only the specific customers to which they
are assigned. We built a SCIFFS prototype on the popular Open-
FaaS platform and evaluated it using a proof-of-concept security
analytics application. Using this application, we demonstrate that
SCIFFS supports common analyst workflows while imposing only
3.87% runtime overhead on event ingestion and the overhead on
aggregation queries grows linearly with the number of records in
the database when compared to an insecure baseline.

This work makes the following contributions:

• We enable information tracking in security analytics workflows
and prevent accidental leaks. SCIFFS automatically tracks
flows of sensitive information and allows analysts to freely
aggregate data ofmultiple customers to identify novel threats,
while preventing accidental data leaks. SCIFFS enables the
auditing of any declassification event within the system.

• We implement SCIFFS in a real-world platform. Our SCIFFS
prototype was implemented in the widely-used OpenFaaS

Data Ingest
and

Enrichment
Process

Derived Results

Customer Events

Store EventsNew Events

Data
Summary
Process

Analyze
Customer A

Access A

Access
All

Analyze
All Find Events

With Specific
Features

Analyst Interface

Exploratory
Analysis

Store
Derived
Results

An
al

ys
ts

Legend

WF1: Data Ingestion

Database

Workflow paths:

WF2: Customer Analysis
WF3: Global Trend Analysis
WF4: Hunting New Threats

C
us

to
m

er
s

Store Results

sciffs.securityanalytics.com/johndoe?catagory=security#

View Widgets Query Data

Home

Figure 1: Common Security Analytics Workflows.

Function-as-a-Service platform. We demonstrate how to ef-
ficiently and securely incorporate DIFC tracking within a
common serverless computing runtime without dependen-
cies on specific application languages.

• We demonstrate the practicality of SCIFFS.We implement a
proof-of-concept security analytics serverless application
and measure the performance overhead imposed by SCIFFS
compared to an unsecured baseline. Our evaluation shows a
3.87% overhead on ingesting events and a linear overhead on
analyzing data starting at 18.75% for a database with 50,000
records to 104.24% for 500,000 records. We further show that
SCIFFS supports four common analytics workflows.

The remainder of this paper proceeds as follows. Section 2 pro-
vides background and motivation. Section 3 overviews SCIFFS.
Sections 4 and 5 describe the label model and system design. Sec-
tion 6 describes a proof-of-concept security analytics application.
Section 7 evaluates performance overhead of SCIFFS. Section 8
overviews related work. Section 9 concludes.

2 Background and Motivation
Third-party security analytics services such as managed detection
and response from Cisco [4], Cybereason [5], and FireEye [8] have
become an important line of defense for enterprises. By having
access to security-related telemetry (e.g., DNS requests, user login
events) across many customers, these security analytics firms gain a
broad perspective across entire industries. This broad perspective is
critical for threat hunting, allowing the analytics firm to create new
signatures that can slow down or stop threat actors as they move
from target to target. A security analytics platform has three key
components: (1) a software agent running on customer endpoints
that reports telemetry, (2) a server-side dashboard with pre-defined
widgets that summarize activity for analysts, and (3) an interface
for analysts to explore telemetry data (e.g., to identify new attacks).
An overview of these three components is shown in Figure 1.
Use Cases: The figure shows four common workflows that the
security analytics platform must support.

WF1: Telemetry data ingestion. When a customer endpoint reports
new telemetry, the platform may perform initial data en-
richment or transformation (e.g., adding customer metadata)
before storing the telemetry in a database for that customer.

WF2: Analysis for a single customer. One or more analysts are as-
signed to each customer. These analysts continuously moni-
tor the customer telemetry for specific Indications of Com-
promise (IoC). This task is often achieved using pre-defined
queries presented as dashboard widgets.

WF3: Analysis over more than one customer. Analysts are often
assigned more than one customer. Dashboard widgets that
aggregate statistics across customers can provide insights for
threats against different industries (e.g., banking). For exam-
ple, a widget may count the number of CVE exploit attempts
observed in IDS logs across a set of related customers.

WF4: Identifying new threats (threat hunting). Skilled analysts use
their knowledge and intuition to investigate scenarios that
are not captured by the pre-defined queries used for dash-
board widgets. In doing so, they perform ad hoc queries to
identify new threats and build new detection capabilities.
These queries commonly span multiple customers.

Problem: Without proper care, mixing data from multiple cus-
tomers may either inadvertently violate SLAs or raise questions to
the validity of analytics results. These concerns occur in several
situations. First, sensitive customer data may be revealed to other
customers when aggregated results are not properly sanitized. Sec-
ond, if a customer terminates their contract, they may require all of
their data be deleted, including derived results. Finally, if the analyt-
ics provider identifies a malicious customer generating fake events
in an attempt to mislead aggregate analysis to report activity as
benign, the analysts must identify results tainted by that customer.

Addressing these situations requires pervasive tracking of cus-
tomer information. While tracking can be manually built into well-
defined workflows (e.g., for dashboard widgets), unplanned ad hoc
queries used in threat hunting requires automated tracking. It is
unreasonable to expect the analyst to manually and accurately
annotate all of the data they accessed with the correct customer in-
formation. Examples of how diverse these unplanned queries might
be can be seen in open-source threat hunting “playbooks” [45].
Threat Model and Assumptions:We consider two types of ad-
versaries: a malicious customer and a careless analyst. A malicious
customer has two goals: (1) to actively generate fake events to influ-
ence analysts to view their activity as benign across all customers
and (2) to passively benefit from analysts inadvertently leaking
data from other customers. Given the level of data access required
by analysts to perform their job, our threat model puts limits on
their abilities and motivations. We primarily seek to prevent acci-
dental data leaks. However, in the event that an analyst becomes
malicious, we seek to maintain sufficient information to identify
what information may be compromised or exfiltrated. All access to
data is logged and we assume neither adversary can alter log files.
Our trusted computing base includes the cloud platform (e.g., hard-
ware, software, and administrators) and the code of our analytics
platform solution, assuming both are free of vulnerabilities. Finally,
we do not consider covert timing channels as this challenge is an
orthogonal problem to cloud environments.

3 Overview
When performing security analytics across multiple customers, ana-
lysts may inadvertently expose customer information in unintended
ways. This exposure may be customer data directly (e.g., specific
DNS requests containing a sensitive hostname), or derived data
that has not been properly sanitized (e.g., frequent DNS requests
containing a sensitive hostname). The goal of this paper is to design
the foundations for a security analytics platform that automatically
tracks customer information in order to prevent accidental data
exposure. In doing so, we must overcome the following challenges.

• Tracking information flows in environments with long running
processes (e.g., web servers) can lead to imprecision. The longer
a process is alive, the more likely it is to handle data of differ-
ent sensitivities. When a process handles disjoint workflows
with different data sensitivities, accurately annotating the
outputs of the process becomes difficult.

• The tracking must scale to handle data from large customer
bases. Security analytics providers are expected to have large
customer bases with varying environment sizes. The infras-
tructure must scale to ingest data from all of the customer
devices and scale to perform analysis on the collected data.

• The platformmust minimize restrictions on analysis workflows.
Improved security often limits functionality. The solution
should be transparent and not impede analysis workflows.

The key insights of our solution are to (1) use decentralized
information flow control (DIFC) to capture the sensitivities of dif-
ferent customers, and (2) implement the analytics workflowwithin a
serverless computing runtime, also known as Function-as-a-Service
(FaaS).1 We note that serverless computing is well-suited for this
purpose. First, pay-per-use and scalability are inherently part of
its design, leading to the popularity of emerging commercial offer-
ings including AWS Lambda, Google Cloud Functions, and Azure
Functions. These properties make serverless computing desirable
for third-party security analytics firms purely from a business per-
spective. Second, and more importantly, serverless computing ap-
plications are composed of small functions that are reentrant and
ephemeral. From a DIFC perspective, this property provides polyin-
stantiation of discrete functionality within workflows. This polyin-
stantiation minimizes label creep. Separating functionality into
smaller functions can also help tracking precision.

However, integrating DIFC into a serverless runtime is non-
trivial. First, researchers have shown [44] that practical serverless
deployments do not provide secure polyinstantiation. Instead, the
same containers are commonly re-used for multiple function in-
stances, a practice commonly referred to as a “warm-start” configu-
ration. Since container re-use may permit communication outside
of the DIFC model, prior approaches for enhancing serverless with
DIFC (e.g., Trapeze [12]) by instrumenting the language runtime
(e.g., Node.js) require “cold-start” configurations that incur signif-
icant runtime overhead to reinitialize each function instance. In
contrast, our design makes the key observation that only the func-
tion handler code within the container needs to be polyinstantiated.

1As FaaS is the de facto type of serverless computing, we use these terms interchange-
ably throughout the paper.

Therefore, we modify the containers used by the FaaS runtime to en-
force lightweight process and storage isolation within the container
to provide secure polyinstantiation in “warm-start” configurations.

Second, propagating large labels between function instances
can incur high overhead. DIFC labels typically consist of a set of
tags, with each tag representing a security sensitivity. The straight-
forward solution of encoding DIFC labels in messages (e.g., as in
Camflow [42]) works when labels are small. However, in a security
analytics platform with possibly tens of thousands of customers, it
is impractical to encode a set of tags in HTTP headers. The result-
ing process of encoding, transferring, and decoding the label for
each function execution can become expensive. In the process of
designing SCIFFS, we observed that our security analytics platform
does not need a generic FaaS instrumentation. We found that the
label of the function workflow only needs to change or be consulted
at either (a) the workflow entry, and (b) storage interface. This is
because functions do not need the ability to explicitly change their
label in a security analytics platform and explicit label changes
(e.g., raising labels and declassification) can be supported through
workflow initialization. We were therefore able to optimize label
propagation by encoding a workflow identifier in the HTTP header
and maintaining a mapping between the workflow identifier and
the current label within the storage infrastructure.

Third, implicit and explicit label propagation requires careful
consideration. Early DIFC logics used explicit label propagation to
avoid subtle side-channels [31]. Explicit label propagation requires
the application logic to specifically define when it wants to raise its
label. The raised label is then compared before an operation occurs
(e.g., on read, the process label must dominate the object label). Not
only are these changes to propagation logic burdensome to develop,
but they also do not work well in a security analytics environment
where the analyst does not know what types of data might be
returned. In contrast, recent work [39] showed implicit labels (also
known as “floating labels”) can be safe when polyinstantiation is
used. However, floating labels introduce an unintended side-effect
for privileged analysts reading derived results from the database.
When derived data is stored, it may be structured such that it no
longer has an easy way to filter by a certain customer. Therefore,
there is no way for the privileged analyst to operate on derived
results for a specific subset of customers. To address this situation,
we modify our DIFC logic to capture a balance between implicit
and explicit label propagation. We do so with the concept of caps,
similar tomaximum labels in IX [35], receive labels in Asbestos [25],
and clearance in HiStar [54] and LIO [49], to put an upper-bound on
the workflow label. Our storage layer then automatically removes
data that the does not meet the cap-policy. Thus, the analyst can
never be shown data they do not want to access.

Fourth and finally, the platformmust account for declassification.
DIFC is a formal approximation of a data security policy. There
are always exceptions in which an analyst may need to declassify
a label (i.e., remove tags). For example, a report may no longer
contain customer specific data. SCIFFS accounts for such scenarios
by making declassifications audit events. These audit events require
the analyst to justify the declassification for historical purposes.
Workflow Operation: Figure 2 depicts the high-level overview of
SCIFFS and how it handles the workflows identified in Section 2. In

A

Ingest-A

Ingest-B

Derived Results

Customer Events

A
B

C

Store Event

Store Event

New Event,
Customer A

New Event,
Customer B

Ingest
Function

Stats-A

Stats
Function

Stats-
ABC

Analyze
Customer A

Access A

Access
All

A,B,C

Analyze
All

Find Events
CAP: {A,C}

A,C

Analyst Interface

A,C

Exploratory
Analysis

Store
Derived
Results

An
al

ys
ts

Storage
Interface

Legend
Data Label nn

WF1: Data Ingestion

Database

Workflow paths:

WF2: Customer Analysis
WF3: Global Trend Analysis
WF4: Hunting New Threats

C
us

to
m

er
s

A

B

Store Results

sciffs.securityanalytics.com/johndoe?catagory=security#

View Widgets Query Data

Home

Figure 2: Security Analytics Workflows in SCIFFS.

Workflow 1, new events arrive from Customer A and Customer B.
These events are received by a dedicated data ingest and enrich-
ment function. Based on authentication credentials provided by
the endpoint submitting the event, SCIFFS determines that the cor-
rect label for the received data is {𝐴} and {𝐵}, respectively. Note
a label is a set of tags, with each tag representing a sensitive data
type (see Section 4.1). After data enrichment is complete, the in-
gest function stores the data to a database. In doing so, the storage
interface automatically propagates the workflow label to the data-
base by embedding it within the database row. Alternatively, the
ingest function could pass the data to other functions, for additional
processing, before storing to the database. Importantly, these two
events are processed independently in separate function instances,
preventing customer data from being mixed.

Next, Workflows 2 and 3 are initiated to perform data analytics.
Common analytics routines are represented by dashboard widgets
that invoke a specific pre-defined analytics function. Workflow 2
represents analysis over a single customer and Workflow 3 rep-
resents the same analysis over all customers to get a global view.
Note that the workflows initially have an empty label {}. As the
aggregation function executes, the workflow label accumulates tags
based on the labels assigned to the data that it retrieves. For ex-
ample, aggregation of Customer A’s data will be labeled {𝐴} and
the aggregation of both Customer A and Customer B’s data will
be labeled {𝐴, 𝐵}. These tags are automatically added by the stor-
age interface. Finally note, a precise and least restrictive label is
returned from the database. That is to say, when aggregating over
the entire database, if Customer A’s data is filtered out in the query,
then the label on the result will not contain Customer A’s tag.

Finally, Workflow 4 shows the analyst performing a threat hunt.
The analyst has direct access to the database interface and full
control over the queries. As queries return results with different
labels, the label of all data accessed during the hunt is tracked in
a web application session. This workflow also highlights another
important aspect of the SCIFFS architecture. For each query, the
analyst may supply a cap to guarantee the results of their queries
do not contain data from specific customers (unless the data was
explicitly declassified previously). As such, the cap represents access
control restrictions (e.g., an analyst accessing Customer B’s data).

Note that SCIFFS can only track information within the cloud
infrastructure and not within the client. Tracking information flow
within a client is an orthogonal challenge and often requires new
trusted software to be deployed on analyst systems. Therefore,
SCIFFS assumes some level of trust for the analyst system, as men-
tioned in our threat model (Section 2). While insider attacks are
a real threat, preventing a privileged analyst from abusing their
access to data is out of scope for this work. However, SCIFFS en-
ables fine-grained least privileged polices to limit the damage of
malicious insiders. Fundamentally, the analyst must see some data
to perform their job. Therefore, we rely on the web application to
properly track the analyst’s browsing session and reinstate a FaaS
workflow to the next part of the web application workflow. We also
assume the web application has amechanism that allows the analyst
to explicitly declassify a browsing session, providing justification.
We discuss a simple example web application in Section 6.

4 SCIFFS Tracking Policy
This section defines SCIFFS’s label model, including its semantics
and propagation. Recall from Section 3 that SCIFFS uses a decentral-
ized information flow control (DIFC) model, which maps nicely to
the need of tracking the data formany different customers. However,
we must adapt existing models for the security analytics platform
environment. Specifically, we must consider (1) label propagation,
(2) access control, and (3) declassification. We begin by introducing
label model preliminaries.

4.1 Label Model Preliminaries
SCIFFS uses a DIFC label model inspired by Flume [32], which
is based on tags and labels. A tag 𝑡 ∈ T defines a secrecy class
for sensitive data, where T is the set of all possible tags. Tags are
opaque and can be assigned any semantics. Whereas Flume uses
tags for both secrecy and integrity, SCIFFS only uses tags for secrecy.
A label 𝑙 is a set of tags in T , where the set of all labels L is the
power set of tags 2T . For example, 𝑙1 = {𝑡1, 𝑡2} represents a label
with two secrecy tags.

Following the Flume model, each tag has two capabilities: posi-
tive (𝑡+) and negative (𝑡−). Granting a capability to a subject gives
ability to add and remove a tag from a label, respectively. Any data
owner can create a new tag, which gives them 𝑡+ and 𝑡− for that
tag. The data owner may assign either capability to other processes
and users, but only the data owner of a tag may distribute these
capabilities. Flume uses capabilities to determine if a label change
is safe. That a label change from 𝑙 to 𝑙 ′ is safe if the process has all
positive capabilities {𝑙 ′ − 𝑙}+ and all negative capabilities {𝑙 − 𝑙 ′}−.

In Flume, the lattice for information flow is defined by a partial
order of labels using a subset relation. Data may only flow from a
process with label 𝑙1 to a process with 𝑙2 if 𝑙2 dominates 𝑙1 (𝑙2 ⊒ 𝑙1).
Similar to Flume, SCIFFS defines dominance using subset relations:
𝑙2 ⊇ 𝑙1 implies 𝑙2 ⊒ 𝑙1. The top of this lattice containing all tags is
denoted as ⊤. Flume also incorporates processes’ capabilities into
the dominance evaluation when determining if a message flow is
safe. The resulting dominance evaluation over hypothetical labels
allows Flume to require explicit label changes while minimizing
changes to application code. However, the hypothetical labels have
the side-effect of implicitly declassifying information, which is not

desirable in a security analytics setting. Instead, SCIFFS requires a
floating label IFC model similar to Weir [39]. As such, SCIFFS re-
purposes Flume’s positive and negative capabilities to define access
control (Section 4.3) and declassification (Section 4.4) policies.

Finally, Flume defines the label join (⊔) operation as the union
of the tags for the two labels. That is, 𝑙 = 𝑙1 ⊔ 𝑙2 is equivalent to
𝑙 = 𝑙1 ∪ 𝑙2. SCIFFS uses the join operation both when setting the
initial workflow label (Section 4.2) and when updating the workflow
label when data of a new type is read (Section 4.3).

4.2 Initial FaaS Workflow Label
Recall that the serverless computing environment consists of small,
reentrant, and ephemeral functions calling one another. This call
chain defines a workflow. SCIFFS maintains a label 𝑙𝑓 for each
workflowwithin the serverless environment.When SCIFFS receives
an HTTP request from outside the environment, a new workflow
is created. This subsection describes how SCIFFS sets the initial
serverless workflow label 𝑙𝑓 .

The workflow label 𝑙𝑓 is initially influenced by three sources:
(1) the default label 𝑙𝑢 for the user, (2) the web application session
label 𝑙𝑠 connecting multiple serverless workflows, and (3) a join
label 𝑙 𝑗 providing additional tags specified in the HTTP request.

𝑙𝑓 = (𝑙𝑢 ⊔ 𝑙𝑠 ⊔ 𝑙 𝑗) (1)
Each constituent label has a specific purpose within the overall func-
tionality of SCIFFS, although depending on the particular situation
some of these labels may be an empty set ({}).

The default user label 𝑙𝑢 is primarily used when customer end-
points are reporting telemetry. That is, the user account for each
customer is assigned a tag or set of tags that should be associated
with the telemetry. This approach allows the platform to flexibly
support a one-tag-per-customer model, or more fine-grained speci-
fication, as needed. In contrast, the default initial label 𝑙𝑢 = {} for
analysts, as they do not commonly introduce data into the workflow.
From a label model standpoint, we assume there exists a way to
convert the UserID of the authenticated user to 𝑙𝑢 .

Next, the serverless workflow may be part of a larger application
workflow involving multiple HTTP requests from the analyst’s
web browser. As further detailed in Section 5.2, SCIFFS accounts for
the lack of information tracking in the analyst’s web browser by
maintaining an application session label 𝑙𝑠 . Conceptually, when the
serverless workflow 𝑓1 terminates and returns data to the browser,
SCIFFS saves 𝑙𝑓 1 as 𝑙𝑠 so that it is available when the serverless
workflow 𝑓2 begins. From a model standpoint, we assume there
exists a SessionID for the application session that is included in the
HTTP request, and there is a way to convert the SessionID to 𝑙𝑠 .

Finally, SCIFFS allows the HTTP request to include a JoinLabel

header that defines 𝑙 𝑗 . The per-request join label 𝑙 𝑗 exists to provide
additional flexibility. For example, a customer may wish to specify
specific custom fine-grained tags for specific endpoints. As another
example, an analyst may wish to capture data flows from their own
workstation (e.g., information saved in a text file) to ensure they are
tracked correctly by SCIFFS. From a model perspective, we assume
there exists a way to parse the JoinLabel from the HTTP header.
We also assume that SCIFFS will deny the HTTP request if ∃𝑡 ∈ 𝑙 𝑗
such that the user does not have 𝑡+. We discuss the management of
per-user capabilities next.

4.3 Storage Access and Label Propagation
Rather than maintaining a separate policy to define which analyst
may access which customer data, SCIFFS incorporates storage ac-
cess control into the DIFC model. Recall that a positive capability 𝑡+
describes the ability to have a label containing tag 𝑡 . Thus, SCIFFS
uses positive capabilities to define storage access control.

Each serverless workflow 𝑓 has an effective cap𝐶𝑒 that defines an
upper bound (or “cap”) on the tags that may float into the workflow
label 𝑙𝑓 . The effective cap 𝐶𝑒 is determined based on a user cap 𝐶𝑢
and a per-HTTP request cap 𝐶𝑟 . The user cap 𝐶𝑢 is a set of positive
capabilities 𝑡+ statically assigned by the system. Semantically, 𝐶𝑢
defines all of the customer data types that user 𝑢 should be able to
access. Similar to the per-HTTP request join label used to determine
the initial workflow label, SCIFFS allows an analyst to define a per-
HTTP request cap 𝐶𝑟 , e.g., to perform a query on only a subset
of the customers that the analyst has access to. However, if 𝐶𝑟 is
defined, SCIFFS requires that 𝐶𝑟 ⊆ 𝐶𝑢 , denying the HTTP request
otherwise. Therefore, if 𝐶𝑟 is defined, 𝐶𝑒 = 𝐶𝑟 , otherwise 𝐶𝑒 = 𝐶𝑢 .

The SCIFFS label model considers access to each database row
individually. Each row 𝑟 has a label 𝑙𝑟 . When a function attempts
to read row 𝑟 , SCIFFS consults the workflow label 𝑙𝑓 . If 𝑙𝑓 ⊒ 𝑙𝑟
the read is allowed. Otherwise, SCIFFS determines if updating 𝑙𝑓
with 𝑙𝑟 is safe. To do so, SCIFFS calculates the proposed new label
𝑙 ′
𝑓
= 𝑙𝑓 ⊔ 𝑙𝑟 and determines if {𝑙 ′

𝑓
− 𝑙𝑓 }+ ⊆ 𝐶𝑒 . If so, SCIFFS allows

the read and updates 𝑙𝑓 to 𝑙 ′
𝑓
. Otherwise, the read is denied and 𝑙𝑓

is not updated. Note that when access to a row is denied, SCIFFS
suppresses that row from the database results rather than rejecting
the query. Therefore, the denied read does not leak information
and the data in the workflow for user 𝑢 will never exceed 𝐶𝑢 .

In contrast to reads, database writes are trivial. SCIFFS assumes
that the security analytics process never requires updating database
rows. This assumption is reasonable because customer event data
should be read-only and derived results can easily be versioned to
distinguish newer results with an updated label. Therefore, SCIFFS
only needs to handle INSERT operations. When performing an INSE-

RT, SCIFFS assigns each row the current workflow label 𝑙𝑓 .
Finally, it is useful to consider the security of a DIFC model that

uses floating labels. Krohn and Tromer [31] showed that floating
labels have the potential to leak information in certain situations.
However, Nadkarni et al. [39] later demonstrated that when polyin-
stantiation is used, floating labels do not leak information. There-
fore, SCIFFS’s use of floating labels is secure due to the polyinstan-
tiation provided by the serverless environment and the extensions
to the floating label model (e.g., caps) further restrict a user’s access
to data rather than increasing their access to data.

4.4 Declassification
The final consideration for an IFC system is declassification. Tra-
ditionally, declassification to public (⊥ in the lattice) is needed
whenever data leaves the system. However, since security analysts
need to view the customer data to perform their tasks, we con-
sider the analysts’ workstations to be part of the system. Since
SCIFFS does not monitor analyst workstations, it must make some
assumptions about the information flows therein.

However, some analyst tasks do require declassification. For ex-
ample, analysts may generate reports for customers or even public

API Gateway

HTTP
Request

Classic
watchdog

Function Instance (Container)

8080
Function
Handler

Forwarded
Request

Fork Process,
Request (STDIN)

Results
(STDOUT)

HTTP
Response

Forwarded
Response

OpenFaaS Platform

Figure 3: Overview of OpenFaaS architecture.

release. SCIFFS ensures that these reports are labeled based on all of
the data and derived data that was used to generate them. However,
in the process of generating the report, the specific contents may
be sufficiently sanitized such that specific customer data can no
longer be inferred (e.g., no specific IP addresses or hostnames). In
such cases, explicit declassification of data is appropriate.

SCIFFS supports manual declassification if the user has the ap-
propriate negative capabilities 𝑡− for all 𝑡 in the data label. However,
SCIFFS makes each declassification an audit event, requiring the
user to enter an explicit reason for the declassification and a de-
scription of why the declassification was appropriate. We envision
several ways in which this declassification may occur in practice.
For example, the declassification may be performed by a single
user or a combination of users, where declassification is a serial
process of individual users declassifying a subset of the tags based
on their expertise. We also envision future systems could include
serverless functions that are certified to remove specific tags based
on customer-specific sanitization specifications, e.g., similar to data
leak prevention (DLP) policies. However, for the purpose of this
paper, we do not consider such privileged serverless functions.

5 SCIFFS System Design
As described in Section 3, SCIFFS uses a serverless computing envi-
ronment to overcome the label creep and tracking precision chal-
lenges historically associated with DIFC. While SCIFFS is not the
first system to propose using FaaS or more general cloud comput-
ing models for DIFC tracking, prior work (e.g., Trapeze [12] and
Camflow [42]) are ill-suited for the goals of the security analytics
platform use case. Specifically, (1) Trapeze uses “cold-starts”, which
do not scale as well as “warm-start” configurations, and (2) Camflow
passes labels to distributed components within the message, which
can cause significant overhead for large labels. SCIFFS overcomes
the first limitation by modifying the FaaS runtime to enforce light-
weight isolation within containers and enable DIFC compatible
“warm-start” configurations. It overcomes the second limitation by
observing that a central storage of workflow labels can be efficient
for the security analytics platform use case due to the situations in
which the label needs to be modified or consulted.

This section describes the key system design aspects of SCIFFS:
(1) label propagation between other functions and between persis-
tent storage, (2) secure polyinstantiation in “warm-start” configu-
rations, and (3) access control and auditing. We begin with a short
background on OpenFaaS [11], which we extend to support SCIFFS.
While the design concepts are transferable to other FaaS platforms,
this section uses aspects of OpenFaaS to provide concrete examples.

5.1 OpenFaaS Background
Figure 3 depicts a simplified version of the unmodified OpenFaaS en-
vironment. Themain components of the OpenFaaS environment are:
(1) the API gateway, (2) function containers (e.g., Docker), (3) the
per-container watchdog, and (4) the function handler within each
container. The figure also shows clients external to the platform
that interact by sending HTTP requests to the API gateway.

During normal operation, the API gateway provides an interface
for creating, deleting, modifying, monitoring, and scaling func-
tions. It is also responsible for accepting both external and internal
requests and routing them to the appropriate function for process-
ing. Function instances run within containers (e.g., Docker) with
a special process called a watchdog. The watchdog listens on port
8080 within a container and accepts HTTP requests. For each re-
quest, the watchdog forks a handler process and passes the request
as STDIN to the process. Once processing is complete, the handler
process returns the results to the watchdog through STDOUT. The
watchdog wraps the output from the handler in an HTTP response,
adding any required headers, and forwards the response to the API
gateway. Finally, the API gateway forwards the response to the
caller. Functions can be called by external clients or other functions
internal to the system. In either case the API gateway handles all
requests, returning the response from the function to the caller.

5.2 Label Propagation
SCIFFS implements the DIFC label model described in Section 4.
However, realizing this model into a system requires addressing
two key design decisions: (1) where and how to encode the FaaS
workflow label 𝑙𝑓 , and (2) how to incorporate flows outside of the
system (e.g., within the analyst workstation).

As mentioned previously, encoding 𝑙𝑓 within the HTTP headers
sent between functions may result in significant overheads when
labels contain a large number of tags. Therefore, SCIFFS stores 𝑙𝑓 in
a centralized database that can be looked up using a FaaS workflow
identifier. While using centralized label storage could result in
significant overhead in a generic DIFC setting (e.g., checking or
modifying the label on each function transition), SCIFFS only needs
to consult or modify 𝑙𝑓 during FaaS workflow initialization and
when storage is accessed. Since initialization only occurs once
per workflow, SCIFFS places the label storage within the storage
interface, thereby optimizing label operations for storage access.

Accounting for flows outside of the system is a inherent chal-
lenge for IFC systems. As described in Section 4, the security analyst
must view customer data to perform their job. Rather than contin-
uously declassifying information to ⊥ when sending information
to the analyst workstation, we opt for a lightweight way of in-
corporating the analyst workstation into the system. Specifically,
SCIFFS assumes that the security analytics web application main-
tains session semantics that can connect multiple FaaS workflows.
This gives flexibility to the web application to define how HTTP
requests are related to one another, as well as provide an intuitive
user interface to inform the analyst of data sensitivity, and prompt-
ing for explicit declassification where appropriate. While SCIFFS
could have extended DIFC into the workstation using a custom
IFC enabled web browser (e.g., FlowwolF [27] and FlowFox [21]),

the application session abstraction provides a reasonable balance
between security and compatibility with existing software.

The remainder of this subsection details our modifications to
OpenFaaS to provide (1) label initialization, (2) label propagation
between functions, and (3) label propagation to and from storage.

5.2.1 Label Initialization Label initialization occurs at the API gate-
ways that proxy all requests and responses. On each external re-
quest, the gateway first ensures the user is authenticated by check-
ing the request’s authentication token. Next, the gateway computes
the effective cap 𝐶𝑒 as described in Section 4.3, using the request
supplied cap 𝐶𝑟 if appropriate, and returning an HTTP 400 error
if 𝐶𝑟 is invalid. To initialize the label, the gateway determines 𝑙𝑢 ,
𝑙 𝑗 , and 𝑙𝑠 . It ensures the request specified 𝑙 𝑗 is allowed based on 𝐶𝑒 ,
returning an HTTP 400 error if not. If the HTTP request includes
a session identifier, 𝑙𝑠 is retrieved from the session management
database. If the session identifier does not exist in the database,
an HTTP 400 error is returned. If no session identifier is specified,
a new session identifier is created and 𝑙𝑠 is initialized to {}. The
gateway then computes 𝑙𝑓 using Equation 1. Before calling the
first function, the API gateway adds 𝑙𝑓 and 𝐶𝑒 to the central label
storage database. Finally, before returning the final response to the
external client, the API gateway updates 𝑙𝑠 with the current 𝑙𝑓 .

5.2.2 Propagation Between Functions As mentioned above, SCIFFS
maintains the FaaS workflow 𝑙𝑓 in a central label database rather
than encoding it in HTTP headers sent between functions. There-
fore, it only needs to propagate a FaaS workflow identifier between
functions. When a new request comes to the watchdog in a func-
tion container, the watchdog maps the process id (pid) of the new
function handler to the FaaS workflow identifier in the request’s
HTTP header. If the handler process makes a new function request,
the request is intercepted by the watchdog. Before forwarding the
request, the watchdog traverses the process tree to determine the
FaaS workflow identifier for the handler pid. When the function
handler finishes, the watchdog wraps the handler output in an
HTTP response as normal and removes the pid to workflow identi-
fier mapping. The network mediation is enforced with a process
sandbox described in Section 5.3.

5.2.3 Propagation to and from Storage The storage interface is
the primary location of DIFC label propagation and access control
mediation. SCIFFS uses a GraphQL [7] API over HTTP to bridge
the HTTP-based FaaS environment with a backend PostgreSQL
database. This API is provided by GraphJin [6], which automatically
translates GraphQL statements into PostgreSQL statements. We
modified GraphJin tomediate storage access and provide the desired
functionality of our database interface.

When writing data to storage, SCIFFS only needs to account for
INSERT queries, as discussed in Section 4.3. Therefore, the work-
flow label 𝑙𝑓 can be stored directly with the inserted data. SCIFFS
stores 𝑙𝑓 for each database row. To do this, each table includes a
PostgreSQL INT[] column for the label. The storage interface au-
tomatically modifies the original query to include 𝑙𝑓 in the INSERT

statement sent to PostgreSQL, where 𝑙𝑓 is encoded as an INT[]

representing the tags in the label. Note that the interfaces does
not need to verify the request or cap, because it has already been
verified by the gateway during workflow initialization.

When reading data from storage, SCIFFS modifies the SELECT

query with an additional filter. Since the effective cap 𝐶𝑒 defines
the maximum label allowed for the FaaS workflow, SCIFFS uses
PostgreSQL’s CONTAINEDBY array operator to ensure that the query
response only includes rows where the label consists of tags that
are a subset of the capabilities in 𝐶𝑒 (e.g., WHERE 𝑙𝑟 <@ 𝐶𝑒). SCIFFS
then traverses each returned row and performs a join between the
workflow label 𝑙𝑓 and the row label 𝑙𝑟 (𝑙𝑓 = 𝑙𝑓 ⊔ 𝑙𝑟). While perform-
ing this traversal, SCIFFS also ensures to remove the label from each
row in the results so it is not displayed in the result set. Once the
new label is computed, 𝑙𝑓 is updated in the central label database.
One challenge with this approach is identifying a precise label for
aggregate functions (e.g., COUNT) that do not return individual rows.
To handle COUNT, SCIFFS performs a second query to fetch the label
of all rows involved in the computation of the aggregate function
and updates 𝑙𝑓 accordingly. While IFDB [48] provides similar se-
mantics for reads and writes, our storage interface adds support for
caps, calculating precise labels on aggregate queries, and abstracts
labels from the process accessing data. It is feasible to use IFDB as
a replacement for the PostgreSQL database, but the additional logic
implemented by the GraphJin API is still required for our design.

5.3 Secure Polyinstantiation
In traditional OS-based DIFC systems, starting two processes from
the same executable provides secure polyinstantiation. In contrast,
FaaS systems place the executable code for each function in a con-
tainer image (e.g., Docker). In “cold-start” configurations, each time
a FaaS function is needed, a new container instance is created
from its image. The container instance is then destroyed when the
function instance ends. Hence, cold-start configurations provide
secure polyinstantiation. However, the cold-start configuration has
arguably unnecessary overhead, particularly when FaaS functions
are small. Therefore, many FaaS deployments use “warm-start” con-
figurations, which do not always destroy the container instances
when the function instance ends, and instead reuses the container
instance for multiple function instances. As a result, malicious, com-
promised, or improperly defined FaaS functions can communicate
outside of the DIFC model. Hence, warm-start configurations result
in insecure polyinstantiation.

While SCIFFS does not explicitly handle malicious or compro-
mised FaaS functions, there is a threat that FaaS functions are
written improperly. For example, if a FaaS function writes to the
container file system, that information may be read by another
function instance, resulting in an accidental violation of the DIFC
model. To avoid reliance on error-free FaaS functions, SCIFFS pro-
vides secure polyinstantiation for warm-start configurations.

Our key observation for providing secure warm-start polyin-
stantiation is that only the function handler code needs to be polyin-
stantiated. Therefore, by using lightweight isolation techniques,
SCIFFS can achieve secure polyinstantiation in the same way as
traditional OS-based DIFC systems. Specifically, SCIFFS modifies
the OpenFaaS classic watchdog to start each function handler pro-
cess in a one-time use sandbox via bubblewrap [2]. This sandbox
prevents handlers from communicating directly through shared
memory, indirectly through files, and all network communication
is blocked except function calls through the gateway. Finally, note

this work does not address covert and timing channels between
function handlers, as this is an orthogonal problem.

5.4 Declassification and Auditing
The final challenge is supporting data declassification and main-
taining an audit trail of data access. Declassification is the process
of removing tags from the label on data and is necessary for being
able to share data. For example, if an analyst is generating a report
for company executives or a public blog post, that report will be
labeled with the tags of each customer whose data was involved.
Even if the analyst was cautious and properly sanitized the data
before creating the report, the system maintains the proper label. In
this scenario, the analyst can declassify the report and justify why
the declassification is appropriate (e.g., removed all identifying or
sensitive information). After declassification, the report can then
be shared with the target audience freely.

To support declassification, we modified the API gateway and
added support to the storage interface. We limit declassification
to only INSERT operations. This is because an analyst may retrieve
customer data and sanitize it locally in their browser. After storing
the sanitized result, the analyst may still have access to the original
data. Therefore, to ensure all future uses of the original data in a
session is tracked properly we do not declassify at the browser. To
declassify data, the analyst sends an INSERT to the storage interface
and lists (1) the tags to be removed from the label and (2) a justifi-
cation for why they are performing declassification. The gateway
ensures the user has the appropriate negative capabilities, and if so,
the request is forwarded to the storage interface. Upon receiving
this request, the interface removes the supplied tags from 𝑙𝑓 and
performs the INSERT using the declassified label.

Finally, SCIFFS provides an audit trail of all analyst activity to aid
forensics in the unlikely event that an analyst becomes malicious or
their account is compromised. To support auditing, we modified the
API gateway to log session identifiers, users, labels of responses,
and function workflow being invoked. When declassification is
preformed, the tags removed from the label and the justification
is also logged. Using this information, investigators can recreate
which data was impacted by a data breach. SCIFFS also supports
more verbose logging such as SQL statements and the full results.

6 Proof-of-Concept Analytics Application
In this section, we describe the design and implementation of a
proof-of-concept serverless security analytics application that ex-
ercises the four workflows discussed in Section 2.

6.1 Application Domain
Our analytics application collects DNS records from clients and
enables analysts to create widget functions to perform common
tasks, such as summarizing data, and searching for novel threats.
For example, our proof-of-concept application includes a widget
that summarizes DNS responses, which can be useful for identi-
fying suspicious activity in a network. Specifically, the NXDOMAIN

response can be used to identify malware using Domain Generation
Algorithms (DGAs) to communicate with a command-and-control
server. If an analyst observes anomalies in NXDOMAIN responses from
the summary widget, it may trigger the analyst to perform a threat

hunt to see if there is a malicious cause of the anomaly. As a result
of the threat hunt, the analyst may be able to define new widgets
that define alerts for the newly discovered threat.

6.2 Application Implementation
The application consists of five components: a host agent, a data-
base for persistent storage, a dashboard for viewing data, and two
functions. The two functions consist of (1) an ingest function, and
(2) a data summary widget function. The ingest function receives
DNS logs (or batches of DNS logs) from clients, it enriches this
data with customer metadata (e.g., customer account), and then
stores the logs in a PostgreSQL database using the SCIFFS database
interface function. The data summary function aggregates log data
returning a count of how many times each DNS response code was
seen over a given time interval. The data summary function can
be performed for a specific customer or performed over more than
one customer to identify global trends.

The two analytics functions are written in Python for the Open-
FaaS platform. By design, SCIFFS is transparent to the analytics func-
tions and the functions execute in both the unmodified OpenFaaS
platform and SCIFFS without modification. We simulate customer
host agents uploading batches of DNS queries to the platform using
a Python script that injects DNS query logs from Mike Sconzo’s
DNS dataset [37]. Finally, our application simulates the analyst
dashboard user interface with curl commands to invoke the analyst
functions and display raw results.

6.3 Security Analytics Workflows
Wenow discuss how each of the four analytics workflows, described
in Section 2, are covered by the application and then functionally
evaluate SCIFFS in its ability to track information over these work-
flows in the proof-of-concept application.

The first workflow, telemetry data ingestion (WF1), is addressed
by the data ingest function. To evaluate the functionality, we in-
jected logs from different customers to the ingest function to con-
firm that SCIFFS correctly labeled incoming data using customer
credentials and then stored the enriched data and its label in the
database. Next, the second and third workflows are addressed by
the DNS summary widget function. This function can be invoked
for a single customer (WF2) or more than one customer (WF3). To
evaluate the functionality for these workflows, we invoked the
summary function multiple times for different users and different
groups of users. In all cases, we observed the label on the returned
data only contained the tags of the customer data involved in the
computation. Finally, we address the final workflow, identifying new
threats (WF4), by sending queries directly to the database interface.
This query simulates an analyst further investigating the NXDOMAIN

responses viewed in the summary function from WF3. Specifically,
this query calculated the count of domains that resulted in NXDOMAIN

responses over all customers. No special consideration is given to
this query by the system and the query is treated as a never-seen-
before task. We then store the results of this query in the database
of derived data. To evaluate the functionality, we observed that
the original query was labeled with the correct customer tags and
that SCIFFS reinstated the correct label on the data, based on the
session, when the data was stored in the derived data database.

Table 1: Average time to ingest new event. Compared to
vanilla OpenFaaS, SCIFFS imposes just 3.87% overhead.

Environment Average Time (ms)
OpenFaaS Baseline 284 ± 0.6
SCIFFS 295 ± 0.5

Note WF4 is open-ended and is subjective to the analyst per-
forming the threat hunt. The results of this query may contain
enough information to create a new widget. For example, the data
may show a pattern of domain names that indict compromised
hosts using a DGA to contact the command-and-control server.
However, it is possible more complex queries may be needed to
identify novel threats. While GraphJin is not a replacement for SQL
and is currently not as expressive as SQL, it is under constant devel-
opment and future versions will add more SQL features. Alternative
approaches can incorporate existing IFC databases (e.g., IFDB [48])
while modifying them to support the SCIFFS design.

7 Evaluation
In this section, we describe the experimental setup followed by an
evaluation of the performance overhead imposed by SCIFFS on the
proof-of-concept analytics application described in Section 6.

7.1 Experimental Setup
The modifications made by SCIFFS to the gateway, watchdog, and
GraphQLAPI increase processing time at each component, resulting
in increased request latency. Additionally, the label filters added to
queries require more processing by the database server to compute
the result set. To evaluate the performance overhead, we identify
two key variables that impact performance of our modifications:
the number of rows in the database and the number of tags in a
row’s label. Using these variables, we design three experiments:
(1) the overhead on request latency for event ingestion (e.g., INSERT-
s), (2) the overhead on request latency when computing aggregates
over the entire database with varying database sizes (e.g., SELECT-
s), and (3) the overhead imposed on a SELECT statement when the
number of tags in a row’s label is increased.

For each experiment, we make use of a 32 vCPU and 120 GB
RAMUbuntu 18.04 virtual machine for both the SCIFFS deployment
and the unsecured baseline. The two VMs were hosted on separate
dedicated Dell PowerEdge FC630 blade servers, each with with 2
Xeon E5-2630 2.40 GHz CPUs and 128 GB RAM running VMware
ESXi 6.7.0. The unsecured baseline consists of gateway version
0.18.10, classic-watchdog version 0.18.10, faas-netes version 0.9.15,
of-watchdog version 0.8.1, and GraphJin version 0.15.78. The SCIFFS
environment consists of modified versions of those same code bases.
Note the benchmark application is the same in each environment.

7.2 Experimental Results
We now describe each of the three experiments identified above in
more detail and discuss their results.

7.2.1 Event Ingestion Overhead In the first experiment, our goal
is to observe the overhead imposed by SCIFFS on processing new

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

T
im

e
(s

.)

Database size (no. of rows (K))

OpenFaaS SCIFFS

Figure 4: Average time to compute an aggregate over vary-
ing database sizes.

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000

T
im

e
(s

.)

No. of tags in label

SCIFFS

Figure 5: Average time to filter a row with varying label
sizes.

events from customer devices. We note that the presence of other
rows in the database do not impact the performance of the INSER-

TS, so we do not vary the size of the database in this experiment.
Similarly, since data is coming from a single customer with a single
tag, we do not vary the label size in this experiment. For each
environment, we configured a single client to send 1, 000 events to
the ingest function and recorded how long each request took.
Results: Table 1 shows the SCIFFS environment imposes an 3.87%
(11 ms) increase in the time to process new events. Not only is this
a very negligible overhead, but the overhead on event ingestion
does not impact the clients sending telemetry data because their
workflow does not depend on responses from the ingest function.
This experiment highlights theminimal impact on performance that
results from the changes to the OpenFaaS gateway and watchdog.

7.2.2 Data Aggregation Overhead In the second experiment, our
goal is to observe the overhead imposed by SCIFFS on performing
aggregation over all customer data in the database. In this exper-
iment the number of rows in the database will directly impact
performance, as the label in each row of the database must be ex-
amined to compute the result set. However, we do not consider
varying the size of labels for the rows, because once again we are
aggregating over customer data that has a fixed single tag in the
label. However, there were 3 unique labels in the data to add diver-
sity. For each environment, we performed 10 trials configuring the
database to contain from 50, 000 in the first trial to 500, 000 rows in
last trial. For each trial, we invoked the summary function 1, 000
times and recorded how long the aggregation took.
Results: Figure 4 shows the average time (seconds) taken by the
summary function to compute the aggregation as the number of
rows in the database was increased. For each row in the database,
the label check performed by the query imposed a small amount
of overhead. As the number of rows in the database is increased,
this small overhead compounds and results in the linear trend
observed in the figure. At 50, 000 rows, SCIFFS imposed a 18.75%
(57 ms) increase in the summary function execution time and at
500, 000 rows there was a 104.27% (513 ms) increase. In the context
of analytics workflows, these overheads are still manageable. For
dashboard widgets that infrequently perform summaries over the

entire database the additional processing time may not be noticed
by the analyst. As databases grow into the millions of rows, it
is possible to optimize these functions to execute periodically in
the background and save the results to the derived database and
fetch them when the analyst logs in. In situations where additional
filters are supplied (e.g., filter by customer), rows can be efficiently
eliminated from the result by the query optimizer first matching
on the user supplied filter and then performing the expensive label
check. However, given the threat analytics use case we believe these
overheads to be manageable because the overhead from SCIFFS will
be dominated by the longer interactive analyst process of exploring
and understanding the data.

7.2.3 Overhead on PostgreSQL SELECT with Increasing Label Size
In the third experiment, our goal is to observe the overhead imposed
by SCIFFS on performing SELECT on rows with labels of increasing
size. For this experiment, we considered a single row in the database
and varied the size of its label. This is because in our environment,
data will only have large labels when it is derived data frommultiple
customers. If aggregation over derived data is performed at all, the
number of rows that are derived data is magnitudes fewer than the
number of rows of customer data. For each environment, we directly
interfaced with the database and performed 11 trials increasing
the number of tags in a row from 0 to 50,000. For each trial, we
performed SELECT statements for that specific row using a filter that
verifies every tag in the label and recorded how long the query
took. This query was executed 1,000 times for trials with less than
10k tags in the label and 100 times for the remaining trials.
Results: Figure 5 shows the average execution time for a query
on a database with a single row with a label of increasing size. For
labels with 1, 000 tags or fewer, the execution takes between 45
and 48 ms. The execution takes 60 ms at 2, 500 tags, then 101 ms at
5, 000 tags, and more than doubles to 266 ms at 10, 000 tags. At this
point the execution time begins to grow much quicker, 1.4 seconds
at 25, 000 tags and finally 5.5 seconds at 50, 000 tags. Although label
encoding does not scale well for extremely large labels, we note that
this is a worst-case scenario in which the tag of every customer is
assigned to a row and then this row is used for further computation.
To mitigate these overheads, incrementally declassifying results,
when appropriate, can reduce the size of labels on derived results.

Whether this worst-case scenario could be encountered in practice
depends on the client base of the analytics service and their internal
procedures. SCIFFS motivates future work in scalable IFC databases,
including efficient ways to encode and compute over large labels.

8 Related Work
Information Flow Control dates back to early work on the lattice
model by Bell and LaPadula [15] and Denning [22, 23]. These early
IFC models used a centralized definition for security labels that
was maintained by a system administrator. Since this model is ill-
fitting for the demands of applications,Myers and Liskov introduced
the decentralized label model [38], which allowed programs to
define labels and gave them permission to declassify data containing
their own label. This flexible model for IFC has seen adaptions
into traditional operating systems (e.g., Asbestos [25], HiStar [54],
and Flume [32]), mobile operating systems (e.g., Aquifer [40] and
Weir [39]), and distributed systems and cloud environments (e.g.,
DStar [55], Fabric [33], Camflow [42], and Trapeze [12]).

While Trapeze is the first to explicitly use IFCwith FaaS, Camflow
implemented FaaS-like features in their PaaS platform to obtain the
properties SCIFFS and Trapeze rely on. SCIFFS differs from Trapeze
by enabling warm-starts without breaking applications, supports
more programming languages, and supports a SQL database com-
pared to Trapeze’s key-value store. While not a FaaS platform,
Camflow replicates FaaS features by polyinstantiating a process for
different labels and uses a checkpoint-restore feature to prevent
label creep. However, Camflow assumes labels should not have
more than five tags and optimizes their implementation on that as-
sumption. Further, Camflow is implemented as an LSM that passes
tags between distributed hosts in the request. By contrast, SCIFFS
is implemented in user-space, makes no assumption on label size,
and efficiently communicates labels outside of the requests, making
it more appropriate for our use case. Riverbed [50] is another work
that enforces user-defined privacy constraints in a distributed web
application; however, this work focuses on ensuring user data is
handled properly rather than performing fine-grained tracking.

Secure Multi-Execution [24] is an IFC approach that executes a
program multiple times, once for each security level. Similar works
include TightLip [53], Shadow Executions [17], and Ariel [18]. How-
ever, each of these works assume two security classes, public and
private. Weir [39] applies DIFC to secure multi-execution by using
lazy polyinstantiation where a process is only spawned for a label
when it is needed. Further, Weir showed that floating labels do not
have implicit channels when polyinstantiation is used. Since FaaS
is innately polyinstantiated, our floating label model is likewise
secure. Similar to multi-execution is work in faceted values [13].
Faceted values have two values for each variable, public and private,
whose contents are determined by the user accessing the variable.
Austin et al. [14] extends Jeeves [52], a Scala library that enables
declaring privacy policies on sensitive values, to support faceted
values. This was further extended by Jacqueline [51], which im-
plements a web framework for faceted values in database-backed
applications. Once again, we note these works only support two
security classes and do not meet the demands of our use case.

Similar to faceted values are multiverse databases [34, 36] that
display different views of the data, depending on the user. These

works are complementary to SCIFFS but fall short in providing
the desired semantics to support fine-grained information track-
ing SCIFFS needs. The SCIFFS storage interface is comparable to
IFDB [48] in that SELECT statements return a subset of data depend-
ing on the process’s label and INSERT statements use the current
label. SCIFFS differs in that the label column is abstracted from
processes interacting with the database, supports caps for SELECT
statements, and accurately calculates a precise label for aggregate
functions. Further, work into IFC databases such as the Scala-based
reference monitor by Guarniereri et al. [26] and LWeb [41] provide
alternatives for storing labeled data in relational databases, but once
again these works do not provide the necessary semantics. SCIFFS
motivates more work into efficient multiverse and IFC databases.

Serverless security is rapidly growing. Valve [20] performs net-
work level tainting on function workflows; however, the goal is to
ensure control flow integrity rather than data secrecy and is comple-
mentary to SCIFFS. SecLambda [28] provides an extensible tool for
performing security tasks in serverless environments and provided
three proof-of-concept tasks: flow integrity, credential protection,
and DoS rate limiting. WILL.IAM [47] also provides function access
control by enabling developers to specify permissible transitions
of workflows. Recently there has been an increase in security ana-
lytics services (e.g., Chronicle Backstory [3], Open XDR [10]) that
consolidate information from multiple telemetry sources, includ-
ing external sources. These services are complementary, as they
can be integrated into SCIFFS. Finally, we note works that demon-
strate the benefits of serverless for data analytics (e.g., PyWren [29],
IBM-PyWren [46], Flint [30], Locus [43], and funcX [19]).

9 Conclusion
This work introduced SCIFFS, an automated information flow mon-
itoring framework for preventing sensitive data exposure in third-
party security analytics platforms. We apply DIFC to serverless
platforms in a novel way, to assure precise and lightweight tracking
of data flows. Through a performance evaluation, we demonstrated
SCIFFS has negligible overheads on processing new events and a
manageable overhead for analytics queries as the dataset grows
larger when compared to an insecure baseline. SCIFFS not only
establishes a privacy-respecting model for third-party security ana-
lytics, but also highlights the opportunities for security-sensitive
applications in the serverless computing model.

Acknowledgements
This workwas supported in part by the National Science Foundation
(NSF) grants CNS-1750024 and CNS-1955228. Opinions, findings,
conclusions, or recommendations in this work are those of the
authors and do not reflect the views of the funders.

References
[1] 2021. Accidental Data Breaches Are on the Rise; Corporate Email Is a Lead-

ing Cause. https://www.darkreading.com/attacks-breaches/accidental-data-
breaches-are-on-the-rise-corporate-email-is-a-leading-cause/d/d-id/1336579.

[2] 2021. Bubblewrap. https://github.com/containers/bubblewrap.
[3] 2021. Chronicle Backstory. https://go.chronicle.security/hubfs/Backstory_WP.

pdf.
[4] 2021. Cisco Managed Detection and Response. https://www.cisco.com/c/m/en_

us/customer-experience/operate/managed-detection-and-response.html.
[5] 2021. Cybereason Managed Detection and Response. https://www.cybereason.

com/services/managed-detection-response-mdr.

https://www.darkreading.com/attacks-breaches/accidental-data-breaches-are-on-the-rise-corporate-email-is-a-leading-cause/d/d-id/1336579
https://www.darkreading.com/attacks-breaches/accidental-data-breaches-are-on-the-rise-corporate-email-is-a-leading-cause/d/d-id/1336579
https://github.com/containers/bubblewrap
https://go.chronicle.security/hubfs/Backstory_WP.pdf
https://go.chronicle.security/hubfs/Backstory_WP.pdf
https://www.cisco.com/c/m/en_us/customer-experience/operate/managed-detection-and-response.html
https://www.cisco.com/c/m/en_us/customer-experience/operate/managed-detection-and-response.html
https://www.cybereason.com/services/managed-detection-response-mdr
https://www.cybereason.com/services/managed-detection-response-mdr

[6] 2021. GraphJin. https://graphjin.com/.
[7] 2021. GraphQL. https://graphql.org/.
[8] 2021. Mandiant Managed Detection and Response. https://www.fireeye.com/

mandiant/managed-detection-and-response.html.
[9] 2021. Oops! Facebook just leaked developers’ confidential data.

https://www.tucsonpost.com/news/257554066/oops-facebook-just-leaked-
developers-confidential-data.

[10] 2021. Open XDR - the Intelligent Next Gen Security Operations Platform. https:
//stellarcyber.ai/products/open-xdr-security-operations-platform/.

[11] 2021. OpenFaaS. https://www.openfaas.com/.
[12] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,

Thomas Schmitz, and Keith Winstein. 2018. Secure Serverless Computing Using
Dynamic Information Flow Control. In Proceedings of the ACM Programming
Languages and Systems 2, OOPSLA, Article 118 (Oct. 2018), 26 pages.

[13] Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. 2017. Multiple
Facets for Dynamic Information Flow with Exceptions. Proceedings of the ACM
Transactions on Programming Languages and Systems 39, 3, Article 10 (May 2017),
56 pages.

[14] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.
2013. Faceted Execution of Policy-Agnostic Programs. In Proceedings of the ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS).
15–26.

[15] D. E. Bell and L. J. LaPadula. 1976. Secure Computer System: Unified Exposition
and Multics Interpretation. Technical Report ESD-TR-75-306. Deputy for Com-
mand and Management Systems, HQ Electronic Systems Division (AFSC), L. G.
Hanscom Field, Bedford, MA.

[16] Brad Smith. 2021. A moment of reckoning: the need for a strong and global
cybersecurity response. https://blogs.microsoft.com/on-the-issues/2020/12/17/
cyberattacks-cybersecurity-solarwinds-fireeye/.

[17] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla.
2008. Preventing Information Leaks through Shadow Executions. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC). 322–331.

[18] Dhiman Chakraborty, Christian Hammer, and Sven Bugiel. 2019. Secure Multi-
Execution in Android. In Proceedings of the ACM/SIGAPP Symposium on Applied
Computing (SAC). 1934–1943.

[19] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serv-
ing Fabric for Science. In Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). 65–76.

[20] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless Com-
puting Platforms. In Proceedings of The Web Conference. 939–950.

[21] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: A Web Browser with Flexible and Precise Information Flow
Control. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS). 748–759.

[22] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun.
ACM 19, 5 (May 1976), 236–243.

[23] Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs
for Secure Information Flow. Commununications of the ACM 20, 7 (July 1977),
504–513.

[24] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure
Multi-Execution. In Proceedings of the IEEE Symposium on Security and Privacy
(SP). 109–124.

[25] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. 2005.
Labels and Event Processes in the Asbestos Operating System. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP). 17–30.

[26] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei
Sabelfeld. 2019. Information-Flow Control for Database-Backed Applications. In
Proceeding of the IEEE European Symposium on Security and Privacy (EuroS&P).
79–94.

[27] Boniface Hicks, Sandra Rueda, Dave King, Thomas Moyer, Joshua Schiffman,
Yogesh Sreenivasan, Patrick McDaniel, and Trent Jaeger. 2010. An Architecture
for Enforcing End-to-End Access Control over Web Applications. In Proceedings
of the ACM Symposium on Access Control Models and Technologies (SACMAT).
163–172.

[28] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, Thomas Ristenpart, and
Michael Swift. 2020. Guarding Serverless Applications with SecLambda.
arXiv:2011.05322 [cs.CR]

[29] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC). 445–451.

[30] Youngbin Kim and Jimmy Lin. 2018. Serverless Data Analytics with Flint. In
Proceedings of the IEEE International Conference on Cloud Computing (CLOUD).
451–455.

[31] Maxwell Krohn and Eran Tromer. 2009. Noninterference for a Practical DIFC-
Based Operating System. In Proceedings of the IEEE Symposium on Security and
Privacy (SP). 61–76.

[32] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard
OS Abstractions. In Proceedings of the ACM SIGOPS Symposium on Operating
Systems Principles (SOSP). 321–334.

[33] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C.
Myers. 2009. Fabric: A Platform for Secure Distributed Computation and Storage.
In Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles
(SOSP). 321–334.

[34] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta Yagati, Eddie
Kohler, Robert Morris, M. Frans Kaashoek, and Sam Madden. 2019. Towards
Multiverse Databases. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS). 88–95.

[35] M. D. McIlroy and J. A. Reeds. 1992. Multilevel Security in the UNIX Tradition.
Software: Practice and Experience 22, 8 (Aug. 1992), 673–694.

[36] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel.
2017. Qapla: Policy Compliance for Database-Backed Systems. In Proceedings of
the USENIX Conference on Security Symposium (SEC). 1463–1479.

[37] Mike Sconzo. 2021. DNS. https://www.secrepo.com/Datasets%20Description/
Network/dns.html.

[38] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Informa-
tion Flow Control. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP). 129–142.

[39] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Prac-
tical DIFC Enforcement on Android. In Proceedings of the USENIX Conference on
Security Symposium (SEC). 1119–1136.

[40] Adwait Nadkarni andWilliam Enck. 2013. Preventing Accidental Data Disclosure
in Modern Operating Systems. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1029–1042.

[41] James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information Flow
Security forMulti-TierWebApplications. Proceedings of the ACM on Programming
Languages 3, POPL, Article 75 (Jan. 2019), 30 pages.

[42] Thomas F. J.-M. Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2017.
Camflow: Managed Data-Sharing for Cloud Services. Proceedings of the IEEE
Transactions on Cloud Computing (TCC) 5, 3 (2017), 472–484.

[43] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 193–206.

[44] Rich Jones. 2021. Gone in 60Milliseconds: Intrusion and Exfiltration in Server-less
Architectures. https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds.

[45] Roberto Rodriguez. 2021. The Threat Hunter Playbook. https://
threathunterplaybook.com/introduction.html.

[46] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. 2018.
Serverless Data Analytics in the IBM Cloud. In Proceedings of the International
Middleware Conference Industry (Middleware). 1–8.

[47] Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow Integration Alle-
viates Identity and Access Management in Serverless Computing. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC). 496–509.

[48] David Schultz and Barbara Liskov. 2013. IFDB: Decentralized Information Flow
Control for Databases. In Proceedings of the ACM European Conference on Com-
puter Systems (EuroSys). 43–56.

[49] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011.
Flexible Dynamic Information Flow Control in Haskell. In Proceedings of the ACM
Symposium on Haskell (Haskell). 95–106.

[50] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-
Defined Privacy Constraints in Distributed Web Services. In Proceedings of the
USENIX Conference on Networked Systems Design and Implementation (NSDI).
615–629.

[51] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, Dynamic Information Flow for
Database-Backed Applications. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 631–647.

[52] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A Language for
Automatically Enforcing Privacy Policies. In Proceedings of the Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
85–96.

[53] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. 2007. Tightlip:
Keeping Applications from Spilling the Beans. In Proceedings of the USENIX
Conference on Networked Systems Design and Implementation (NSDI). 159–172.

[54] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2006.
Making Information Flow Explicit in HiStar. In Proceedings of the USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). 263–278.

[55] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. 2008. Securing
Distributed Systems with Information Flow Control. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 293–308.

https://graphjin.com/
https://graphql.org/
https://www.fireeye.com/mandiant/managed-detection-and-response.html
https://www.fireeye.com/mandiant/managed-detection-and-response.html
https://www.tucsonpost.com/news/257554066/oops-facebook-just-leaked-developers-confidential-data
https://www.tucsonpost.com/news/257554066/oops-facebook-just-leaked-developers-confidential-data
https://stellarcyber.ai/products/open-xdr-security-operations-platform/
https://stellarcyber.ai/products/open-xdr-security-operations-platform/
https://www.openfaas.com/
https://blogs.microsoft.com/on-the-issues/2020/12/17/cyberattacks-cybersecurity-solarwinds-fireeye/
https://blogs.microsoft.com/on-the-issues/2020/12/17/cyberattacks-cybersecurity-solarwinds-fireeye/
https://arxiv.org/abs/2011.05322
https://www.secrepo.com/Datasets%20Description/Network/dns.html
https://www.secrepo.com/Datasets%20Description/Network/dns.html
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://threathunterplaybook.com/introduction.html
https://threathunterplaybook.com/introduction.html

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Overview
	4 SCIFFS Tracking Policy
	4.1 Label Model Preliminaries
	4.2 Initial FaaS Workflow Label
	4.3 Storage Access and Label Propagation
	4.4 Declassification

	5 SCIFFS System Design
	5.1 OpenFaaS Background
	5.2 Label Propagation
	5.3 Secure Polyinstantiation
	5.4 Declassification and Auditing

	6 Proof-of-Concept Analytics Application
	6.1 Application Domain
	6.2 Application Implementation
	6.3 Security Analytics Workflows

	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Related Work
	9 Conclusion
	References

