
96 March/April 2022 Copublished by the IEEE Computer and Reliability Societies 1540-7993/22©2022IEEE

SYSTEMS ATTACKS AND DEFENSES
Editors: William Enck, whenk@ncsu.edu | Samuel King, kingst@ucdavis.edu | Angelos Stavrou, astavrou@gmu.edu

Top Five Challenges in Software Supply
Chain Security: Observations From
30 Industry and Government Organizations

William Enck and Laurie Williams | North Carolina State University

Software is complex, not only due to the code within a given project, but also due to the vast ecosystem
of dependencies and transitive dependencies upon which each project relies. Recent years have observed
a sharp uptick of attacks on the software supply chain spurring invigorated interest by industry and
government alike. We held three summits with a diverse set of organizations and report on the top five
challenges in software supply chain security.

M ajor security incidents dis
rupted what were to be re

laxing holiday breaks for software
organizations in both 2020 and
2021. In 2020, the build process
for SolarWinds’s network manage
ment tool, Orion, which is used to

manage routers and switches inside
corporate networks, was mali
ciously subverted to distribute mal
ware to create backdoors on victim’s
networks. This malware enabled
spying on at least 100 companies
and nine U.S. government agen
cies, including the Centers for Dis
ease Control and Prevention, U.S.
Department of Homeland Security,

U.S. Justice Department, Penta
gon, and U.S. State Department.

In 2021, the popular logging
library log4j, used by more than
35,000 Java packages, allowed an
attacker to perform remote code
execution by exploiting an acciden
tally injected insecure Java Naming
and Directory Interface lookup fea
ture, which is enabled by default in
many versions of the library. Both
the SolarWinds and log4j events were
driven by the software supply chain,
whereby software products include
“upstream” components as well as
dependencies, which may be mali
ciously or accidentally vulnerable.

Sonatype1 reports a 650% year
overyear increase in detected sup
ply chain attacks (on top of a 430%
increase in 2020) targeted toward
upstream open source repositories.
The U.S. government is so con
cerned by software supply chain
security deficiencies that a whole
section of Executive Order 14028,2
“Improving the Nation’s Cybersecu
rity,” issued 12 May 2021, is focused
on new compliance requirements

Digital Object Identifier 10.1109/MSEC.2022.3142338
Date of current version: 21 March 2022

www.computer.org/security 97

for government vendors to enhance
supply chain security.

Given that software supply chain
security needs “hair on fire” attention,
industry and government agencies
have jumped into action with both
tactical and industrywide collab
orative efforts and sizable financial
investments.3 We conducted two
industry and one government soft
ware supply chain security sum
mits. The goal of these events was
to enable sharing among indus
try practitioners having
practical experiences and
challenges with software
supply chain security.

We intentionally kept
attendance relatively small
(a total of 30 organizations
across the three summits)
and utilized the Chatham
House rule,4 whereby participants
are free to use the information
received, but neither the identity
nor the affiliation of the speaker(s),
nor those of any other participants,
may be revealed to encourage hon
est, intimate sharing in a trusted
environment. As a result, we can
not identify the organizations in this
column. By design, the summit par
ticipants were from diverse domains,
company sizes, geographies, and
company maturities—all from the
United States—including promi
nent organizations who are leading
industrywide software supply chain
security efforts.

In this column, we share the top
five challenges in software supply
chain security that we identified
through running these summits. We
share these to aid organizations in
formulating their action plans for
dealing with these issues:

1. updating vulnerable dependencies
2. leveraging the software bill of

materials (SBoM) for security
3. choosing trusted supply chain

dependencies
4. securing the build process
5. getting industrywide participation.

To Update or Not To
Update?— Is That Even
the Question?

Challenge 1: Updating
Vulnerable Dependencies
GitHub’s Dependabot service noti
fies developers when they reference
a fixed version of a dependency
with a known vulnerability. Histori
cally, developers and security experts
have disagreed on whether or not
fixed dependencies are a good idea.

Developers like fixed dependencies:
they prevent changes from breaking
their project. In contrast, security
experts have long touted the mantra
of automatic updates, even for soft
ware dependencies. They argue that
the widespread adoption of a more
agile “move fast and break things”
approach to software development
can tolerate changes in dependen
cies, and it is better to have the latest
version of a dependency in case there
was an unannounced security fix.

SolarWinds was a wakeup call
that changed the conversation around
fixed dependencies. It reminded
security experts that quickly updat
ing to the latest version of a depen
dency might also introduce malicious
code. One summit participant gave
the advice that you do not want to
be the first or last to update a depen
dency. Ideally, you want enough other
people to update to the new version
of the dependency to make sure it
is okay. Simultaneously, you do not
want to be the last because it might
actually be fixing a vulnerability. You
need to develop a policy that strikes
this balance.

Another participant indicated
that their organization is adopting

stronger controls to prevent the inclu
sion of vulnerable dependencies. The
build process now requires project
maintainers to take an action within
a set number of days (e.g., update
the dependency or mark it as not
exploitable). If an action is not taken
in time, the continuous integration/
continuous deployment (CI/CD)
system will break the build. This
policy marks a distinct change in the
approach by leadership, for whom
developer time has long been seen

as the most important
business optimization.

In contrast, another
participant took a dras
tically different posi
tion, stating that doing
“handtohand com
bat” with individual
vulnerabilities is the

wrong approach. There simply are
not enough human resources to
make the model sustainable in the
long term. The participant gave the
analogy of fire management, stating
that, if you spend all of your time
fighting fires, you will not spend any
time building and deploying fire pre
vention techniques. It is no coinci
dence that the network firewall gets
its name from fire prevention.

Instead of reacting to known
vulnerabilities in dependencies, we
should be focusing more effort on
isolation techniques that ensure a
vulnerable dependency has lim
ited impact when it is exploited.
For example, Firefox has recently
started deploying RLBox to do
exactly this. Ultimately, we need to
create a meaningful concept of “zero
trust” for software dependencies.

The SBoM: What Is It
Good For?

Challenge 2: Leveraging the
SBoM for Security
The executive order brought the
SBoM into the limelight in a big way.
The SBoM is actually an old con
cept that is being brought to the

The goal of these events was to enable
sharing among industry practitioners

having practical experiences and challenges
with software supply chain security.

98 IEEE Security & Privacy March/April 2022

SYSTEMS ATTACKS AND DEFENSES

forefront. Over the last 10 years,
a number of industrial efforts,
such as SPDX, CycloneDX, and
SWID,5 have sought to standard
ize machinereadable formats of the
SBoM for modern environments.
The U.S. Cyber Supply Chain Man
agement and Transparency Act of
20146 called for a bill of materials of
each binary component that is used
in the software, firmware, or product.
Conceptually, an SBoM
is just like what it sounds,
a list of all of the code and
build dependencies (and,
ideally, version informa
tion) that went into creat
ing a software product. A
key aspect of an SBoM is
to provide transparency.
Assuming the SBoM is
automatically created during the
build process, a software consumer
can remove trust in the organization
providing the software.

Summit participants had widely
divergent opinions on the useful
ness of SBoMs. On one end of the
spectrum, the requirement of shar
ing SBoMs among companies was
considered harmful. While the con
cept of an SBoM is nice, the devil is
in the details. Software is not always
consumed in atomic ways. Develop
ers often pull in only specific files or
functions. This information must
be tracked internally but is less use
ful to share among companies. Vul
nerabilities are also context specific.
Just because you use a vulnerable
version of a dependency does not
mean you are actually vulnerable.
Ultimately, SBoMs are indirectly
getting at the question of whether
or not a software product has a
vulnerability. Why not just require
accurate and timely vulnerability
information?

On the other end of the spectrum,
some participants felt strongly
that widespread use of SBoMs is
necessary. They argued that the
current software supply chain is
invisible and that a lot of it only

comes in during the build process
(e.g., deeply transitive dependen
cies). It is not clear who is evaluating
and reporting on this information.
In contrast, SBoMs provide a way to
move toward a zerotrust approach
for supply chain, confidence in the
unknown, and contract negotiations
for risk management.

In the middle of the spectrum
was the sentiment that SBoMs could

be great. They are currently just a
list of ingredients. However, they
could contain additional evidence to
trust the environment that built the
software. They could allow for hash
validation of all components to be
compared to values in the manifest.
Antivirus software could potentially
use SBoMs to determine if the ingre
dients could meet known malware.

We left the discussion with the
conclusion that, while current SBoMs
are largely a compliance exercise,
efforts at establishing standards and
requirements for SBoMs have the
potential to lay the groundwork for
innovative security enhancements
that leverage the SBoM. Once in
place, we need to create and automate
metrics that are verifiable, meaning
ful, nongameable, and attestationable,
with the ability to demonstrate adher
ence to security policies.

Separating the Wheat From
the Chaff: What Can Be
Trusted?

Challenge 3: Choosing
Trusted Supply Chain
Dependencies
Ken Thompson’s 1984 Turing Award
talk about trusting trust7 was brought

up repeatably in one summit—
“To what extent should one trust a
statement that a program is free of
Trojan horses? Perhaps it is more
important to trust the people who
wrote the software.” The software
supply chain is affected most at trust
boundaries, for example, bring
ing in dependencies. By definition,
every dependency is outside the
trust boundary.

Readers may be famil
iar with the XKCD comic
about software depen
dencies,10 which depicts
“a project some random
person in Nebraska has
been thanklessly main
taining since 2003” as a
foundation for modern
digital infrastructure.

There are many takeaways from this
comic. Apt to our discussion is how
to establish trust with the people
developing your dependencies. Can
you trust the maintainers of a library
over time? What about the integrity
of the library’s build environment
or the compiler? Will an organiza
tion sell or turn over their library
to someone malicious? What if a
library is deleted and someone takes
the name? Can the accuracy of the
SBoM be trusted?

Package managers and research
ers are exploring logic and machine
learningbased mechanisms for sep
arating the wheat from the chaff. For
example, tools are identifying typos
quatting, so the rogue packages can
be removed from repositories. Addi
tionally, we have begun research
aimed at identifying malicious pack
ages based on package metadata,
such as the presence of install scripts,
maintainer accounts associated with
an expired email domain, and inac
tive packages with inactive main
tainers.8 Currently, these and other
machine learningbased sorting
approaches to identify bad hygiene
have a low signaltonoise ratio and
present technical challenges. Addi
tionally, launched in August 2020,

Instead of reacting to known vulnerabilities
in dependencies, we should be focusing
more effort on isolation techniques that

ensure a vulnerable dependency has
limited impact when it is exploited.

www.computer.org/security 99

the Open Source Security Founda
tion (OpenSSF), sponsored by the
Linux Foundation and with govern
ing board members from Microsoft
(chair), Intel, IBM, Google, and
GitHub, has several working groups
and products that can aid in chaff
separation and mitigation.

The principles of trust and what
you can count on are not consistent
across the board. Some attendees
called for a science of trust.

It Takes More Than
Two to SLSA

Challenge 4: Securing the
Build Process
Build specifications and environ
ments have been largely over
looked by security analysis efforts.
The recent widespread adoption of
popular (CI/CD) tools, such as Jen
kins, Travis CI, Tekton, and GitHub
Actions, provides a useful founda
tion for establishing documented
and attestable build environments.
However, they also open the attack
surface for injecting malicious code
during the build process. For exam
ple, a large community has devel
oped around providing reusable
GitHub actions to perform common
CI/CD tasks. These GitHub actions
do not always have strong access
control and integrity protection.

The supply chain levels for soft
ware artifacts [SLSA (pronounced
“salsa”)] framework provides a
checklist of standards for reason
ing about the build process. SLSA
is based on Google’s internal pro
cesses and defines four levels, begin
ning with simply having a scripted
build and recording provenance
information and ending with using
an ephemeral, isolated, parameter
less, and hermetic build environ
ment. Bonus points are given if the
build is reproducible, i.e., two builds
produce bitforbit identical output.

The summit participants were
largely positive on SLSA but noted
that secure build environments are

a huge openended challenge. One
participant suggested that figuring
out how to secure the build envi
ronment is where the most interest
ing new work in the field is going
to happen in the next 10 years.
Essentially, where we are today
with securing build environments is
where we were with the secure soft
ware development lifecycle around
Microsoft’s Trustworthy Comput
ing days (2002).

SLSA is a great starting place to
think about the problem, but getting
into all of the nooks and crannies is
going to take a lot more time and
effort. There are some fundamen
tal problems, such as trusting the
compiler. There is also little under
standing of just how brittle systems
are. For example, switching the
order of including files could make
something malicious or vulnerable.
The documentation will also be
immensely important and a poten
tial source of attack (e.g., an action
that will turn off security features).
In the near term, focusing on audit
ability and reproducibility is a must.

Reproducible builds are a great
way to know if someone is amok
in your build system. There are
a number of efforts on this front.
For example, the Debianinitiated
https://reproduciblebuilds.org
effort has characterized and clas
sified the many types of nonde
terminism that can be introduced
during the build process. It has also
helped push upstream changes to
compilers and tools to help in this
effort. However, one participant
noted that many languages just do
not support the concept. They had
not heard of the ability for Objec
tive C, JavaScript, Rust, or Kotlin.

Avoiding the Tragedy
of the Commons

Challenge 5: Getting
Industry-Wide Participation
The big tech giants are acutely aware
of the software supply chain risk and

have been for some time. Some of
them have created shortterm solu
t ions , such as repositor ies of
“verified” dependencies that their
developers may select from. Not only
are these efforts manual intensive,
but they help only that company,
which may eventually incorporate an
external project that was not subject
to their controls. As such, efforts that
contribute to the common good are
needed to secure the software supply
chain in the long term.

Fortunately, the major players
in the industry are already com
ing together through the form of a
number of projects. One participant
noted that, if you want to know how
industry is addressing the security
of the software supply chain, look
at the projects managed under the
Linux Foundation. These include
the OpenSSF (mentioned earlier),
sigstore, and intoto,9 a joint indus
try–academic project that helps
shed light on codetobinary prov
enance. These efforts will lay the
foundation for all companies to
contribute to the larger need of soft
ware supply chain security.

However, it is not enough for
these collaborative efforts to simply
exist. They need to be adopted and
used by the large majority of the soft
ware industry. This transition will
not be easy, and it will take time. It
is unrealistic to expect vendors to
incorporate best practices overnight.
Rather, it is useful to have a compari
son of a given vendor to the industry
as a whole. Similar efforts occurred
for secure software development pro
cesses. Of note is the building secu
rity in maturity model (BSIMM),
which has become the de facto stan
dard for assessing a company’s soft
ware security practices and providing
an industrywide picture of practice
adoption. Similar to BSIMM, the
Open Web Application Security
Project (OWASP) provides the soft
ware assurance maturity model
(SAMM), which can be used by
organizations to assess their software

100 IEEE Security & Privacy March/April 2022

SYSTEMS ATTACKS AND DEFENSES

security practices and develop a
plan for improving their software
security posture.

Multiple summit participants
called for a “BSIMM for supply
chain” that can help them understand
the software development and build
practices they should adopt to
improve supply chain security. Fortu
nately, based upon experiences with
SAMM, an OWASP working group
has proposed the software compo
nent verification standard (SCVS),
a framework for identifying activities,
controls, and best practices, which
can help in identifying and reduc
ing risk in a software supply chain.
Organizations can obtain “But what
should we be doing?” guidance from
both the SLSA and SCVS frame
works. Opportunities exist for
automating data collection for both
of these. However, ensuring metrics
are meaningful and nongameable
requires significant attention.

All Hands on Deck
Several summit participants indi
cated that the executive order was
going to force industry into adopt
ing security practices that should
have been done 20 years earlier.
Sometimes, only through challenges
do we make progress.

W e conclude this column
with a call to action based

upon the summit discussions. Soft
ware development organizations can
take this opportunity to improve their
software development and their build
processes. While the implications of
the executive order may be compli
ance requirements for vendors, the
summit attendees shared a joint desire
for actually making the supply chain
more secure, not just attaining com
pliance. They indicated a weariness
toward compliance but an energy
about making the supply chain more

secure. They also indicated a desire
for measuring whether the secu
rity of the supply chain is actually
more secure: compliance measures
may be leading indicators, but more
desired are lagging indicators that
represent actual security.

This leads to the need for more
research in software supply chain
security, which needs to focus
on measurement, such as security
measures; philosophy, including
the science of trust; and technical
challenges, for example, attacking
the top five challenges discussed
in this column. Finally, summit
attendees resounded in their senti
ment that educators had to teach
students about software supply
chain security, in particular, secure
build processes.

References
 1. “2021 state of the software supply

chain,” Sonatype, Jul. 2021. https://
www.sonatype.com/resources/
s t ate o f t h e s o f t w a re su p p l y
chain2021

 2. “Improving the nation’s cybersecu
rity,” National Archives and Records
Administration, College Park, MD,
USA, Executive order 14028, May
12, 2021. [Online]. Av a i l ab l e :
https://www.federalregister.gov/
documents/2021/05/17/2021
10460/improvingthenations
cybersecurity

 3. M. Kelly, “Google and Microsoft
promise billions to help bolster us
cybersecurity,” The Verge, Aug 25,
2021. https://www.theverge.com/
2021/8/25/22642054/appleamazon
googlemicrosoftcybersecurity
billions

 4. “Chatham house rule,” Chatham
House, London, U.K., 2021. [Online.]
Available: https://www.chathamhouse.
org/aboutus/chathamhouserule

 5. “Survey of existing SBOM formats
and standards,” Nat i o na l Te l e
communications and Information

Administration, Washington, DC,
USA, Oct. 25, 2019.

 6. “H.R.5793–Cyber Supply Chain
Management and Transparency Act
of 2014,” Congress, Oct. 25, 2019.
[Online.] Available: https://www.
congress.gov/bill/113thcongress/
housebill/5793/text

 7. K. Thompson, “Reflections on
trusting trust,” Commun. ACM, vol.
27, no. 8, pp. 761–763, Aug. 1984,
doi: 10.1145/358198.358210.

 8. N. Zahan, L. A. Williams, T. Zim
mermann, P. Godefroid, B. Murphy,
and C. S. Maddila, “What are weak
links in the NPM supply chain?” in
Proc. Int. Conf. Softw. Eng., Softw.
Eng. Pract., 2022.

 9. S. TorresArias, H. Afzali, T. K. Kup
pusamy, R. Curtmola, and J. Cap
pos, “Intoto: Providing farmtotable
guarantees for bits and bytes,” in Proc.
USENIX Security Symp., Santa Clara,
CA, USA: USENIX Association, Aug.
2019, pp. 1393–1410.

 10. R. Munroe, “Dependency,” XKCD,
[Online.] Available: https://xkcd.
com/2347

William Enck is a professor in the
Department of Computer Sci
ence and codirector of the Secure
Computing Institute at North
Carolina State University, Raleigh,
North Carolina, 27695, USA. His
research interests include systems
security. Enck received a Ph.D. in
computer science and engineering
from Penn State University. Con
tact him at whenck@ncsu.edu.

Laurie Williams is a distinguished
university professor and codirector
of the Secure Computing Institute
at North Carolina State University,
Raleigh, North Carolina, 27695,
USA . Her research interests
include software security. Williams
received a Ph.D. in computer sci
ence from the University of Utah.
Contact her at lawilli3@ncsu.edu.

