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ABSTRACT
SEAndroid is a mandatory access control (MAC) framework
that can confine faulty applications on Android. Neverthe-
less, the effectiveness of SEAndroid enforcement depends on
the employed policy. The growing complexity of Android
makes it difficult for policy engineers to have complete do-
main knowledge on every system functionality. As a result,
policy engineers sometimes craft over-permissive and ineffec-
tive policy rules, which unfortunately increased the attack
surface of the Android system and have allowed multiple
real-world privilege escalation attacks.

We propose SPOKE, an SEAndroid Policy Knowledge En-
gine, that systematically extracts domain knowledge from
rich-semantic functional tests and further uses the knowl-
edge for characterizing the attack surface of SEAndroid pol-
icy rules. Our attack surface analysis is achieved by two
steps: 1) It reveals policy rules that cannot be justified by
the collected domain knowledge. 2) It identifies potentially
over-permissive access patterns allowed by those unjustified
rules as the attack surface. We evaluate SPOKE using 665
functional tests targeting 28 different categories of function-
alities developed by Samsung Android Team. SPOKE suc-
cessfully collected 12,491 access patterns for the 28 cate-
gories as domain knowledge, and used the knowledge to re-
veal 320 unjustified policy rules and 210 over-permissive ac-
cess patterns defined by those rules, including one related to
the notorious libstagefright vulnerability. These findings
have been confirmed by policy engineers.
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1. INTRODUCTION
Security-Enhanced Android (SEAndroid), also known as

SELinux in Android, is a framework to enforce a Mandatory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052991

Access Control (MAC) policy on native access operations in
an Android system [7]. SEAndroid is capable of limiting
the impact of attacks by confining malicious and compro-
mised applications. However, the protection is only as good
as the SEAndroid policy. Ideally, SEAndroid strives to de-
fine a least-privilege [35] policy for subjects. However, in
reality, policy engineers define the policy in a more conser-
vative manner, meaning the policy is defined to allow access
patterns that could be unnecessary to the functionality re-
quired by the Android system. Unfortunately, allowing un-
necessary access patterns increases the attack surface of the
SEAndroid policy and the target Android system.

This conservative policy development is the result of mul-
tiple factors: 1) policy engineers have incomplete domain
knowledge of knowing what exact access patterns are re-
quired by the system; and 2) the consequences of breaking
functionality or mistakenly impacting user experience are
significant. Designing a good SEAndroid policy requires do-
main knowledge of the entire set of various Android function-
alities, which also continuously grow in their complexity. As
a result, it becomes increasingly difficult for particular indi-
viduals, or teams, to possess the domain knowledge required
for developing an effective policy. Policy engineers, who are
responsible for writing the policy, cannot obtain the domain
knowledge on every system functionality. At the same time,
functionality developers usually lack SEAndroid and secu-
rity expertise to write policy rules on their own. In other
words, there is a knowledge gap between policy engineers
and functionality developers.

The impact of this knowledge gap on the policy attack
surface was recently demonstrated by two real-world attacks
on Android. Both resulted from policy rules that were de-
fined to allow unnecessary access patterns. In the first ex-
ample, a pre-installed keyboard app in a popular Android
device was mistakenly over-granted unnecessary access per-
mission, which caused privilege escalation (CVE-2015-4640,
CVE-2015-4641). In the second example, a vulnerability in
a system daemon was successfully exploited via an access
pattern that was mistakenly allowed by an outdated unnec-
essary policy rule (CVE-2015-3825). These two examples
show that policy engineers lack proper knowledge about the
required access patterns of system functionality. This result
is also confirmed by a recent study [34] that showed multiple
Android devices have vendor-modified policies that are less
strict and have wider attack surface than Google’s baseline
policy.
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In this paper, we propose SPOKE, an SEAndroid POlicy
Knowledge Engine that identifies potentially unnecessary at-
tack surface in SEAndroid policy by bridging the knowledge
gap between policy engineers and functionality developers.
To achieve this goal, SPOKE provides three capabilities.
First, SPOKE constructs a knowledge base of functionality-
required access patterns extracted from semantically rich
functional tests. Second, SPOKE uses the knowledge base
to identify potentially unnecessary access patterns but al-
lowed by certain policy rules. Finally, SPOKE analyzes the
attack surface of these policy rules by generating a bipartite
graph depicting the access patterns between subjects and
objects. It further aids policy engineers to triage potentially
unnecessary access patterns and corresponding policy rules
by highlighting areas of high risk.

We implemented a prototype of SPOKE for Samsung An-
droid Team, and evaluated it by taking inputs of 665 func-
tional tests for 28 different categories of functionalities in
Android framework, including application installation, blue-
tooth/WiFi/location/firewall management, etc. SPOKE suc-
cessfully collected 12,491 low-level access patterns correlated
with 1,492 high-level functionality traces of rich-semantic
APIs as the domain knowledge. With this knowledge base,
SPOKE first identified 1,036 rules out of a total of 1,356
relevant policy rules that are necessary (or partially so) to
corresponding functionalities. In the remaining 320 poten-
tially unnecessary policy rules, SPOKE further identified
210 over-permissive access patterns, including an access pat-
tern related to the libstagefright vulnerability [5]. Policy
engineers have confirmed the findings and revised the policy.

In summary, this work makes three contributions:

1. We propose SPOKE, a novel knowledge collection and
analysis engine that bridges the knowledge gap be-
tween policy engineers and functionality developers.

2. We implement SPOKE by first building a knowledge
extraction platform that systematically and scalably
collects domain knowledge from rich semantic func-
tional tests, and second, creating an analysis engine
to identify potentially unnecessary policy rules, which
can aid attack surface analysis of a policy.

3. We evaluate SPOKE using 665 functional tests tar-
geting security functionalities provided by Samsung
Android Team. SPOKE successfully collects 12,491
access patterns and 1,492 functionality trace as the
domain knowledge. SPOKE further uses this knowl-
edge to identify 210 over-permissive access patterns.
SPOKE’s findings help policy engineers identify and
fix the risky policy rules.

We note that SPOKE’s performance is directly related to
the coverage of functional tests used to define the knowl-
edge base. However, a perfect set of functional tests is not
required to benefit from SPOKE. Even using functional tests
with low coverage, SPOKE can still work. As test coverage
increases, the value of SPOKE linearly increases by collect-
ing more domain knowledge and analyzing more policy rules
iteratively. Thus, we design SPOKE as a dynamic and scal-
able system for continuous operation. Empirically, with rea-
sonable test suites used in the industry, SPOKE can provide
valuable insights and new findings for policy engineers and
functionality developers, as we show in Section 5.

type=1400 audit(1445635785.573:220):
avc: denied { write } for pid=4685
comm="ContactsProvide" name="contacts.db"
path="/data/data/contacts_app/contacts.db"
scontext=u:r:untrusted_app:s0
tcontext=u:object_r:app_data_file:s0
tclass=file

type=1300 audit(1445635785.573:220):
syscall=25 success=yes exit=0 pid=4685
uid=10024 gid=10024 comm="ContactsProvide"
exe="/system/bin/app_process64"
subj=u:r:untrusted_app:s0

Listing 1: A simplified access event example recorded at the epoch
time 1445635785.573 in an audit log, with two entries: subject &
object with labels and permission (1400), syscall info (1300).

2. BACKGROUND AND DEFINITIONS

2.1 SEAndroid Basics
SEAndroid is a port of SELinux [38] to Android with ex-

tensions to support Android-specific features, such as Binder
IPC [37]. The goal of SEAndroid is to reduce attack sur-
face and contain damage if any vulnerability is exploited
for privilege escalation, via MAC enforcement on native ac-
cesses (i.e., system calls) between subjects (e.g., processes)
and objects (e.g., files, sockets) in Android system.

An SEAndroid policy has two parts. The first part is
a mapping that assigns security labels to concrete subjects
(or objects) sharing the same semantics. Traditionally, a
subject label is called a domain. An object label is called
a type. The second part is a set of rules that define which
domain of subjects can access which class and type of objects
with a set of permissions [28]. For example,

allow app app_data_file:file {read write}

allows processes with app domain to read and write file ob-
jects with app_data_file type. Since SEAndroid policy
is a whitelist-based policy, allow rules are the rules used
for runtime enforcement. In the rest of this work, we re-
fer to allow rules as major policy rules. Apart from allow

rules, to avoid malicious accesses being mistakenly allowed,
neverallow rules encode malicious accesses that should not
be allowed and are checked against allow rules at compile
time. During runtime, if no allow rule can match an access
event, the access event will be denied and logged [8] (Section
4.1.2 introduces a new way of logging access events).

An access event usually has two entries1 as shown in List-
ing 1. The first entry (type=1400) records the access opera-
tion between specific subject (by comm) and file object (by
path), with their security labels untrusted_app,app_data-
_file and permission write. The second entry (type=1300)
captures more details of the related system call and the sub-
ject information such as uid,gid.

Traditionally, policy engineers develop and refine policy
rules by manually analyzing the access events. Only a few
basic tools (e.g., setools [9]) previously in SELinux can be
used for SEAndroid. Such tools can only perform manual
and syntactic analysis with no domain knowledge. Particu-
larly, a tool called audit2allow can directly transform se-
curity labels in type=1400 entry of an access event into an
allow rule. However, it could cause coarse-grained security

1
Previously, there was an object entry, which is merged into 1400.

2



labels to be used inappropriately, which is one security issue
mentioned in [34].

2.2 SEAndroid Definitions
To clarify the concepts of SEAndroid, we present the fol-

lowing definitions. We first introduce the definition of access
pattern, which is one of the key concepts used in this work.

Definition 1 (Access Pattern). An access pattern is
a 4-tuple a = (s, o, c, p). It denotes a concrete subject ‘s’ ac-
cesses a concrete object ‘o’ of class ‘c’ with permission ‘p’.

An access pattern can be either extracted from corre-
sponding items in a raw access event, or defined in the set of
allowed accesses by a policy rule. In the first case, s is a fine-
grained concrete value extracted from scontext, comm (com-
mand), exe (executable) and pid in an access event. Simi-
larly, o is extracted from tcontext, name and path. c is from
tclass and p is the permission. For example, the access pat-
tern of Listing 1 is (‘contacts_app’, ‘/data/data/con-

tacts_app/contacts.db’, ‘file’,‘write’). The second
case is explained as following.

Definition 2 (SEAndroid Policy). A policy is P =
(Ls, Lo,M, S,O,R), where Ls, Lo are the set of security la-
bels of subjects and objects, M : Ls ∪ Lo 7→ S ∪ O is a
mapping that assigns security labels to concrete subjects S
and objects O, R = {r} is the set of policy allow rules.

In SPOKE, we parse the compiled SEAndroid policy and
store each element in P as a database table. Concrete sub-
jects and objects are collected from devices that are either in
a clean state (e.g., after factory-reset) or running functional
tests (test-only temporary subjects/objects are excluded).

Now given a policy rule r ∈ R: “allow ls lo : cr Pr”, we
further define it as the following.

Definition 3 (Policy Rule). A policy rule is a tuple
r = (ls, lo, Sr, Or, cr, Pr, Ar), where subject label ls ∈ Ls,
object label lo ∈ Lo. Sr = M(ls) and Or = M(lo) are
the sets of concrete subjects and objects mapped with the
labels, respectively. cr is the class of the objects, Pr is the
permission set granted to the subjects when accessing the
objects, Ar = {a = (s, o, cr, p) | s ∈ Sr, o ∈ Or, p ∈ Pr}
is the set of all access patterns defined by this rule, i.e.,
Ar = Sr ×Or × {cr} × Pr.

Here, we extend the policy rule r with the set of concrete
access patterns Ar that this rule defines to allow. Note that,
the access patterns collected from runtime access events
(e.g., required by certain functionality) could be inconsistent
with the access patterns defined by the policy rules, due to
the knowledge gap, which SPOKE is designed to address.

2.3 Android Functional Testing
A functional test examines whether a specific functional

component meets the design requirement, by feeding an in-
put and checking the expected output. In Android testing,
functional tests are developed using Android testing frame-
work, which is an integral part in the official Android devel-
opment environment. With standard libraries such as An-
droidJUnitRunner, UI Automator [1], Android functional
tests are well organized and closely associated with design
requirements and end user operations. This makes such tests
self-explanatory and inherently carry rich semantics of the

functionality under test. Examples include checking specific
API functions (Unit test), clicking or typing on UI widgets
(UI test), and setting up an email account (Integration test).

We hypothesize that Android functional tests can enable
a systematic way to synchronize domain knowledge between
developers and policy engineers, providing a knowledge foun-
dation for the attack surface analysis of SEAndroid policy.

However, it is non-trivial to extract domain knowledge
from functional tests. Android functional tests are orig-
inally designed to test high-level functional operations in
Android application or framework layer, while low-level ac-
cess patterns in native layer are implicitly involved and thus
still obscure behind the scene. How to extract low-level
functionality-related access patterns while excluding test-
only/non-functional noise is one task that SPOKE is de-
signed to address.

Impact of Functional Test Coverage: By design, SPOKE
relies on functional tests as inputs. Test coverage can affect
SPOKE’s performance. However, test coverage is orthogonal
to SPOKE, because one of our contributions is to leverage
the outcomes of both industrial practice and research efforts
in the field of software testing, to enhance the security anal-
ysis of SEAndroid policy.

Specifically, in the software industry, multiple coverage-
measuring tools [3] are developed to ensure the high test
coverage. As test-driven development (TDD) [13] is a pop-
ular software engineering practice, many Android testing
tools and frameworks are actively used in the industry (e.g.,
Testdroid [11], AWS device farm [2]).

Increasing test coverage is also an active research topic
in software testing [14, 17, 32, 41]. Various techniques have
been developed for automated testing and test input gener-
ation of mobile applications. For example, Dynodroid [29]
is an automated test input generation system for Android
apps. Swifthand [16] is a guided GUI testing system for An-
droid apps based on machine learning. Symbolic and con-
colic executions are also used to generate event sequence for
automated testing of Android apps [27].

2.4 Definitions introduced by SPOKE
We further use the following definitions to introduce sev-

eral new concepts used in this work.

Definition 4 (Functionality Trace). A functional-
ity trace is a set of descriptive items that can describe the
execution semantics of the functionality. In functional tests,
the following concrete and semantic code-level items can be
collected as descriptive items:

• Metadata of a functional test, such as test_class,
test_case, @annotation in a JUnit test

• Key function calls/control flow within the execution of
a functionality, such as API calls

Intuitively, a descriptive item shows one aspect of a func-
tionality. By monitoring the runtime execution of the func-
tional test, we obtain concrete and specific items that de-
scribe how the functionality works from multiple aspects and
granularities. An example is (test_addFirewallRule(),
{Firewall.addRule(), Firewall.setIptablesOption()}),
where the first item shows a high-level functional operation
under test, and the rest two items provide code-level details
of the functionality. In SPOKE, such descriptive items are
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correlated with low-level access patterns, providing a full
picture of a functionality.

A knowledge base stores correlated functionality trace and
access patterns in a unified form. Formally, we define this
as the following.

Definition 5 (Knowledge Base). A knowledge base
is a set of pairs K = {(a, f)}, where ‘a’ denotes an access
pattern extracted from runtime access events in kernel layer
(Section 4.1.2) and ‘f ’ denotes a functionality trace collected
from Dalvik layer (Section 4.1.3).

In practice, K is stored in a database. We can query the
database to find all access patterns correlated with a given
functionality trace f , i.e., Af = {a | isCorrelatedK(a, f) =
True}, where isCorrelatedK(a, f) is used to denote whether
they are correlated in K (used in Section 4.2.2).

A potentially unnecessary access pattern is one that is
defined by a policy rule but not found in the knowledge base
and thus cannot be justified by the knowledge base. To be
more precise and formal, we define “potentially unnecessary”
as “unjustified w.r.t. the knowledge base”.

Definition 6 (Policy Rule Justification w.r.t. K).
A policy rule r is said to be justified with respect to a knowl-
edge base K, if for each access pattern ar defined in Ar, there
is an equivalent access pattern a in K, correlated with at least
one functionality trace (ar = a and isCorrelatedK(a, f) =
True). A rule is said to be partially justified (or unjusti-
fied) if only a subset (or none) of Ar have equivalent access
patterns in the knowledge base.

As an example, by running a functional test test_addFi-
rewallRule(), policy engineers are able to learn the domain
knowledge based on a functionality trace:

android.app.enterprise.Firewall.addRule()

correlated with the access pattern:
(‘system_server’, ‘/system/bin/iptables’,

‘file’, ‘execute’)

and thus justifies a policy rule allow system_server ipt-

ables_exec:file {execute}, which allows this access pat-
tern.

Among the access patterns that cannot be justified w.r.t.
K, we further focus on the over-permissive access pattern
which is defined as following.

Definition 7 (Over-permissive Access Pattern).
An over-permissive access pattern is an unjustified access
pattern (s, o, c, p) defined by a policy rule that can poten-
tially allow attackers to misuse or exploit the subject ‘s’ to
maliciously access the object ‘o’ with permission ‘p’, in order
to compromise the confidentiality or integrity of ‘o’ 2.

3. PROBLEM AND ASSUMPTIONS
Problem Statement: In this paper, we seek to reduce the
attack surface of an SEAndroid policy by identifying po-
tentially unnecessary, and particularly over-permissive ac-
cess patterns allowed by the policy. To this end, we need
to bridge the knowledge gap between policy engineers and
functionality developers, which causes the necessary access
patterns to be unclear. Although functional tests can be
helpful with valuable domain knowledge, it is non-trivial to

2
In practice, over-permissive rules lead to over-privileged subjects

extract functionality-required low-level access patterns, as
they are implicitly involved in such high-level tests with ir-
relevant noises. Once the domain knowledge is extracted,
a system is also needed to match the knowledge with pol-
icy rules and provide attack surface analysis. SPOKE is
designed to address the aforementioned problems.
Assumptions: We assume that functionality developers
use functional tests to verify the design and execution logic
of the functionality, which is consistent with the industrial
practice. We therefore assume that functionality-required
access patterns can be extracted by running such tests. As
noted in Section 2.3, test coverage is orthogonal to SPOKE.
We also assume that tests need to be executed on real de-
vices because some functionalities require hardware features
such as ARM TrustZone. Before running each test, devices
are in the same clean state as being ready for normal user
operation. We also assume that target functionalities are
correctly implemented and already passed the tests success-
fully. Functionalities should involve multi-layer operations
in Android, which can incur native access patterns and thus
are visible by low-level SEAndroid access control. This is
the typical case for system functionalities in Android frame-
work. No malicious operations exist since tests are executed
in a clean state. Hence, all access patterns related to func-
tionalities (exclude test-only operations) should be allowed.

4. SPOKE
SPOKE is a novel test-driven SEAndroid POlicy Knowl-

edge Engine that achieves the three capabilities:

C1: Building an up-to-date knowledge base of various func-
tionalities and their corresponding access patterns to
bridge the knowledge gap between developers and pol-
icy engineers.

C2: Matching policy rules with corresponding functional-
ity traces and access patterns. The output of this pro-
cess is used as the basis to justify proper policy rules
and reveal unjustified policy rules, with respect to the
knowledge base.

C3: Analyzing the attack surface of unjustified policy rules
to pinpoint risky rules that allow potentially unneces-
sary and over-permissive access patterns that could be
misused by attackers.

The design of SPOKE is based on a key insight that An-
droid functional tests are rich semantic resources provided
by functionality developers that can be used to enable sys-
tematic and scalable domain knowledge collection. The col-
lected domain knowledge can then help policy engineers an-
alyze SEAndroid policy rules, including revealing whether
policy rules can be justified or not by corresponding func-
tionality, and identifying over-permissive policy rules that
are potentially exploitable by attackers.

Domain knowledge collection is achieved by a two-
step process. First, given a functional test, SPOKE exe-
cutes it in a scalable test running and multi-layer knowl-
edge extraction platform. The platform collects both high-
level functionality trace in Android framework layer and low-
level access patterns in Android native layer. By doing so,
SPOKE captures a full and detailed picture of how the func-
tionality works, which represents the domain knowledge of
the functionality.
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Figure 1: SPOKE consists of three components from collecting test-driven tracing logs to generating final report by the analysis engine.

Second, SPOKE parses the collected knowledge from dif-
ferent layers in different forms into a knowledge base and
performs a cross-layer correlation to organize them in a uni-
fied form. The correlation is based on multiple global vari-
ables (e.g., timestamp, process/user id) shared across layers
that align and match high-level functionality trace with low-
level access patterns. In addition, SPOKE also parses SE-
Android policy rules into a structural form, and associates
the rules with the access patterns that these rules are defined
to allow.

Policy rule justification w.r.t. K is the first analysis
capability designed to use the collected knowledge. It per-
forms a matching between the access patterns defined in the
policy rules and the access patterns correlated with func-
tionality trace in the knowledge base. The output of this
process checks whether the policy rules, specifically their
defined access patterns, can be matched and therefore justi-
fied by the corresponding functionality. On the other hand,
it also reveals the risky policy rules whose defined access
patterns cannot be justified by current knowledge base.

Attack surface analysis is the second analysis capabil-
ity that further focuses on the risky policy rules and their de-
fined but unjustified access patterns revealed from the above
step. Such unjustified access patterns not only lack critical
tests, but could also be unnecessary and over-permissive,
because they might allow potentially vulnerable subjects to
access valuable objects. To identify such over-permissive
access patterns, policy engineers use SPOKE to find valu-
able/critical objects in the knowledge base, based on corre-
lated and rich-semantic functionality trace. Then SPOKE
searches the unjustified access patterns and highlights the
ones that can access these critical objects. This helps pol-
icy engineers pinpoint risky rules and corresponding over-
permissive access patterns with concrete evidence.

Figure 1 shows the major components in SPOKE that im-
plement the above three capabilities. The device farm with
multi-layer logging realizes the first step of domain knowl-
edge collection. The knowledge base with cross-layer corre-
lation is the second step. The analysis engine provides both
policy rule justification w.r.t. K and attack surface analysis.
In practice, it also provides visualization to illustrate the
attack surface results. The following sections explain more
details of each component.

4.1 Domain Knowledge Collection
To build a knowledge base, collecting runtime logs of func-

tional tests is the first step for knowledge extraction. As we
focus on functionalities involving multi-layer operations, we
need to capture sufficient logs from each layer to get a full
picture of the functionality. Thus, SPOKE collects logs from
three layers: Linux kernel layer, Dalvik VM layer and An-
droid native layer with a distributed collecting mechanism,
as explained in the following sections.

4.1.1 Distributed Multi-layer Collection
Collecting runtime logs is not a straightforward task, espe-

cially in the case of low-level access events, which are based
on system calls. Given the high calling rate and large vol-
ume of system calls (i.e., GB-sized), it is necessary to sup-
port both high-rate and large-volume logging to capture all
access events, with the capability of keeping track of spe-
cific logging targets to identify different process subjects
and file objects. Unfortunately, the logging buffer in one
device has upper-bound limitations of both speed and vol-
ume. Even with the maximum setting of the device, critical
access events are found to be missed in practice.

To address this challenge, we design a distributed logging
mechanism. Inspired by distributed computing, we group
a set of identical Android devices (same model with same
setting) as a device farm. A centralized manager configures
each device to focus on specific logging targets. The overall
work load of logging a functional test is then divided and dis-
tributed to each device with a reduced logging work load, so
that different logging targets are collected in parallel with-
out reaching each device’s logging limitation. For example,
one device is configured to focus on subjects of system dae-
mons, while another device focuses on application subjects.
All logs are dumped directly through pipes and sockets to a
desktop (or a cloud gateway), aligned and merged together.

4.1.2 Kernel-layer Access Event Collecting
SEAndroid uses a Linux security module loaded into ker-

nel with the policy rules to check and log native-layer access
events. However, in our case, such policy-rule-based logging
mechanism has a major drawback that its completeness and
granularity are directly affected by how the security labels
and rules are defined in an existing policy. Critical access
events can be easily missed or confused if coarse-grained
labels are assigned to different subjects/objects. For in-
stance, existing policy assigns some application processes
with coarse-grained domain labels without package names,
causing different apps to be indistinguishable.
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Figure 2: Cross-layer correlation between low-level access pat-
terns and high-level functionality traces during a functional test
test_addFirewallRule().

As our goal is to collect sufficient access pattern knowl-
edge for policy analysis, the logging mechanism itself should
be independent from any existing policy. For this reason, we
modify Linux kernel and design a policy-less logging mode
that supports fine-grained access event logging. To distin-
guish different subjects and objects, unique labels are de-
rived for every process subject based on the process’s exe-
cutable binary. Fine-grained file object labels are derived
based on their absolute file paths. We modify the kernel to
assign these fine-grained labels without relying on a policy.
For Android applications, we log their process and user ids
with timestamps and correlate with package names logged in
native layer (Section 4.1.4). We also configure each device to
focus on specific fine-grained subjects/objects to distribute
the logging work load.

After all access events are collected and merged, we de-
duplicate and transform them into more structured access
patterns as mentioned in Section 2.1. In addition, since no
malicious accesses are assumed during functional testing, the
policy-less logging skips rule-based permission checking and
directly dumps all access events to the logging channel.

4.1.3 Dalvik-layer Functionality Tracing
As mentioned above, functional tests inherently carry rich

semantics of functionalities under tests. The functionality
execution contains descriptive items that can be collected
as a functionality trace, including metadata of functional
tests, key API calls/control flow.

To collect such functionality traces in a systematic way,
we place multiple hooks into existing Android testing frame-
work to monitor the execution of a functional test, to ob-
tain a detailed temporal view of how the test proceeds. As
shown in the top layer in Figure 2, this enables us to be
aware of different phases in testing and focus on the phase
when the target functionality is executing, while filtering out
non-functional test setUp, assertion and tearDown phases.

To precisely capture the control flow within the target
functionality, we further leverage a runtime method tracing
facility in Dalvik (or ART) VM. Originally, this facility was

designed to profile every method call’s time usage in An-
droid framework [6]. We enhance it to be configurable to
log specific Java classes and methods, which can focus on
key functional APIs as the major descriptive items of func-
tionality traces (e.g., android.app.enterprise.Firewall).

4.1.4 Cross-layer Correlation via Native-layer Global
Variables

Since logs from the kernel layer and the Dalvik layer are
separately recorded in different forms, it is necessary to
correlate high-level functionality traces and low-level access
patterns together, so that SPOKE can store them as a uni-
fied form in the knowledge base.

As shown in Figure 2, native layer is the intermediate
layer between Dalvik layer and kernel layer. Its main task is
to transform high-level Java requests into low-level system
calls. Although less semantics can be extracted from this
layer, several global variables in this layer are of great im-
portance for achieving cross-layer correlation. Such variables
include wall-clock timestamps, process/thread ids, user ids
and package names.

Specifically, wall clocks are globally available across all
three layers. This enables logs collected from each layer to
be aligned. Process/thread ids (pid) and user ids (uid) are
also global variables. When coupled with timestamps, they
are able to index and correlate every specific logging event in
both Dalvik layer and kernel layer in each process. Package
names are important information but missing from SEAn-
droid kernel logging. Fortunately, as system daemon zygote

keeps track of every launched application, we instrument it
to dump the package name, process and user id with precise
timestamp whenever an application is launched, which are
then correlated with access patterns in kernel logs.

In practice, the above global variables can be collected
using Android shell commands (e.g., pm, busybox). The na-
tive layer is also a suitable place for the device farm manager
to synchronize each device’s state, such as loading logging
configuration.

4.1.5 Irrelevant Logging Event Filtering
For most functional tests, Android devices are required to

be in the same state as if operated by normal users. This
means that built-in system applications and daemons are ac-
tively running in the background during the testing. For ex-
ample, system_server periodically checks background sta-
tus such as WiFi and battery. Unfortunately, such back-
ground activities could introduce noise to SPOKE’s correla-
tion, especially in kernel-layer logs.

To distinguish background activities, before running any
tests, we perform a long-period logging on devices in the idle
state to identify background access patterns in kernel-layer
logs and its native-layer processes based on their periodic oc-
currences. Then during functional tests, these background
access patterns are put in a filter list of the logging configu-
ration so that each device can skip them in the logs.

Access patterns triggered by test-only operations should
be filtered as well. These access patterns are not related to
the actual functionality but only caused by the phases of
test preparation and cleanup. As shown in Figure 2, by cor-
relating with test-only methods (setUp,tearDown) in Dalvik
layer based on the temporal phases, we can explicitly capture
those non-functional access patterns and filter them during
functional tests.
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4.2 Policy Rule Justification w.r.t. K
We design an analysis engine to use the knowledge base

for policy rule analysis. The first analysis is to match policy
rules with collected functionality trace to help policy engi-
neers justify the rules.

Intuitively, if a policy rule is defined to allow a set of
access patterns, which are correlated with a set of function-
ality traces in the knowledge base, we say that these access
patterns of this rule are justified by the corresponding func-
tionalities. If the policy rule defines some access patterns
that have no correlated functionality trace, then these ac-
cess patterns are unjustified and subject to attack surface
analysis discussed in Section 4.3.

Based on Definition 6, given a policy rule r, we further de-
note the justification result as Jr = {(ar, f) | ar ∈ r.Ar, ar =
a, isCorrelatedK(a, f) = True}. Jr contains every justified
access pattern ar defined by the rule r, that can be matched
with an access pattern a correlated with functionality trace
f in the knowledge base K.

4.2.1 Similar Access Pattern Generalization
Theoretically, to justify an access pattern ar defined in a

policy rule r, ar should exactly match with an access pat-
tern ak collected in the knowledge base with the exact same
subject (i.e., sr = sk), object, class, and permission. How-
ever, in practice, multiple access patterns triggered by the
same functionality could be slightly different but semanti-
cally equivalent. One example is the auto-generated files or
pseudo file system (/proc/pid), whose file names are gener-
ated nondeterministically but semantically the same. There-
fore, they should be generalized based on their file paths, so
that they can be matched as equivalent.

We develop General(a) to realize the generalized match-
ing General(ar) = General(ak). Given an access pattern,
we generalize its subject, object and permission based on
the following empirical rules: (1) all process subjects from
the same Android application is generalized to the same ap-
plication subject; (2) auto-generated file objects are gener-
alized by only keeping the static parts in their file paths
(e.g., /proc/1234/stat ⇒ /proc/pid/stat). (3) similar
permissions of an object class are generalized as one set (e.g.,
(write,append) ⇒ write-like for file).

These rules are derived and extensible based on empiri-
cal experience and facts about Android file system hierar-
chy (e.g., shared prefix on file paths) and macros, a policy
language feature in SEAndroid used by policy engineers to
group similar permissions. In practice, the generalization
can be applied when access patterns are being stored into
the knowledge base or parsed from policy rules to save the
effort of matching.

4.2.2 Justification by Querying Knowledge Base
In the knowledge base, access patterns act as the seman-

tic bridge connecting policy rules with functionality traces.
This enables two ways of policy rule justification. In one
way, given one policy rule, we can justify the rule by match-
ing its defined access patterns with corresponding function-
ality trace. In the other way, given a tested functionality,
we can identify all policy rules whose defined access patterns
are correlated with this functionality. In practice, both cases
help policy engineers check whether policy rules are consis-
tent with corresponding functionalities.

We realize both cases using SQL queries to the knowledge

base with a set of constraints. To justify a given policy rule
r, the query (standard SQL with pseudo code constraints in
WHERE and ON clauses) is:

Jr ← SELECT Ar.ar, K.f FROM K, r.Ar

WHERE General(Ar.ar) = General(K.a)

AND isCorrelatedK(a, f) = True

This query realizes the justification definition and takes into
account the similar access pattern generalization.

To identify all related rules of a given functionality trace
f , the query is:

Rf ← SELECT T.a, R.r FROM

(SELECT K.a FROM K

WHERE isCorrelatedK(a, f) = True) AS T

LEFT JOIN R

ON General(R.r.Ar.ar) = General(T.a)

[WHERE R.r IS NULL]

This query first extracts all correlated access patterns of
the given functionality trace f into an intermediate table T .
It then uses a LEFT JOIN to match every a in T with rules
in R whose access patterns can match a. Policy engineers
can also use the optional WHERE clause to further identify the
access patterns that current rules cannot cover (e.g., for a
newly developed functionality).

4.3 Attack Surface Analysis of Policy Rules
The second task of the analysis engine is attack surface

analysis. It identifies risky policy rules that allow unjustified
and over-permissive access patterns w.r.t. K.

4.3.1 Unjustified Access Patterns in Policy Rules
Ideally, every well-defined policy rule can be justified when

every functionality is tested and all access patterns are col-
lected. However, in reality, the above justification process
often reveals some policy rules whose defined access patterns
cannot be justified by current knowledge base. This is due
to two reasons: 1) incomplete functional test coverage, 2)
mistakenly developed policy rules.

The first case, as mentioned in Section 2.3, is orthogonal
to SPOKE and can leverage the outcomes of industrial and
research efforts. Functionality developers can also identify
what functional tests are missing based on these unjustified
access patterns. The second case, as mentioned in Section 1,
is due to policy engineers’ knowledge gap and the conserva-
tive approach of developing over-permissive policy rules such
as using default/coarse-grained labels [34] to avoid breaking
uncertain functionalities. This causes the rules to allow un-
necessary access patterns, which would never be justified by
any functionality.

No matter which case, if the unjustified access patterns
defined by certain rules can be potentially misused by at-
tackers to achieve privilege escalation, they need to be iden-
tified and fixed by policy engineers. Hence, we design an
attack surface analysis to pinpoint such over-permissive ac-
cess patterns and the corresponding rules.

4.3.2 Attack Surface Analysis
Originally, an attack surface is defined as the entry points

accessible to attackers in three dimensions: targets, channels
and access rights [23,30]. The case of SEAndroid policy falls
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Figure 3: A bipartite graph illustrating two over-permissive access
patterns (red) by a policy rule allowing a vulnerable keyboard app to
read and write critical system files.

in the dimension of access rights. Access patterns defined
by policy rules are the concrete representation of the access
rights between subjects and objects.

The attack surface analysis has two steps. First, it se-
lects the defined access patterns with their rules that are
unjustified by current knowledge base. Second, it identifies
over-permissive access patterns that allow potentially vul-
nerable subjects to access valuable or critical objects.

The first step is achieved by a SQL query to subtract the
set of collected access patterns in the knowledge base from
the set of defined access patterns by the rules:

U ← SELECT R.r,R.r.Ar.ar FROM R LEFT JOIN K

ON General(R.r.Ar.ar) = General(K.a)

WHERE K.a IS NULL

The query first uses LEFT JOIN to attempt to match every
rule r ∈ R and its access pattern ar ∈ r.Ar with an access
pattern a in the knowledge base. Then it filters the join
result with the WHERE clause to only select the set of ar that
have no matched a (a IS NULL).

The second step is to identify over-permissive access pat-
terns from the result of the first step. Based on Definition 7,
we start with identifying valuable or critical objects which
could be attackers’ potential targets. Fortunately, since we
collect domain knowledge from tests of critical functional-
ities, the knowledge base already captures the critical ob-
jects, which can be identified by the correlated critical func-
tionality trace. For example,
Firewall.addRule()<=>/data/system/firewall.db

Then we search all unjustified access patterns that allow
to access these critical objects as the over-permissive access
patterns.

In practice, policy engineers can also input extra knowl-
edge to guide the above searching. For example, if a subject
has a new vulnerability, we can search all unjustified ac-
cess patterns related to the subject and check whether any
valuable objects are accessible by the subject. Starting from
Android 6.0, multi-level security (MLS) [31] is introduced to
SEAndroid. The new knowledge of different privileged sub-
jects and objects can also be leveraged to guide the searching
in practice.

To present a more intuitive result of the identified over-
permissive access patterns for policy engineers, we model the
analysis as a bipartite graph shown in Figure 3, where the
vertices of all subjects are on one side shown as red and the
vertices of all objects are on the other side shown as blue.
Edges labeled with access permissions represent access pat-
terns between subject and object vertices. Justified access
patterns are grey lines. Over-permissive access patterns are
highlighted as red lines. Here, a vulnerable keyboard app is

allowed to access critical system files. We use this bipartite
graph to present a real-world findings in Section 5.4.

5. EVALUATION
We implement a prototype of SPOKE using 3.8K SLOC

Python and 2K SLOC Impala SQL on a 8-node Hadoop
cluster, with 1K SLOC modification in Linux kernel and
Android framework, using a device farm with 4 Samsung
Galaxy S6 devices running Android 5.1.1. This experiment
environment provides a moderate scale for the evaluation
with the help of policy engineers. In practice, SPOKE can
easily scale up to a bigger device farm and cloud.

We evaluate SPOKE using the following functional test
set. Note that, by design, SPOKE can work with any An-
droid functional tests as long as the functionality requires
SEAndroid access control. We first show the construction of
the knowledge base. Then we present a case study of using
the analysis engine to match policy rules with the collected
domain knowledge, followed with a real-world finding by the
attack surface analysis.

5.1 Data Set and Research Questions
To evaluate the effectiveness of SPOKE in real world, we

use a suite of 665 functional tests provided by Samsung
Android Team, covering 28 different categories of function-
alities in the Android framework. The functionalities in-
clude application installation, bluetooth/WiFi/firewall/lo-
cation configuration, exchange/email/multi-user setting, en-
terprise device management, etc. The functional tests cover
90% APIs defined in these 28 functionality categories. Tests
are executed in both JUnit-based API calling and UI au-
tomation. Different functionalities and test cases are devel-
oped by different teams. SPOKE is aimed to collect different
domain knowledge of both high-level functionality trace and
low-level access patterns in a centralized way.

Using this functional test suite, we evaluate SPOKE by
asking three research questions:

R1: What domain knowledge is collected from the func-
tional tests to build the knowledge base? What is the
time and space cost of this process?

R2: How many justified and unjustified policy rules related
to the functionalities are revealed by the collected do-
main knowledge?

R3: What over-permissive access patterns allowed by risky
policy rules in real world are discovered by SPOKE’s
attack surface analysis?

5.2 Knowledge Base Construction
The knowledge base construction is divided into two phases:

1) Collecting non-functional activities for filtering in func-
tional tests; 2) Running functional tests with multi-layer
logging to extract access patterns and functionality trace
with cross-layer correlation.

In the first phase, we perform 10-round collection of non-
functional access patterns on the four devices in idle state.
In each round, each device is factory-resetted and rebooted.
After the device is booted into home screen, the logging
starts and lasts for an hour, during which the device is left
untouched on home screen. Similarly, we also run a dummy
test to get the non-functional access patterns triggered by
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Figure 4: The summary of access patterns, functionality trace and justified policy rules in the knowledge base using 665 functional tests

JUnit setUp and tearDown. In total, we collect 896 back-
ground and dummy test access patterns, which are filtered
in the next phase. Several daemons and apps such as an-

droid.bg, dhcp periodically check status of device processes
and network. Binder IPC between system daemons and apps
are also common and expected. installd operations hap-
pen during test_app installation. The loading of logging
configuration is also captured and filtered.

In the second phase, we run the 665 functional tests in
28 categories on the four devices. In each running, all de-
vices are resetted and rebooted as the same above. In the
kernel-layer logging, two devices are configured to log access
events of various system daemons, while the other two are
configured to focus on access events of all Android applica-
tions. In the Dalvik-layer logging, all devices are configured
to focus on functional API classes and methods (e.g., an-
droid.app.*, android.bluetooth.*, android.app.ente-

rprise.*, etc.), which are selected from corresponding
rich-semantic documentations (Javadoc).

The total number of functional access patterns collected in
the knowledge base is 12,491, with a total of 1,492 API meth-
ods extracted as functionality trace. The 12,491 unique ac-
cess patterns are actually filtered, derived and de-duplicated
from 481,216 raw access events. Given the test running
time, we found that the highest logging rate is 1,005 raw ac-
cess events per second (ApplicationPolicyTest produces
76,578 raw access events in 76.14 seconds). Thanks to the
logging work load is distributed to four devices, we are able
to scale up to this rate without hitting the logging buffer
limitation.

Figure 4 shows the overall summary of the knowledge base
by the 28 functionality categories. By checking the detailed
access patterns and their correlated functionality trace, we
found that some functionality categories have more opera-
tion steps and involve different subjects, causing more access
patterns to be collected. In particular, ExchangeAccount-
PolicyTest has 1,020 access patterns since they involve mul-
tiple steps such as typing account information using UI inter-
action, creating and encrypting the account, which includes
multiple file operations. RestrictionPolicyTest has the
most number of access patterns. It actually tests a collec-
tion of various types of common operations under restriction
mode (e.g., for enterprise use) such as installing whitelisted

packages, configuring limited network settings. Such re-
stricted operations involve permission checkings from device
admin subjects across multiple objects and functionalities,
thus causing more access patterns under the hood.

We also found that there are 142 access patterns and 32
functionality trace shared across all 28 functionality cate-
gories, showing that they are the core part in Android frame-
work. For instance, access patterns that system subject sys-
tem_server read & write two critical file objects (names are
anonymized for confidentiality), are two core access patterns
captured in all functionality categories. They are corre-
lated with functionality traces EnterpriseManager and De-

viceAccountPolicy under android.app.enterprise. This
finding is confirmed by functionality developers that the
above two file objects are the core system configuration files.

5.3 Justifying Policy Rules w.r.t. K
With the above knowledge base, we match SEAndroid

policy rules with corresponding functionality trace to justify
the access patterns defined in these rules.

We first identify in total 1,356 relevant allow rules in the
policy of the Galaxy S6 device running Android 5.1.1. These
rules are identified because the access patterns defined in
these rules have subjects or objects that are found in tested
functionalities.

Then SPOKE’s analysis engine uses the SQL queries and
access pattern generalization mentioned in Section 4.2 to
attempt to match these rules with the knowledge base. Ta-
ble 1 shows the summary and reasoning of the justification
result. In all, 1,036 policy rules (Justified + Partially Jus-
tified) are matched with the total 12,491 access patterns in
the knowledge base. Figure 4 shows the number of policy
rules in each functionality category respectively. There are
also 320 rules that SPOKE cannot find corresponding ac-
cess patterns in the knowledge base. We further take a deep
analysis of these rules and present our findings of the rules’
characteristics and potential problems for each category of
the result, as shown in the following.

Justified Rules There are 187 policy rules, in which ev-
ery defined access pattern is matched with an access pat-
tern collected in the knowledge base, and thus justified by
corresponding functionality trace. These rules are typically
written with fine-grained labels, which are one-to-one map-
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Table 1: Summary and reasoning of policy rule justification

Matching
Result

Num
Rules

Rule Characteristics & Reasoning

Matched 187
Fine-grained labels of subjects
and objects with privileged
classes (e.g., chr file, netlink)

Partially
Matched

198
Rules defined using
attribute group (e.g., domain,
system domain, appdomain)

269
Coarse-grained labels for
application subjects (e.g.,
platform app, system app)

382
Default labels for different
file objects (e.g., system file,
system data file)

Unmatched 320
Irrelevant subjects accessing
functionality-related objects

ping to unique or privileged subjects and objects (e.g., in the
target policy, label tz_user_device maps to /dev/trust-

zone_node).
In addition, the object classes in these rules are mostly

privileged classes. The access patterns defined in such rules
are very specific. As an example in the target policy rules,
allow tz_daemon tz_user_device:chr_file {ioctl read

write} only defines three access patterns between the Trust-
Zone daemon and /dev/trustzone_node with three permis-
sions, which are all found correlated with functionality trace
of android.app.enterprise.Certificate.

Partially Justified Rules The majority of the rules are
partially justified. Some access pattern defined by these
rules are justified by the knowledge base but not all of them.
We further find out three specific reasons.

Firstly, 198 rules are defined using attributes. Attribute is
an SEAndroid policy language feature that defines a group of
labels [10]. Rules defined using attributes can involve a wide
range of various subjects and objects. For example, domain
is an attribute grouping all subject labels in a policy. allow
domain logd:unix_stream_socket {connectto} allows any
subjects to connect to a log daemon via unix socket.

Secondly, 269 rules are defined for Android applications
but with coarse-grained subject labels. We found such coarse-
grained labels are over-used to assign different privileged ap-
plications. For example, system_app is assigned to all ap-
plications with system user id, while only three of them are
related to the tested functionalities. This causes the rules
to be partially justified.

Thirdly, 382 rules use default labels for different file ob-
jects. Default file object labels (e.g., label system_file

maps to /system/bin/*) are assigned to all files under /sys-
tem/bin, while only a subset of files are related to the tested
functionalities. Some access patterns defined by the rules of
accessing other files are not observed in the tests.

Unjustified Rules There are 320 unjustified rules. All
access patterns defined by these rules are not justified in
the knowledge base. Due to the same reasons as above, the
rules use coarse-grained labels and thus define potentially
unnecessary and over-permissive access patterns related to
critical subjects/objects. Such rules are subject to attack
surface analysis.

It is worth noting that some unjustified and partially un-
justified policy rules and access patterns exposed by SPOKE
were analyzed by both policy engineers and functionality

developers. The analysis result has been integrated in the
following updated policies in new Android releases.

With the help of SPOKE, previously unclassified policy
rules can be differentiated into different categories based on
their justification results. This helps policy engineers ana-
lyze the rules with semantic contexts.

5.4 Analyzing attack surface of Policy Rules
For the partially justified and unjustified policy rules shown

above, we further analyze their attack surface, and present
our critical findings of over-permissive access patterns de-
fined by these rules.

As a case study, we select 5 critical file objects in one
system directory3. These system file objects are identi-
fied based on enterprise security-related functionality trace
of android.app.enterprise, as explained in Section 5.2.
These system file objects contain device configuration, pass-
word and encryption keys.

Then we find that there are 210 over-permissive access
patterns from 106 policy rules that allow 94 unjustified sub-
jects to read, write and even execute the 5 critical file ob-
jects. This is the first time of finding such problems in a
real-world SEAndroid policy rules related to security func-
tionalities with concrete evidence. The result has been con-
firmed by the developers and policy engineers. The policy
rules have been revised to revoke these over-permissive ac-
cess patterns in the updated policy.

In Appendix, Figure 5 shows a detailed bipartite graph
illustrating the above attack surface analysis result. In the
bipartite graph, we pick 11 easy-to-understand subjects (out
of other vendor-specific and confidential subjects) shown as
red nodes on the left, and 17 file objects shown as blue
nodes on the right, including the 5 critical system files (top
5 anonymized node on the right). The grey edges between
subjects and objects are the justified access patterns. The
red highlighted edges are the identified over-permissive ac-
cess patterns defined by 10 rules related to the 10 subjects of
the red edges (except the top one, which is a high-privileged
system subjects).

These subjects are observed with normal and justified ac-
cess patterns as grey edges with right-side objects. How-
ever, they are also allowed to access critical system files,
which are unjustified and over-permissive. Attackers can
exploit vulnerabilities in these subjects to compromise crit-
ical files via these access patterns. In particular, without
prior knowledge of any vulnerabilities or attacks, SPOKE
identifies mediaserver, which is the subject that was previ-
ously found having the notorious libstagefright vulnera-
bility [5] (CVE-2015-1538). Attackers can first compromise
mediaserver with this vulnerability as a step stone, and
then use the over-permissive access patterns defined by a
rule allow mediaserver ANONYMIZED_LABEL : file {ioctl

read write create getattr setattr append unlink link

rename open} to modify critical system files and eventually
control the enterprise device. This risky rule with other ones
have been confirmed and removed by policy engineers.

6. DISCUSSION
Native functional tests and other knowledge inputs:
Currently, SPOKE mainly focuses on Android functional

3
Since the analyzed policy is currently used in real-world Android

devices, we are requested by the vendor to anonymize some specific
file names.
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tests for applications and framework. However, functional
tests for native executable binaries can also be used to ex-
tract domain knowledge for pure native functionality in an
Android system. SPOKE can be enhanced with techniques
such as ptrace/ltrace and native library hooking to achieve
this feature, which we leave as future work. Other dynamic
analysis techniques can provide useful domain knowledge
as well. For example, dynamic taint analysis [18] can pro-
vide detailed information flow of a series of access patterns.
Static analysis such as symbolic execution [33,45] can iden-
tify code-level functionality and access patterns and provide
extra knowledge of how access patterns and control flow are
affected by specific inputs.
Data mining and machine learning possibilities: We
design an analysis engine in SPOKE to leverage the knowl-
edge base for policy rule justification and attack surface
analysis. Apart from these, other data mining and machine
learning techniques can also be applied within the analy-
sis engine. For example, outlier/anomaly detection [22] can
find suspicious or mistakenly defined access patterns from
certain subjects or objects that are different from the ma-
jority of the access patterns in the knowledge base. Bayesian
networks [19, 20] can also be applied for learning the rela-
tionship between access patterns and inferring whether a
new access pattern defined by a new rule is likely to be jus-
tified or over-permissive.
User-based access pattern collection: As the SEAn-
droid policy is eventually deployed to user devices for ac-
cess control enforcement, human users can also be asked
to involve the testing and refinement process of SEAndroid
policy development. With the user agreement of data col-
lection during testing (e.g., private data anonymization and
no deliberate malicious usage), access patterns representing
device’s daily use can be collected to help synthesize and
refine policy rules. Existing user-based testing is already
available for pre-released Android applications (e.g., Google
Play Store Beta Testing [4]). We envision that SEAndroid
policy development can also benefit from similar user beta
testings.

7. RELATED WORK
In general, SPOKE’s knowledge extraction platform is a

dynamic analysis system for Android. Plenty of research ef-
forts have been made in this field. DroidScope [44] proposed
an emulation-based inspection to analyze both Java and na-
tive components of Android applications. CopperDroid [39]
also used QEMU and focused on system call analysis of An-
droid malware. TaintDroid [18] provided a dynamic taint
tracking system for information flow analysis in Android. In
our case, we require the domain knowledge from real devices
since some security functionalities require hardware features,
and thus cannot use virtualization-based approach. Besides,
it is non-trivial and insufficient to port previous techniques,
as we focus on a fundamental new problem of collecting do-
main knowledge for SEAndroid policy, which requires new
techniques specific for knowledge extraction.

Although SEAndroid is relatively new, SELinux has been
researched for years, such as SELinux policy analysis and
verification [12,21,26,36], policy comparison [15], policy vi-
sualization [43], policy information flow integrity measure-
ment [24,25,40]. These work mainly analyzed SELinux ref-
erence policy itself, which has been refined by the commu-
nity for years. In contrast, SEAndroid policy is fairly new

and under active development by vendors. It is necessary
to analyze SEAndroid policy together with the original do-
main knowledge to ensure the labels and rules defined in the
policy are consistent with the real case. In addition, by col-
lecting and leveraging domain knowledge, SPOKE creates a
new dimension to policy development and analysis.

EASEAndroid [42] is a recent work that applied machine
learning to analyze large-volume access events collected from
user device logs to refine SEAndroid policy. SPOKE is or-
thogonal to EASEAndroid. EASEAndroid focuses on the
post-deployment policy analysis to refine the policy against
attacks in the wild. SPOKE focuses on the pre-deployment
analysis of the policy to bridge the knowledge gap for policy
engineers during policy development and analysis. SPOKE
can help policy engineers have better understanding and
analysis of the developed policy in the first place before the
policy is deployed to user devices. Nevertheless, the knowl-
edge from both SPOKE and EASEAndroid can be shared
with each other to provide better analysis results.

8. CONCLUSION
SEAndroid policy development and analysis require do-

main knowledge. In this paper, we presented SPOKE, a
knowledge engine that collects domain knowledge from func-
tional tests, and provides attack surface analysis through
policy rule justification. We evaluated SPOKE using real-
world functional tests. SPOKE successfully collected de-
tailed domain knowledge. It also revealed over-permissive
rules, helping policy engineers analyze and revise the policy.

Acknowledgements We would like to thank colleagues in
Samsung Research America for their valuable input and re-
source. We also like to thank anonymous reviewers for their
support to publish this paper. William Enck’s work in this
paper was supported in part by NSF grant CNS-1253346 and
ARO grant W911NF-16-1-0299. Ninghui Li’s work was sup-
ported by NSF grant No. 1314688 and ARO grant W911NF-
16-1-0127. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of Samsung or the
funding agencies.

9. REFERENCES
[1] Android Testing. http:

//developer.android.com/tools/testing/index.html.

[2] AWS Device Farm of Mobile App Testing.
https://aws.amazon.com/device-farm/.

[3] EMMA: a free Java code coverage tool.
http://emma.sourceforge.net.

[4] Google Play Store Beta Testing.
http://developer.android.com/distribute/googleplay/
developer-console.html.

[5] Joshua Drake, Stagefright: Scary Code in the Heart of
Android. https://www.blackhat.com/us-15/briefings.

[6] Profiling with Traceview. http://developer.android.
com/tools/debugging/debugging-tracing.html.

[7] Security-Enhanced Linux in Android.
https://source.android.com/security/selinux.

[8] SELinux Access Vector Rules.
http://selinuxproject.org/page/AVCRules.

[9] SELinux Policy Analysis Tools.
https://github.com/TresysTechnology/setools.

11

http://developer.android.com/tools/testing/index.html
http://developer.android.com/tools/testing/index.html
https://aws.amazon.com/device-farm/
http://emma.sourceforge.net
http://developer.android.com/distribute/googleplay/developer-console.html
http://developer.android.com/distribute/googleplay/developer-console.html
https://www.blackhat.com/us-15/briefings
http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html
https://source.android.com/security/selinux
http://selinuxproject.org/page/AVCRules
https://github.com/TresysTechnology/setools


[10] SELinux Type Statements.
http://selinuxproject.org/page/TypeStatements.

[11] Testdroid. http://testdroid.com/.

[12] M. Alam, J.-P. Seifert, Q. Li, and X. Zhang. Usage
Control Platformization via Trustworthy SELinux. In
ASIACCS ’08, pages 245–248. ACM, 2008.

[13] K. Beck. Test-driven development: by example.
Addison-Wesley Professional, 2003.

[14] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation
and code coverage. In Proc. of the Intl. Conf. on
Software Testing Analysis & Review. San Diego, 1998.

[15] H. Chen, N. Li, and Z. Mao. Analyzing and
Comparing the Protection Quality of Security
Enhanced Operating Systems. In NDSS ’09, 2009.

[16] W. Choi, G. Necula, and K. Sen. Guided GUI Testing
of Android Apps with Minimal Restart and
Approximate Learning. In OOPSLA ’13, pages
623–640, New York, NY, USA, 2013. ACM.

[17] R. DeMilli and A. J. Offutt. Constraint-based
automatic test data generation. Software Engineering,
IEEE Transactions on, 17(9):900–910, 1991.

[18] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on
Smartphones. ACM Trans. Comput. Syst.,
32(2):5:1–5:29, June 2014.

[19] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. Machine Learning, 29(2):131–163.

[20] N. Friedman, I. Nachman, and D. Peér. Learning
Bayesian Network Structure from Massive Datasets:
The Sparse Candidate Algorithm. In UAI’99, pages
206–215. Morgan Kaufmann Publishers Inc., 1999.

[21] B. Hicks, S. Rueda, and L. S. Clair. A logical
specification and analysis for SELinux MLS policy.
ACM Transactions on Information and System
Security (TISSEC), 13(3):1–31, 2010.

[22] V. J. Hodge and J. Austin. A survey of outlier
detection methodologies. Artificial Intelligence Review,
22(2):85–126.

[23] M. Howard, J. Pincus, and J. M. Wing. Measuring
relative attack surfaces. Springer, 2005.

[24] T. Jaeger, R. Sailer, and U. Shankar. PRIMA:
Policy-reduced Integrity Measurement Architecture. In
SACMAT ’06, pages 19–28, 2006.

[25] T. Jaeger, R. Sailer, and X. Zhang. Analyzing
Integrity Protection in the SELinux Example Policy.
In USENIX Security ’03, 2003.

[26] T. Jaeger, R. Sailer, and X. Zhang. Resolving
constraint conflicts. In SACMAT ’04, pages 105–114,
New York, New York, USA, 2004. ACM Press.

[27] C. S. Jensen, M. R. Prasad, and A. Møller.
Automated testing with targeted event sequence
generation. In ISSTA ’13, pages 67–77. ACM, 2013.

[28] P. Loscocco and S. Smalley. Integrating Flexible
Support for Security Policies into the Linux Operating
System. In USENIX Annual Technical Conference ’01,
number February, pages 29–42, 2001.

[29] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:

An Input Generation System for Android Apps. In
ESEC/FSE ’13, pages 224–234, 2013.

[30] P. K. Manadhata and J. M. Wing. An attack surface
metric. IEEE Transactions on Software Engineering,
37(3):371–386, 2011.

[31] D. McCullough. Specifications for multi-level security
and a hook-up. In Security and Privacy, 1987 IEEE
Symposium on, pages 161–161. IEEE, 1987.

[32] P. McMinn. Search-based software test data
generation: A survey. Software Testing Verification
and Reliability, 14(2):105–156, 2004.

[33] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani,
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APPENDIX
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Figure 5: The representative bipartite result of attack surface analysis generated by SPOKE. Subjects are red nodes in left. Objects are blue
nodes in right. Justified access patterns are in grey. Over-permissive access patterns in red allow unjustified subjects to access anonymized
critical files, which have been confirmed and revoked by policy engineers. With the help of SPOKE, policy rules in new releases are more strict
than the old ones.
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