LeakyPick: l1oT Audio Spy Detector

Richard Mitev
richard.mitev@trust.tu-darmstadt.de
Technical University of Darmstadt

William Enck
whenck@ncsu.edu
North Carolina State University

ABSTRACT

Manufacturers of smart home Internet of Things (IoT) devices are
increasingly adding voice assistant and audio monitoring features
to a wide range of devices including smart speakers, televisions,
thermostats, security systems, and doorbells. Consequently, many
of these devices are equipped with microphones, raising signifi-
cant privacy concerns: users may not always be aware of when
audio recordings are sent to the cloud, or who may gain access
to the recordings. In this paper, we present the LeakyPick archi-
tecture that enables the detection of the smart home devices that
stream recorded audio to the Internet in response to observing a
sound. Our proof-of-concept is a LeakyPick device that is placed
in a user’s smart home and periodically “probes” other devices in
its environment and monitors the subsequent network traffic for
statistical patterns that indicate audio transmission. Our prototype
is built on a Raspberry Pi for less than USD $40 and has a mea-
surement accuracy of 94% in detecting audio transmissions for a
collection of 8 devices with voice assistant capabilities. Further-
more, we used LeakyPick to identify 89 words that an Amazon
Echo Dot misinterprets as its wake-word, resulting in unexpected
audio transmission. LeakyPick provides a cost effective approach
to help regular consumers monitor their homes for sound-triggered
devices that unexpectedly transmit audio to the cloud.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures; Intrusion/anomaly detection and malware
mitigation.

ACM Reference Format:

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-
Reza Sadeghi. 2020. LeakyPick: IoT Audio Spy Detector. In Annual Com-
puter Security Applications Conference (ACSAC 2020), December 7-11, 2020,
Austin, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3427228.3427277

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427277

694

Anna Pazii
anna.pazii@inria.fr
University of Paris Saclay

Markus Miettinen
markus.miettinen@trust.tu-
darmstadt.de
Technical University of Darmstadt

Ahmad-Reza Sadeghi
ahmad.sadeghi@trust.tu-
darmstadt.de
Technical University of Darmstadt

1 INTRODUCTION

Consumer Internet of Things (IoT) devices have emerged as a
promising technology to enhance home automation and physical
safety. While the smart home ecosystem has a sizeable collection
of automation platforms, market trends in the US [44] suggest that
many consumers are gravitating towards Amazon Alexa and Google
Home. These two platforms are unique from the other automation
platforms (e.g., Samsung SmartThings, WeMo) in that they focused
much of their initial smart home efforts into smart speaker tech-
nology, which allows users to speak commands to control smart
home devices (e.g., light switches), play music, or make simple in-
formation queries. This dominance of Amazon Alexa and Google
Home might suggest that consumers find voice commands more
useful than complex automation configurations.

For many privacy-conscious consumers, having Internet con-
nected microphones scattered around their homes is a concerning
prospect. This danger was recently confirmed when popular news
media reported that Amazon [27], Google [23, 31], Apple [24], Mi-
crosoft [13], and Facebook [18] are all using contractors to manually
analyze the accuracy of voice transcription. The news reports in-
clude anecdotes from contractors indicating they listened to many
drug deals, domestic violence, and private conversations. Perhaps
more concerning is that many of the recordings were the result of
false positives when determining the “wake-word” for the platform.
That is, the user never intended for the audio to be sent to the cloud.

Unfortunately, avoiding microphones is not as simple as not
purchasing smart speakers. Microphones have become a perva-
sive sensor for smart home devices. For example, it is difficult to
find a smart television that does not support voice controls via the
display or the handheld remote control. Smart thermostats (e.g.,
Ecobee) commonly advertise that they have dual function as a smart
speaker. Surveillance cameras (e.g., Ring, Wyze) are designed to
notify users of events, but are in fact always recording. Perhaps
most concerning was the report that the Nest security system in-
cludes a microphone [27], despite no packing material or product
documentation reporting its existence. While the manufacturers of
these devices might argue that users can disable microphone func-
tionality in device software, history has repeatedly demonstrated
that software can and will be compromised. Furthermore, mass
collection and storage of audio recordings increases concerns over
the potential for a “surveillance state” (e.g., Ring has recently been
criticized for working with local police [22]).


https://doi.org/10.1145/3427228.3427277
https://doi.org/10.1145/3427228.3427277
https://doi.org/10.1145/3427228.3427277

ACSAC 2020, December 7-11, 2020, Austin, USA

Our research seeks to answer the question: Can a user effectively
detect if a smart home device expectantly transmits audio recordings
to Internet servers in response to a sound trigger? Such failures can
occur in two types of situations: (1) devices that are not expected
to have recording capability or are expected to have the capability
disabled transmit user audio, or, (2) devices that are expected to
have recording capability enabled, but transmit audio in response
to unexpected stimuli (e.g., unexpected or misunderstood wake-
words). In both cases we are primarily concerned with the benign,
but hidden, recording and immediate transmission of audio to cloud
services, as such behaviors can potentially lead to mass surveillance.
We believe there is significant utility in detecting this subset of mis-
behaving devices, particularly given the limited storage capacity
of many low-level IoT devices. Additionally, we only consider au-
dio transmission that occur in response to a sound-based trigger
event. Devices that continuously stream audio are detectable by
monitoring bandwidth use.

Existing approaches for identifying unintended data transmis-
sions out of the user’s network [11, 29] focus on other modalities
(e.g., video) and rely on assumptions that do not apply to audio
transmissions (e.g., some devices require an utterance of specific
wake-words). Furthermore, while traffic analysis approaches target-
ing IoT devices have been proposed [33, 41], to the best of our knowl-
edge there are no earlier approaches specifically targeting traffic of
microphone-enabled IoT devices. Additionally, prior work attacking
voice assistants and voice recognition [3, 7, 8, 14, 28, 30, 40, 46, 49—
51] focuses on maliciously issuing commands or changing the in-
teraction flow without the victim noticing.

In this paper, we present the LeakyPick architecture, which in-
cludes a small device that can be placed in various rooms of a home
to detect the existence of smart home devices that stream recorded
audio to the Internet. LeakyPick operates by periodically “probing”
an environment (i.e., creating noise) and monitoring subsequent
network traffic for statistical patterns that indicate the transmission
of audio content. By using a statistical approach, LeakyPick’s detec-
tion algorithm is generalizable to a broad selection of voice-enabled
IoT devices, eliminating the need for time-consuming training re-
quired by machine learning.

We envision LeakyPick being used in two scenarios. First, LeakyP-
ick can identify devices for which the user does not know there is a
microphone, as well as smart home devices with smart speaker ca-
pabilities (e.g., an Ecobee thermostat) that the user was not aware of,
or thought were disabled (e.g., re-enabled during a software update).
To evaluate this scenario, we studied eight different microphone-
enabled IoT devices and observed that that LeakyPick can detect
their audio transmission with 94% accuracy. Second, LeakyPick
can be used to determine if a smart speaker transmits audio in
response to an unexpected wake-word. To evaluate this scenario,
we used LeakyPick to perform a wake-word fuzz test of an Amazon
Echo Dot, discovering 89 words that unexpectantly stream audio
recordings to Amazon. For both scenarios, LeakyPick can run when
the user is not home (to avoid annoyance), since this behavior is
generally not contextual the users’ presence.

This paper makes the following contributions:

o We present the LeakyPick device for identifying smart home
devices that unexpectedly record and send audio to the Internet

695

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

in response to observing a sound. The device costs less than
USD $40 and can be easily deployed in multiple rooms of a
home.

o We present a novel audio-based probing approach for estimat-
ing the likelihood that particular devices react to audio. Our
approach has a 94% accuracy for a set of devices known to
transmit audio to the cloud. We also show that the approach
is generalizable to different device types without the need
to pre-train costly device-type-specific detection profiles.

o We show that LeakyPick can identify hidden wake-words that
cause unexpected audio transmission. Our analysis of an Ama-
zon Echo Dot identified 89 incorrect wake-words.

Finally, LeakyPick uses human-audible noises, which may be
annoying to physically present users. Prior work has suggested the
use of inaudible sound to control voice assistants using ultrasound
audio [42, 50]. However, these approaches are specific to the tech-
nical characteristics of the targeted devices. Therefore, they are not
immediately applicable to our goal of identifying unknown devices
streaming audio. We leave the task of creating generic models of
transmitting audio via ultrasonic sound as a topic for future work.

The remainder of this paper proceeds as follows. Section 2 pro-
vides background on devices with voice control and audio interfaces.
Section 3 overviews our architecture. Section 4 describes our design
and implementation. Section 5 evaluates the accuracy of LeakyP-
ick. Section 6 discusses our approach and security considerations.
Section 7 overviews related work. Section 8 concludes.

2 BACKGROUND

ToT devices increasingly use audio sensing for enabling voice-based
control by the user or for other audio-based use cases. Examples of
such devices include smart audio security systems [25], smart audio
event-detecting IP cameras [20], vacuum cleaner robots equipped
with microphones and nightvision [6], and smart fire alarms with
a self-testing siren [19]. Due to the abundance of devices with
audio sensing capabilities, the user may not always be aware of
when a particular device will record audio and send it to the cloud.
Sending audio to the cloud is frequently required for voice-control
based user interfaces, as speech-to-text translation often needs
more computational resources than are available on IoT devices.
Devices with voice-control interfaces typically use local speech
recognition for detecting a specific set of “wake-words” (i.e., ut-
terances meant to be used by the user to invoke the voice-control
functionality of the device). When the local model detects the utter-
ance of a potential wake-word, the device starts sending audio to
back-end servers for voice-to-text translation. In order to not miss
speech commands uttered by users, the local model needs to be
configured to recognize any utterance that resembles the intended
wake-word. In case of the Alexa voice assistant, it is then the task
of the back-end service to verify whether the observed utterance
really represents a wake-word or not, as it is equipped with a more
comprehensive speech recognition model and is not limited by
the potentially scarce computational capabilities of the IoT device
recording the audio. Figure 1 overviews this typical approach.
Problems arise when the local or online detection model mis-
takenly classifies specific audio inputs as the wake-word and con-
sequently starts sending the recorded audio to the cloud, thereby



LeakyPick: loT Audio Spy Detector

Listening for the

Stop streamin,
wake-word P g

Remote
model recognizes
wake-word

Local model

recognizes wake
word

Start streaming
recorded audio

Keep streaming to
cloud for execution

Figure 1: Overview of wake-word detection process in voice-
controlled devices such as the Amazon Echo

potentially leaking sensitive information. Private information may
also be leaked unintentionally when the user is unaware that a
device will react to specific wake-words.

Finally, attacks targeting voice assistants can use malicious audio
signal injection to trick the assistant to perform actions. In these
attacks, the adversary either waits for the user to be asleep or not
present [3, 14] or uses inaudible [30, 42, 50] or unrecognizable [7,
40, 46, 49] signals to stage the attack, making it very difficult for
the victim user to realize that the device is being attacked.

Our goal is to provide tools that enable users to detect and iden-
tify 1) devices that are not expected to have audio recording trans-
mission capability, 2) devices for which audio recording transmis-
sion is expected to be disabled, and 3) unexpected wake-words that
cause devices to unexpectedly transmit audio recordings.

Threat Model and Assumptions: In this paper, we are concerned
with threats related to IoT devices that stream recorded audio over
the Internet using Wi-Fi or a wired LAN connection in response to
audio signals recognised by the device as potential voice commands
or different sounds the device reacts to. As processing voice com-
mands is (except for the detection of the device’s wake-word) imple-
mented on the server-side, we assume that recorded audio is trans-
mitted instantaneously to the cloud to allow the voice-controlled
device to promptly react to user commands. We consider three main
threat scenarios:

(1) Benign IoT devices that may have undocumented micro-
phones and audio-sensing capabilities, devices for which
audio-sensing capabilities are unexpectedly enabled (e.g., via
a software update), or devices whose wake-word detection is
inaccurate, leading to audio being sent to the cloud without
the users intent and knowledge.

(2) Application-level attacks that cause a benign IoT device to
send audio without the user’s knowledge. For example, the
Amazon Echo contained a vulnerability [21] that allowed a
malicious skill to silently listen. More recently, security re-
searchers have reported [32] the existence of eavesdropping
apps targeting Alexa and Google Assistant. Note that in this
scenario, the IoT device is benign, but it supports third-party
applications that may be malicious.

(3) Active attacks by an external adversary where the adversary
tricks the targeted device to initiate transmission of audio

696

ACSAC 2020, December 7-11, 2020, Austin, USA

data by injection of audio signals to the device’s environment
so that the device will identify these as its wake-word. The
main threat in this scenario is the unauthorized invocation
of device or service functionalities.

We do not consider scenarios in which an IoT device is modi-
fied by the adversary to transform the device to act as a bugging
device that records and stores audio locally without sending it to
the network. While feasible, such attacks are much less scalable, as
they must be tailored for each targeted device and are only appli-
cable for devices with sufficient storage space. We note, however,
that LeakyPick is applicable to settings where an adversary has
compromised an IoT device and immediately transmits audio data.

3 SOLUTION OVERVIEW

The goal of this paper is to devise a method for regular users to
reliably identify IoT devices that 1) are equipped with a microphone,
2) send recorded audio from the user’s home to external services
without the user’s awareness, and 3) do so unexpectantly in re-
sponse to observing a sound (e.g., unexpected wake-word, software
update re-enabling smart speaker functionality). If LeakyPick can
identify which network packets contain audio recordings, it can
then inform the user which devices are sending audio to the cloud,
as the source of network packets can be identified by hardware
network addresses. Achieving this goal requires overcoming the
following research challenges:

o Device traffic is often encrypted. A naive solution that simply
looks for audio codecs in network traffic will fail to identify
most audio recordings.

e Device types are not known a priori. Devices transmit audio
in different ways. We need to identify generic approaches
that work with previously unseen devices.

Due to these challenges, our solution cannot passively monitor
network traffic with the goal of differentiating the transmission of
audio recordings from other network traffic. While prior approaches
such as HomeSnitch [34] are able to classify the semantic behavior
of IoT device transmissions (e.g., voice command), they require a
priori training for each manufacturer or device model. Since we
seek to identify this behavior for potentially unknown devices, we
cannot rely on supervised or semi-supervised machine learning.

At a high level, LeakyPick overcomes the research challenges by
periodically transmitting audio (potentially prepended with wake-
words) into a room and monitoring the subsequent network traffic
from devices. As shown in Figure 2, LeakyPick’s main component
is a probing device that emits audio probes into its vicinity. By
temporally correlating these audio probes with observed character-
istics of subsequent network traffic, LeakyPick identifies devices
that have potentially reacted to the audio probes by sending audio
recordings.

LeakyPick identifies network flows containing audio recordings
using two key ideas. First, it looks for traffic bursts following an au-
dio probe. Our observation is that voice-activated devices typically
do not send much data unless they are active. For example, our
analysis shows that when idle, Alexa-enabled devices periodically
send small data bursts every 20 seconds, medium bursts every 300
seconds, and large bursts every 10 hours. We further found that



ACSAC 2020, December 7-11, 2020, Austin, USA

loT device Internet

Get traffic

Probing Device

Figure 2: System set-up of LeakyPick

when it is activated by an audio stimulus, the resulting audio trans-
mission burst has distinct characteristics. However, using traffic
bursts alone results in high false positive rates.

Second, LeakyPick uses statistical probing. Conceptually, it first
records a baseline measurement of idle traffic for each monitored
device. Then it uses an independent two-sample t-test to compare
the features of the device’s network traffic while being idle and
of traffic when the device communicates after the audio probe.
This statistical approach has the benefit of being inherently device
agnostic. As we show in Section 5, this statistical approach performs
as well as machine learning approaches, but is not limited by a priori
knowledge of the device. It therefore outperforms machine learning
approaches in cases where there is no pre-trained model for the
specific device type available.

Finally, LeakyPick works for both devices that use a wake word
and devices that do not. For devices such as security cameras that
do not use a wake word, LeakyPick does not need to perform any
special operations. Transmitting any audio will trigger the audio
transmission. To handle devices that use a wake word or sound,
e.g., voice assistants, security systems reacting on glass shattering
or dog barking, LeakyPick is configured to prefix its probes with
known wake words and noises (e.g., "Alexa", "Hey Google"). It can
also be used to fuzz test wake-words to identify words that will
unintentionally transmit audio recordings.

4 LEAKYPICK DESIGN

This section describes the central aspects of LeakyPick’s design.
We primarily focus on audio event detection. We then describe our
system implementation on a Raspbery Pi 3B.

4.1 Audio Event Detection

Due to the encryption between devices and back-end cloud systems,
it is not possible to detect audio-related events by inspecting packet
payloads. Instead, LeakyPick identifies audio transmissions by ob-
serving sudden outgoing traffic rate increases for specific devices, or
significant changes in the device’s communication behavior, both
of which can indicate the transmission of audio recordings. We
consider two possible complementary approaches to audio event
detection: (1) a simple baseline method based on network traffic
burst detection, and (2) a statistical approach for detecting apparent
changes in the communication characteristics of monitored devices
in response to performed audio probes. Both audio event detection
mechanisms can be used either while actively probing devices, or,
without active probing (i.e., when the user is at home) to detect

697

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

Table 1: Parameters and packet features used by our Burst
Detection and Statistical Probing approaches

Parameters Packet Features
Window size s,,
Traffic rate By, dio

Consecutive detections n

Approach
Burst Detection

Packet size
MAC/IP

Packet size
Interarrival time
MAC/IP

Bin count k
Packet sequence duration d
P-value threshold ¢

Statistical Probing

when a device reacts to the noise the user makes (e.g., speaking,
playing music) and notifying the user about such activations.

4.1.1 Burst Detection. Our baseline approach for detecting audio
transmissions is based on burst detection in the observed network
traffic of devices. To do this, we need to first identify the character-
istics of potential audio transmissions. We therefore analyzed the
invocation process and data communication behavior of popular
microphone-enabled IoT devices when they transmit audio.

Our traffic analysis was based on data of popular IoT devices with
integrated virtual assistant support: (1) Echo Dot (Amazon Alexa),
(2) Google Home (Google Assistant), (3) Home Pod (Apple Siri),
and (4) an audio-activated home security system (Hive Hub 360).
Our analysis showed that these devices do not typically send much
traffic during normal standby operation. Therefore, it is possible to
detect audio transmissions through the increase in traffic rate they
cause. Our approach is generic in the sense that it is applicable to all
devices sending audio. We chose these microphone-enabled devices,
as they are popular devices produced for a broad range of use cases.
To determine the parameters for burst detection, we monitored the
network traffic of devices in response to audio probes emitted into
the devices’ environment.

We perform audio event detection by observing sudden increases
in the traffic rate emitted by a device that is sustained for a spe-
cific amount of time. This is because an audio transmission will
inevitably cause an increase in the data rate that will typically last
at least for the duration of the transmitted audio sample. This is
consistent with how most voice-controlled IoT devices utilizing
cloud-based back-ends function (Section 2), where local wake-word
detection causes subsequent audio to be streamed to the back-end.

Specifically, LeakyPick performs burst detection by dividing
the network traffic originating from a device into time windows
W = (w1, wy,...) of size s,, and calculating for each time window
w; the sum of packet payload sizes of the packets falling within the
window. We then calculate the average traffic rate B; during the
time window w; in bytes per second. If the traffic rate B; is above a
threshold B4, during at least n consecutive time windows

Wi = (Wi, Witt, - ., Wi+k_1)

where k > n, detection is triggered. Empirically, we found that
Baudio = 23kbit /s is sufficient to separate audio bursts from back-
ground traffic. Therefore, it is reasonable to assume our approach
will work also for systems using audio codecs with lower bandwidth
requirements than Alexa.

As shown in Table 1, LeakyPick uses predefined parameters and
packet features. We extract the packet sizes, the corresponding
MAC or IP (depending on the layer), and (implicitly) the direction



LeakyPick: loT Audio Spy Detector

of the packet (leaving or entering the network). To evaluate the
optimal consecutive detection threshold n (Section 5.2.1), we used
a fixed window size s,, = 1s, as common voice commands rarely
take less than a second. For the traffic rate threshold B, 4;,, We
chose 23kbit/s. This value is a sufficiently low threshold to capture
any audio and sufficiently high to discard anything else, as voice
recognition services need good voice recording quality (e.g., Alexa’s
Voice Service uses 256kbit/s, 16-bit PCM at 16kHz [4]).

4.1.2  Statistical Probing. LeakyPick uses statistical probing to re-
fine audio transmission detection by eliminating cases where traffic
bursts result from non-audio transmission. Most importantly, the
approach is generic and does not need a priori knowledge of a de-
vice’s behavior. It also can determine if a device’s communication
behavior changes significantly in response to audio probes.

To detect devices that react to audio, we monitor network traffic
for significant changes in the device’s communication behavior in
response to audio probes. This is done by determining whether the
distribution of the properties of communication packets transmit-
ted by a device after the emission of an audio probe is statistically
different from the distribution of packets observed before the probe
injection. Specifically, LeakyPick uses a t-test [9], which is one of
the most commonly used statistical tests. Given two data samples,
the test computes a t-score by determining the data samples’ dis-
tributions’ means and standard deviations, and mapping this to a
p-value. If the p-value is below a specified threshold, the distribu-
tions are considered statistically different and therefore indicate
that the device reacted to the audio probe. The p-value threshold
is therefore a system parameter which can be tweaked to produce
a trade-off between sensitivity and false alarm rate. However, this
threshold is independent of the device type, i.e., a system-wide
threshold value is used. The evaluation of this parameter is de-
scribed in Section 5.2.2.

First, the probing device monitors idle device traffic while it is
not emitting audio probes. It captures a sequence

Ts = (pcky, pcka, . .

of duration d seconds of data packets pck; and calculates a packet
size (or inter-arrival time) distribution vector

Fs = (fi. foo oo i)

by binning the packets p; € T into k bins based on the size (or inter-
arrival time) of these packets' and where f; denotes the number of
packets assigned to the i-th bin.

The probing device then emits multiple audio probes and cap-
tures associated data traffic

Tpr = (pck1, pcka, . . ., pckn)

of duration d seconds and extracts a packet size (time) distribution

., pckn)

vector F; r using the same binning as for Fy. The packet size vectors
Fy and F;r are then used in the t-test to determine a p-value (p)
indicating the likelihood that both frequency samples originate
from the same distribution (i.e., from the distribution the device
produces while in idle mode).

!To determine the binning automatically, we use numpy . histogram with the bin option
auto which uses the maximum of the Sturges and Freedman Diaconis Estimator.

698

ACSAC 2020, December 7-11, 2020, Austin, USA

If the p-value is below a specified threshold ¢ (i.e., p < t), we as-
sume the traffic samples are not from the same distribution. That is,
the device has reacted in some way and changed its communication
behavior. To further refine the results, the p-value resulting from
the packet size distribution is combined with the p-value of the
inter-arrival time distribution. However, as shown in Section 5.2.2,
only using the p-value of the packet size distribution is sufficient.

We collected idle data samples T from multiple voice-controlled
devices and discovered that they contained frequently occurring
smaller data bursts (possibly related to, e.g., heartbeat messages)
and infrequently occurring larger data bursts (e.g., state synchro-
nization). This observation indicates it is possible to capture a large
data burst in one of the two samples (Ts or Tp,) while missing it
in the other. Therefore, when encountering a p-value indicating
a possible reaction of the IoT device, the probing test must be re-
peated several times to ensure the observed device behavior change
is caused by the audio probe and not by background traffic bursts.

Table 1 shows the parameters and packet features used for statis-
tical probing. As with burst detection, we extract the packet sizes,
the corresponding MAC or IP, and (implicitly) the direction of the
packets from the recorded traffic. Additionally, we extract packet
inter-arrival times. As discussed in Section 5.2.2, we set the p-value
threshold ¢ to be 0.42-0.43 to achieve an optimal precision while
fixing the packet sequence duration to d = 60 seconds.

4.1.3  Voice User Interface. LeakyPick offers also a voice-based user
interface (UI) for conveniently controlling the probing device and
its functions. Our current implementation uses a custom Amazon
Alexa Skill. With this interface, the user can control when the
device is allowed to probe to avoid annoyance while the user is
at home. Additionally, the user can query the results of the last
probing session to learn which devices responded to the probing
and streamed audio to the cloud. We present this Skill-based method
as an example of interacting with LeakyPick. However, optimizing
the usability of the user interactions for obtaining the report is not
in the core focus of this paper.

4.2 'Wake-Word Selection

Users are not always aware of IoT devices that require a wake-
word before transmitting audio recordings to the cloud. While it
is possible enumerate the wake-words for known voice assistants,
recent reports of third-party contractors reviewing voice assistant
accuracy [13, 18, 23, 24, 27, 31] highlight the significance of false
voice assistant activation. Therefore, LeakyPick identifies other
wake-words that will trigger the voice detection. Note that this
approach is different than using mangled voice samples [7, 46] or
other means to attack the voice recognition process [8, 40, 49]. We
also do not want to limit LeakyPick to words sounding similar to the
known wake-words in order to confuse the voice assistant [28, 51].

Using a full dictionary of the English language is impractical. It
would take roughly 40 days to test a voice assistant with the entire
dictionary of 470,000 words [48] at a speed of one word every
seven seconds. However, by only testing words with a phoneme
count similar to the known wake-word, the subset of viable words
is manageable. Our intuition is that a benign device will more
likely confuse words with a similar structure. Therefore, we select
all words in a phoneme dictionary [39] with the same or similar



ACSAC 2020, December 7-11, 2020, Austin, USA

Table 2: Devices used for evaluation

Device Type Device Name

Smart Speaker Echo Dot (Amazon Alexa)
Google Home (Google Assistant)
Home Pod (Apple Siri)

Security System Hive Hub 360

Microphone-Enabled | Netatmo Welcome

IoT Device Netamo Presence

Nest Protect
Hive View

phoneme count than the actual wake-word. We also used random
words from a simple English word list [26]. These words are spoken
using a text-to-speech (TTS) engine.

4.3 System Implementation

The LeakyPick probing device injects audio probes into the user’s
environment and analyzes the resulting device network traffic. Our
current implementation achieves this functionality using the fol-
lowing hardware set-up. The probing device consists of a Raspberry
Pi 3B [36] connected via Ethernet to the network gateway:. It is also
connected via the headphone jack to a PAM8403 [15] amplifier
board, which is connected to a single generic 3W speaker.

To capture network traffic, we use a TP-LINK TL-WN722N [45]
USB Wifi dongle to create a wireless access point using hostapd
and dnsmasq as the DHCP server. All wireless IoT devices connect
to this access point. To provide Internet access, we activate packet
forwarding between the eth (connected to the network gateway)
and wlan interfaces. Alternatively the device could sniff Wi-Fi pack-
ets without being connected to the network using packet size and
MAC address as the features. This approach would also work for
foreign Wi-Fi networks, as it is not required to have the decrypted
traffic, i.e. our device does not need to be connected to that network
at all: package size information is sufficient.

Finally, LeakyPick is written in Python. It uses tcpdump to record
packets on the wlan interface. We use Google’s text-to-speech (TTS)
engine to generate the audio played by the probing device.

5 EVALUATION

This section evaluate LeakyPick’s ability to detect when audio
recordings are being streamed to cloud servers. Specifically, we
seek to answer the following research questions.

RQ1 What is the detection accuracy of the burst detection and
statistical probing approaches used by LeakyPick?

RQ2 Does audio probing with a wrong wake-word influence the
detection accuracy?

RQ3 How well does LeakyPick perform on a real-world dataset?

RQ4 How does LeakyPick’s statistical probing approach compare
to machine learning-based approaches?

RQ5 Can LeakyPick discover unknown wake-words?

5.1 Experimental Setup

Our evaluation considers 8 different wireless microphone-enabled
IoT devices: 3 smart speakers, 1 security system that detects glass
breaking and dogs barking, and 4 microphone-enabled IoT devices,

699

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

namely the audio event detecting smart IP security cameras Ne-
tatmo Welcome, Netatmo Presence and Hive View as well as the
smart smoke alarm Nest Protect. Table 2 lists the specific devices.
We now describe our dataset collection and evaluation metrics.

5.1.1 Datasets. We used four techniques to collect datasets for
our evaluation. Table 3 overviews these four collection methodolo-
gies, as well as to which devices the datasets apply. The following
discussion describes our collection methodology.

Idle Datasets: The idle dataset was collected in an empty office room.
It consists of network traffic collected over six hours during which
the device was not actively used and no audio inputs were injected.
We also made sure to record at least one occurrence of every traffic
pattern the devices produce (e.g., for Echo devices every type of
periodic bursts).

Controlled Datasets - Burst Detection: The controlled datasets for
burst detection were collected in an empty office room while inject-
ing audio probes approximately 100 times for each of the studied
devices. In all cases, the injected probe was the known wake-word
for the device in question. The Hive 360 Hub device does not use a
wake-word, but is activated by specific noise like dog barking and
glass shattering. For this device we therefore used recordings of
dog barking sounds to trigger audio transmission. For each device,
three different datasets were collected by varying the wake-word
invocation interval between 1, 5, and 10 minutes.

Controlled Datasets - Statistical Probing: The collection of the con-
trolled dataset for statistical probing was performed in a way similar
to the burst detection dataset. However, the experiment collected
six datasets for each device. Each dataset consisted of six hours of
invoking the wake-word at intervals ranging from two minutes
to two hours. Thereby resulting in datasets with varying ratios of
audio-related and idle background traffic.

Online Probing Datasets: Using live traffic of the 8 different devices
listed in Table 2 we randomly selected a set of 50 words out of
the 1000 most used words in the English language [16] combined
with a list of known wake-words of voice-activated devices as
possible wake-words to test. We configured our probing device
to alternatingly record silence traffic Ty and probing traffic T, of
one minute duration each for every wake-word in the list. T, was
recorded immediately after the device started playing a word from
the list repeating the word every 10 seconds in this minute.

Real-World Datasets: To create a realistic dataset for evaluation, we
collected data from the three smart speakers over a combined period
of 52 days in three different residential environments (houses). The
times for each smart speaker are listed in Table 4. During this time
period, humans used the assistants as intended by the manufacturer.

In order to evaluate the accuracy of LeakyPick, the dataset was
labeled by recording the timestamps of when the device was record-
ing audio. This was accomplished by taking advantage of the visual
indicator (e.g., a light ring that glows) that Smart speakers use to
alert the user when the voice assistant is activated in response to
voice inputs. We therefore automated the labeling process in the
real-world environment by creating a small specialized device with
a light sensor to measure the visual indicator. Our device consisted
of a Raspberry Pi and a Light Dependent Resistor (LDR) in con-
junction with a LM393 [43] analogue-digital comparator. The LDR



LeakyPick: loT Audio Spy Detector

Table 3: Datasets for Burst Detection, Statistical Probing, On-
line Probing and Machine Learning

Dataset Frequency Devices
Idle - Echo Dot,
Google Home,
Home Pod,
Hive 360 Hub
Controlled - 1min, 5min, 10min Echo Dot,
Burst Detection Google Home,
Home Pod,
Hive 360 Hub
Controlled - 2min, 5min, 10min, Echo Dot,
Statistical Probing 30min, 1h, 2h Google Home,
Home Pod,
Hive 360 Hub
Online Probing 10s during probing | all, cf. Table 2
windows
Real-World real-world, Echo Dot,
cf. Table 4 Google Home,
Home Pod

Table 4: Duration of collected data in different residential
environments (households) while used by humans

Amazon Echo Dot | Google Home | Apple Home Pod
31d 15d 15d

sensor was then attached to the smart speaker’s visual indicator
and protected from environmental luminosity with an opaque foil.
This setup allowed the Raspberry Pi to record a precise timestamp
each time the device was activated and allowed us to label periods
with audio activity in the dataset accordingly.

5.1.2  Evaluation metrics. We evaluate the performance of our de-
tection approach in terms of true positive rate (TPR) and false posi-

ti te (FPR). The t iti te is defined as TPR = ——,
ive rate (FPR). The true positive rate is defined as TP+ FN

where TP is true positives and FN false negatives, resulting in the

fraction of audio events correctly identified as such. Similarly, false
FP

TN + FP

negatives and FP the false positives. It denotes the fraction of non-
audio events falsely identified as audio events. Ideally we would like
our system to maximize TPR, i.e., the capability to identify devices
sending audio to the cloud, while minimizing FPR, i.e., generating
as few as possible false detections of audio transmissions.

positive rate is defined as FPR = , where TN is the true

5.2 RQ1: Detection Accuracy

In this section we evaluate the detection accuracy of our two ap-
proaches: (1) burst detection and (2) statistical probing.

5.2.1 Burst Detection. To evaluate the performance of Burst De-
tection for detecting audio transmissions, we used the controlled
dataset for burst detection (Table 4) to determine its ability to detect
audio transmissions correctly.

Figure 3 shows the receiver operating characteristic (ROC) curve
for the burst detection approach. The ROC curve varies the parame-
ter n, which defines the number of consecutive windows with high
data throughput required for triggering detection (cf. Section 4.1.1),

700

ACSAC 2020, December 7-11, 2020, Austin, USA

0,9 n=5
08
0,7
0,6
0,5

TPR

0,4
03
0,2 360 Hub —Google

0,1 —Alexa ——Siri

0 02 04 06 08 1
FPR

Figure 3: Results of BurstDetector using known wake-words
detecting outgoing audio transmissions of Echo Dot, Google
Home, Home Pod and Hive 360 Hub on the controlled data
set

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0.1 ||~=Sir 360 Hub

p-value

—e—Alexa —s—Google

2h 1h 30m 10m Sm 2m

invocation frequency

Figure 4: The resulting p-value when traffic of devices being
invoked in intervals from 2 minutes to 2 hours compared to
known silence, showing that the p-value decreases with an
increasing number of audio bursts in the traffic

from ny,in = 1to nymax = 8. As can be seen, with n = 5 consecutive
time windows, detection is triggered with a TPR of 96% and an FPR
of 4% (averaged over all devices). This is explained by the fact that
as mentioned in Section 3, the voice-activated devices typically send
only a small amount of data unless they are active: medium bursts
every few minutes and large bursts only every few hours when idle.
This allows Burst Detection to identify nearly all audio invocations
as they are clearly distinguishable from idle traffic, making this
approach practical for devices with such behavioral characteristics.

5.2.2  Statistical Probing. To evaluate the ability of LeakyPick to
detect whether a device reacts to audio events, we first determine
whether the statistical properties of data traffic of IoT devices when
in idle mode (i.e., not in relation to audio events) is statistically
different from the devices’ behavior when transmitting audio to
the cloud. For this, we calculate the statistical difference of the
packet size distributions in the Idle dataset to the packet distri-
butions in the controlled datasets for statistical probing (Table 3)
using the t-test as discussed in Section 4.1.2. The results are shown



ACSAC 2020, December 7-11, 2020, Austin, USA

0.9 0.42
0.8
0.7
0.6
-4
& 05
0.4
0.3
02 360 Hub  ——Google
0.1 ——Alexa ——Siri
0
0 0.2 0.4 0.6 0.8 1

FPR

Figure 5: ROC graph of comparing consecutive windows of
30 seconds of traffic of the Controlled - Statistical probing
dataset using the ¢-test for different p-value thresholds and
comparing the output to the actual labels of the traffic

in Figure 4, showing the resulting p-value in dependence of the
frequency of invocations of the corresponding device’s wake-word.
As can be seen, for all tested voice-controlled devices, the p-value
decreases the more often the wake-word is injected, i.e., the more
audio-transmissions the dataset contains. This suggests that the
distributions of packet sizes related to audio transmission indeed
are different to the distribution of packets in the background traffic
and can be thus utilized to identify audio transmissions.

Figure 5 shows the ROC curve for our approach on the con-
trolled dataset for statistical probing (Table 4) for different p-value
thresholds. We use a sliding window approach and compare two
consecutive windows of 30 seconds duration using the test, moving
the window for 30 seconds to get the new window. We compare
the result with the actual label of this traffic region to assess if our
approach can reliably find exactly the device sending audio data. As
can be seen, for a p-value threshold of 0.42 or 0.43 a True Positive
Rate of 94% with a simultaneous False Positive Rate of 6% averaged
over all devices can be achieved for these datasets.

5.3 RQ2: Wake-Word Sensitivity

LeakyPick is designed to detect devices reacting to a specific set
of wake-words. However, as this set may be different for different
device types, a relevant question is to what degree the detection
accuracy is dependent on the presence of the correct wake-words in
the audio probes. To evaluate this aspect, we first tested LeakyPick
on the Online Probing dataset representing a live operative setting
in which a number of audio probes containing actual wake-words
were injected into the environment of an Amazon Echo device
with the target of trying to trigger a wake-word induced audio
transmission. We used the ¢-test as discussed in Sect. 4.1.2 to calcu-
late the p-value between consecutive samples of packet sequences
Ts and Tp, of duration d = 60 seconds each. The result of this
for 100 time window pairs is shown in Figure 6. As can be seen,
the p-values for the non-probing (i.e., “idle” time windows) range
between approximately 0.3 and 1, whereas the p-values for time

701

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

Baseline comparison using t-test

Number of tes

—ldle Probing

Figure 6: LeakyPick t-test p-values for probing Amazon Echo
during 100 alternating windows of 1 minute of idle traffic
and probing with wake-word “Alexa” at 10-second intervals,
respectively

windows containing audio probes remain mostly below 0.3. This
shows that given an appropriate p-value threshold LeakyPick is
able to distinguish between “idle” traffic and audio transmissions.

To further evaluate how sensitive LeakyPick is to the use of the
right wake-words, we compiled a set of audio probes consisting
of the 50 most used English words and a set of nine known wake-
words used by the IoT devices used in our evaluation (shown in
Table 2). The set of audio probes was injected into the devices’
environment and the resulting p-values for each device evaluated.
We evaluated all devices at the same time with the same parameters,
exactly as it would occur in a smart home scenario where the user
has many devices in listening range. The resulting p-values for
two representative examples of used audio probes are shown in
Figure 7. The shown audio probes are the randomly-selected word
“major”, which does not correspond to any known wake-word of
any of the tested devices and the Google Home wake-word “Hey
Google”. While these examples are provided to demonstrate the
discriminative ability of our approach, similar results apply also
to other words in the list of tested audio probes. As one can see,
with a p-value threshold of, e.g., 0.5 the word "major" would not be
considered to activate any of the devices, whereas one can clearly
see that the p-value for "Hey Google" indicates a reaction by the
Google Home device. From the results we can see that only devices
responsive to a wake-word react to it which in turn can be detected
using the statistical t-test employed by LeakyPick. This means,
that the same p-value threshold can be used for any device tested.
It shows that only the device actually reacting to the wake word
exhibits a low enough p-value to be classified as sending audio
across all other devices. Note that Nest Protect is not shown in
Figure 7, as it was not activated by any of the examined words and
therefore did not transmit any data at all.

5.4 RQ3 and RQ4: Real-World Performance

We evaluated LeakyPick on our real-world dataset containing 52
days of operation in residential environments (households) (Ta-
ble 4). In addition to using this dataset to measure the accuracy of



LeakyPick: loT Audio Spy Detector

Probing with words "major" and "Hey Google"
1,2

: |
» 08 - ‘
H]
os ‘
204 ‘
02 ‘
0

Netatmo Hive 360 Hive View Netatmo Siri Alexa Google-Home
Welcome Presence

Device name

mmaior = Hev Gooale

Figure 7: Representative examples of LeakyPick p-values for
audio probes. None of the devices react to the non-wake-
word probe “major” while only the Google Home device
shows reaction for its wake-word “Hey Google”

LeakyPick (RQ3), we also compare LeakyPick’s accuracy to that
of machine learning algorithms (RQ4). Recall from Section 3 that
a key research challenge is being able to operate for unknown
devices. Since machine learning algorithms require training on
known devices, they are not appropriate to achieve our goals, as
our approach needs to be able to handle also previously unseen
device-types. That said, we use a trained machine learning algo-
rithm as a baseline, hypothesizing that LeakyPick can perform at
least as well, but without the need for training.

5.4.1 ML Implementation. We tested the performance of several
commonly-used machine learning (ML) algorithms for detecting
audio events in the real-world dataset. We then selected the clas-
sifier with the best performance to compare against the statistical
detection approach used by LeakyPick. We consider both simple ML
algorithms as well as more advanced ensemble (i.e., Bagging and
Boosting) and majority voting-based classifiers. The ML algorithms
tested include XGboost [10], Adaboost [17], RandomForest [5], SVM
with RBF kernel [47], K-NN [2], Logistic Regression, Naive Bayes,
and Decision Tree classifiers as provided by the the Scikit-learn
ML package [1]. For each classifier, the used hyper-parameters
were tuned using the provided Grid-search and Cross-validation
processes. For constructing features for training we extracted the
sequence of packet lengths (SPL) from the traffic flow and utilized
the tsfresh tool [12] that automatically calculates a large number
of statistical characteristics from a time-ordered sequence of pack-
ets. All experiments were conducted on a laptop that runs Ubuntu
Linux 18.04 with an Intel i7-9750H CPU with 32 GB DDR4 Memory.

5.4.2  Evaluation. For the ML approach, we used 90% of the dataset
for training and 10% for testing. In addition, we conducted a 10-fold
Cross-Validation (CV) on the training data to better evaluate the
performance of the ML classifiers. According to our experiments,
based on CV accuracy, the Random Forest Classifier provided the
best performance on our dataset, achieving 91.0% accuracy (f1-
score) on test data while 10-fold CV accuracy was 90.5%.

We also evaluated LeakyPick as described in Sect. 5.2.2 on the
same real world dataset in order to compare its performance to the
ML-based approach. The results are displayed in Figure 8, showing
the ROC curves for both approaches on the Google Home, Siri Home

702

ACSAC 2020, December 7-11, 2020, Austin, USA

1 1 1
09
0,8
0,7
0,6
&
20,5
0,4
——Google
0.3 ——Alexa
0,2 —=Siri
——Alexa ML
01 —=-Google ML
0 +Siri ML
0 0,2 04 0,6 08 1

FPR

Figure 8: ROC curves of the ML-based and LeakyPick ap-
proaches on the real-world dataset

Pod and Alexa Echo devices. For p-value threshold 0.43 LeakyPick
achieves a TPR of 93% with a simultaneous FPR of 7% averaged over
all devices, compared to a best-case TPR of 95% and FPR of 9.7%
for the ML-based classifier for Alexa Echo Dot. We also found that
models are not transferable between voice assistants. For example,
training on Alexa voice traffic and using the model to identify Siri
voice traffic had around 35% precision.

As our evaluation results in Figure 8 show, ML-based models are
indeed able to detect audio events based on the traffic the devices
send out of the network. However, the evaluation also shows that
similar or even better performance can be achieved using a device-
agnostic approach as taken by LeakyPick.

Since applying this kind of a profiling approach requires dedi-
cated traffic models to be trained and included in the system for
each device type considered, its practicality in real-world scenarios
is questionable. Due to the very large and ever-growing number
of different types of voice-activated devices, this approach seems
impractical. The approach adopted in LeakyPick can achieve similar
performance without the need to employ pre-trained device-type-
specific detection models for audio event detection, providing it
much wider applicability in a wider range of environments with
diverse audio-activated device types.

5.5 RQ5: Identifying Unknown Wake-Words

To demonstrate LeakyPick’s ability to identify unknown wake-
words, we performed a systematic experiment with Amazon’s
Alexa-enabled Echo Dot. As voice assistants are conceptually simi-
lar, we believe the results can be generalized to other voice-controlled
devices. We configured the Echo Dot to use the standard “Alexa”
wake word (other options include “Computer”, “Amazon”, and
“Echo”). The experiment played different audio inputs, waiting for
two seconds for the visual light-ring indicator of the device to light
up, indicating the device reacted to the input. For each tested audio
input, we recorded the number of attempts that triggered a reaction.
Recall from Section 2 that Alexa-enabled devices have two states
of detection: (1) an offline model on the device, and (2) an online
model. We classify a word to be mistaken as a wake-word when



ACSAC 2020, December 7-11, 2020, Austin, USA

Table 5: Full results of testing Alexa with English words

Probability of Wake-Word

activating Alexa

2/10 alita, baxa, elater, hexer, liker, ochna, taxer

3/10 bertha, electroceramic, excern, oxer, taxir

4/10 electrohydraulic, electropathic, wexler

5/10 blacksher, electic, hoaxer

6/10 bugsha, elatha, elator, electrodissolution,
electrostenolytic, eloper, eluted, fluxer,
huerta, hurter, irksome, lecher, lefter, lepre,
lesser, letter, licker, lipper, loasa, loker, lotor,
lyssa, maloca, maxillar, melosa, meta, metae,
muleta, paxar, rickner

7/10 alexy, crytzer, electroanalytical, hyper,
kleckner, lecture, likker, volupte, wexner

8/10 electroreduction, hiper, wechsler

9/10 aleta, alexa, alexia, annection, elatcha, elec-
tre, kreitzer

10/10 alachah, alexipharmic, alexiteric, alissa,
alosa, alyssa, barranca, beletter, elector,
electra, electroresection, electrotelegraphic,
elissa, elixir, gloeckner, lechner, lecter, lictor,
Ixi, Ixx, mixer, olexa, walesa

the word triggers at least the offline model, since this transmits
recorded audio to the cloud.

Results. The Alexa-enabled Echo Dot reliably reacted to 89 words
across multiple rounds of testing. Table 5 (Appendix) shows the full
list of words. To estimate the phonetic distance between these words
and the true wake-word, we used the Metaphone algorithm [35]
to convert the words into a phonetic alphabet based on their pro-
nunciation. The resulting words were then compared with the
Levenshtein distance to “Alexa” Among the 89 words, 52 have a
phonetic distance of 3 or more. We found that 3 words had a pho-
netic distance of 0, 9 a distance of 1, 25 a distance of 2, 29 a distance
of 3, 14 a distance of 4, 2 a distance of 5 and 6, 4 of 7 and one even
a distance of 8. These distances shows that the Echo Dot reliably
reacted to words that are phonetically very different than “Alexa””

Some of the found wake-words can also be spoken by a human
even as part of a sentence and Alexa will be activated. In a smart
home scenario users speaking a sentence including such a word
can mistakenly activate Alexa and therefore stream the following
sentences out of the users home. This shows that those identi-
fied words are one cause of misactivations and therefore lead to
recorded audio from the users home being sent to the cloud and pro-
cessed by computers or even other humans. Based on these findings,
it is unsurprising that Alexa-enabled devices are often triggered
unintentionally, leading to private conversations and audio being
transmitted outside the user’s home.

The full results of testing the Alexa wake-word (Alexa) with
words of the English language dictionary with 6 and 5 phonemes
as well as some random words, is shown in Table 5. The results
shown are the last round of 10 tests for each word. The left column
shows the probability of the device being activated while replaying
10 times the word in question.

703

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

6 DISCUSSION

Burst Detector: A malicious audio bug device whose sole purpose
is to eavesdrop on a victim may use extensive lossy audio com-
pression to keep the traffic rate below the detection threshold of
23kbit/s. However, such audio may not be suitable for automated
voice recognition as many features of the voice are deleted or ex-
changed with noise which impairs the scalability of such an attack
dramatically. However, our statistical probing approach would still
detect a significant difference in the traffic and detect the sent audio.

Statistical Probing: As mentioned in Section 2, attacks that issue
commands to a victim’s voice assistant can be detected by LeakyP-
ick. To achieve that, increasing the time traffic samples are acquired
as well as disabling audio probing is needed. By disabling the audio
probing mechanism, every invocation of the device must be done
by an external entity (e.g., the user or an attacker). By increasing
the sample size, it is also possible to distinguish reliably between
an actual invocation and background traffic spikes, even without
the knowledge of when audio is played or not as the p-values are
different for an invocation and background noise (cf. Figure 4). With
this tweak, LeakyPick would also be able to warn the user of such
attacks. Currently we are investigating into the influence of varying
levels of background noise on the Statistical Probing approach.

Countermeasures against Devices sending Audio: Depending
on whether LeakyPick acts as the gateway of the home network
or is sniffing passively the (encrypted) Wi-Fi traffic, there are dif-
ferent approaches to prevent a device from recording and sending
audio without the user’s permission. If our device is replacing the
gateway, traffic identified as containing audio recordings can be sim-
ply dropped at the network layer. If our device can only passively
sniff encrypted MAC layer traffic, inaudible microphone jamming
techniques could be used to prevent the device from recording
unsuspecting users private conversations [30, 37, 38, 42, 50].

Wake-Word Identification: We found that some of the identified
wake-words for Alexa are only effective if spoken by Google’s TTS
voice, and that we were unable to replicate the effect when spoken
by a human. We believe this may result from features that differ
between the TTS service audio file and natural voice. However, the
goal of the experiment was to demonstrate the extent to which
words are incorrectly interpreted as wake-words, rather than deter-
mining the actual words triggering incorrect wake-word detection.
There may also be wake-words, sounds, or noise our approach
could not find. We are currently investigating whether wrongly
recognized wake-words could be used to attack voice assistants
and other voice recognition applications.

7 RELATED WORK

Existing works discussing detection of inadvertent data transmis-
sions out of a user network have focused on IP cameras. To the best
of our knowledge, there are no published approaches for detecting
outgoing audio traffic for voice assistants and other audio-activated
devices, in particular approaches utilizing audio probing. We are
also not aware of publications utilizing audio probes to determine
if devices react to audio inputs.

The following discussion of related work focuses on existing
attacks on voice assistants and traffic analysis approaches for IoT



LeakyPick: loT Audio Spy Detector

device identification and IP camera detection. We also review ap-
proaches to microphone jamming, which can be used by LeakyPick
to prevent microphone-enabled IoT devices to record meaningful
audio when the user is not aware of it.

IP Camera Detection: IP camera detection approaches usually
extract features from packet headers. Wireless cameras in operation
continuously generate camera traffic flows that consist of video
and audio streams. The resulting traffic patterns of IP cameras
are likely to be different and easily distinguishable from that of
other network applications. Furthermore, to save bandwidth, IP
cameras utilize variable bit rate (VBR) video compression methods,
like H264. Because of the use of VBR, by changing the scene the
camera monitors a change in the bitrate of the video can be enforced.
Finally, by correlating scene changes and traffic bitrate changes
cameras, monitoring can be identified.

Cheng et al. [11] propose using the person being monitored to
change the scene by letting them move around. The resulting traffic
is then classified using machine learning. Similarly Liu et al. [29]
focus on altering the light condition of a private space to manipulate
the IP camera’s monitored scene. The resulting stream also changes
its bitrate and can therefore be distinguished from non-altered
streams, e.g., by using the statistical t-test. The above proposals are
completely orthogonal to our approach, as they are customized for
cameras. In addition, they make assumptions that are not applicable
to microphone-enabled IoT devices, e.g., utilizing a variable bit rate
encoding (VBR) and continuous data transmission.

Traffic Analysis: Numerous classification techniques have been
proposed to learn the behavior of IoT devices, distinguishing and
identifying IoT devices based on their traffic profile. Sivanathan
et al. [41] use network traffic analysis to characterize the traffic
corresponding to various IoT devices. They use the activity pat-
tern (traffic rate, burstiness, idle duration) and signalling overheads
(broadcasts, DNS, NTP) as features to distinguish between IoT and
non-IoT traffic. However, the approach requires training. Nguyen et
al. [33] propose an autonomous self-learning distributed system for
detecting compromised IoT devices. Their system builds on device-
type-specific communication profiles without human intervention
nor labeled data which are subsequently used to detect anoma-
lous deviations in devices’ communication behavior, potentially
caused by malicious adversaries. However, these proposals focus
on detecting anomalous behavior not consistent with benign device
actions. In contrast, our goal is to detect benign actions in response
to audio events, which may or may not be falsely detected. Also
our approach does not require the system to identify IoT devices
based on their traffic.

Eavesdropping Avoidance: Microphone, and more specifically,
voice assistant jamming attacks have been proposed by several
prior works. Roy et al. [37] present an approach for inaudibly in-
jecting audio to jam spy microphones using ultrasonic frequencies
and ultrasound modulated noise. As it is inaudible to humans, the
jamming is not interfering with human conversations. Zhang et
al. [50] build upon this work to inaudibly inject commands into
voice assistants, demonstrating that voice assistants and possibly
other commodity IoT devices are susceptible to the proposed ultra-
sonic control. Mitev et al. [30] further build upon these findings
to precisely jam human voice and inject recorded voice into voice

704

ACSAC 2020, December 7-11, 2020, Austin, USA

assistants. As discussed in Section 6, inaudible jamming approaches
could be used by LeakyPick to prevent a device from recording
meaningful audio when the user is not aware of it. In future work
we aim to use these approaches as an additional component of
LeakyPick, further increasing the privacy gains of our approach.

Voice Assistant Attacks: Voice assistants using voice recognition
are fairly new and many security and privacy aspects are still to be
improved.The common goal of such attacks is to control the voice
assistant of a user without him noticing.Diao et al. [14] present
attacks against the Google Voice Search (GVS) app on Android. A
malicious app on the smart phone can activate GVS and simulta-
neously play back a recorded or synthesized command over the
built-in speakers which is then picked up by the microphone, to
control the victim’s voice assistant. Alepis et al. [3] extend upon this
attack. They then proceed to use use multiple devices to overcome
implemented countermeasures by showing that infected devices
can issue commands to other voice-activated devices such as the
Amazon Echo or other smart phones.

Vaidya et al. [46] present a method to change a recording of
human voice so that it is no longer comprehensible by humans but
still correctly recognizable by voice recognition systems. Carlini et
al. [7] extended this work by presenting voice mangling on a voice
recognition system where the underlying mechanics are known,
resulting in a more precise attack. Since a mangled voice may alert
nearby users, Schonherr et al. [40] and Yuan et al. [49] propose
methods for hiding commands inside other audio files (e.g., music
files) such that they are not recognizable by humans. Similarly,
Carlini et al. [8] create audio files with similar waveforms, which
Mozilla’s DeepSpeech interprets as different sentences.

Voice assistant extensions have also been attacked. Kumar et
al. [28] showed that utterances exist such that Alexa’s speech-to-
text engine systematically misinterprets them. Using these findings
they proposed Skill Squatting, which tricks the user into opening
a malicious Skill. Simultaneously, Zhang et al. [51] proposed us-
ing malicious Skills with a similarly pronounced or paraphrased
invocation-name to re-route commands meant for that Skill.

These attacks show that an attacker is able to manipulate the
interaction flow with a voice assistant by, e.g., issuing commands
without the victim noticing, turning voice assistants into a potential
privacy and security risk for the user. LeakyPick can warn the user
if their voice assistant is under attack without him noticing it. When
combined with eavesdropping avoidance (e.g., jamming), the attacks
could be mitigated or even prevented.

8 CONCLUSION

As smart home IoT devices increasingly adopt microphones, there
is a growing need for practical privacy defenses. In this paper,
we presented the LeakyPick architecture that enables detection
of smart home devices that unexpectantly stream recorded audio
to the Internet in response to observing a sound. Conceptually,
LeakyPick periodically “probes” other devices in its environment
and monitors the subsequent network traffic for statistical patterns
that indicate audio transmission. We built a prototype of LeakyPick
on a Raspberry Pi and demonstrate an accuracy of 94% in detecting
audio transmissions from eight different devices with voice assistant
capabilities without any a priori training. It also identified 89 words



ACSAC 2020, December 7-11, 2020, Austin, USA

that could unknowingly trigger an Amazon Echo Dot to transmit
audio to the cloud. As such, LeakyPick represents a promising
approach to mitigate a real threat to smart home privacy.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable and construc-
tive feedback. This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG) — SFB 1119 - 236615297.

REFERENCES

[1] 2020. Scikit-learn Python machine learning library. https://github.com/scikit-

learn/

David W Aha, Dennis Kibler, and Marc K Albert. 1991. Instance-based learning

algorithms. Machine learning 6, 1 (1991).

[3] Efthimios Alepis and Constantinos Patsakis. 2017. Monkey says, monkey does:
security and privacy on voice assistants. IEEE Access 5 (2017).

[4] Amazon. [n.d.]. Alexa Built-in Products with AVS - SpeechRecog-
nizer. https://developer.amazon.com/de-DE/docs/alexa/alexa-voice-
service/speechrecognizer.html

[5] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001).

[6] Dell Cameron. 2018. Hack Can Turn Robotic Vacuum Into Creepy Rolling Surveil-
lance Machine.  https://gizmodo.com/hack-can-turn-robotic-vacuum-into-
creepy-rolling-survei- 1827726378

[7] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden voice commands.
In Proceedings of the USENIX Security Symposium.

[8] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted
attacks on speech-to-text. arXiv preprint arXiv:1801.01944 (2018).

[9] G. Casella and B. Roger. 199. Statistical Inference. Duxbury, 2nd edition.

[10] Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting Sys-

tem. In Proceedings of the ACM International Conference on Knowledge Discovery

and Data Mining (KDD).

Yushi Cheng, Xiaoyu Ji, Tianyang Lu, and Wenyuan Xu. 2018. DeWiCam: De-

tecting Hidden Wireless Cameras via Smartphones. In Proceedings of the ACM

Asia Conference on Computer and Communications Security (ASIACCS).

[12] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. 2018.

Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh

- A Python package). Neurocomputing 307 (2018). https://doi.org/10.1016/

j-neucom.2018.03.067

Joseph Cox. [n.d.]. Revealed: Microsoft Contractors Are Listening to Some Skype

Calls. https://www.vice.com/enys/article/xweqbq/microsoft-contractors-listen-

to-skype-calls

[14] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan Zhang. 2014. Your voice
assistant is mine: How to abuse speakers to steal information and control your
phone. In Proceedings of the ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices (SPSM).

[15] DIODES Incorporated. [n.d.]. FILTERLESS 3W CLASS-D STEREO AUDIO AMPLI-

FIER. https://www.diodes.com/assets/Datasheets/PAM8403.pdf

Education First. [n.d.]. 1000 most common words in English. https://www.ef .com/

wwen/english-resources/english-vocabulary/top-1000-words/

[17] Yoav Freund, Robert E Schapire, et al. 1996. Experiments with a new boosting
algorithm. In Proceedings of the International Conference on Machine Learning
(ICML), Vol. 96

[18] Sarah Frier. 2019.  Facebook Paid Contractors to Transcribe Users’ Audio
Chats. https://www.bloomberg.com/news/articles/2019-08-13/facebook-paid-
hundreds-of-contractors- to-transcribe-users-audio

[2

=

—
o

(13

[16

[19] Google. [n.d.]. Learn about Nest Protect’s automatic Sound Check test. https:
//support.google.com/googlenest/answer/9242130?hl=en
[20] Google. [n.d.]. Learn how Nest cameras and Nest Hello detect sound and motion.

https://support.google.com/googlenest/answer/9250426?hl=en
[21] Andy Greenberg. 2017. This hack lets Amazon Echo ‘remotely snoop’ on users.
https://www.wired.co.uk/article/amazon-echo-alexa-hack
Caroline Haskins. 2019. Amazon Is Coaching Cops on How to Obtain Surveillance
Footage Without a Warrant. https://www.vice.com/enys/article/43kga3/amazon-
is-coaching-cops-on-how-to-obtain-surveillance-footage- without-a- warrant
[23] Lente Van Hee, Ruben Van Den Heuvel, Tim Verheyden, and Denny Baert. [n.d.].
Google employees are eavesdropping, even in your living room, VRT NWS has
discovered. https://www.vrt.be/vrtnws/en/2019/07/10/google-employees-are-
eavesdropping-even-in-flemish-living-rooms/
[24] Alex Hern. 2019. Apple contractors ’regularly hear confidential details’ on
Siri recordings. https://www.theguardian.com/technology/2019/jul/26/apple-
contractors-regularly-hear-confidential- details-on-siri-recordings
Hive. [n.d.]. Hive Hub 360. https://www.hivehome.com/products/hive-hub-360
(Accessed June 2020).

[22

[25

705

Richard Mitev, Anna Pazii, Markus Miettinen, William Enck, and Ahmad-Reza Sadeghi

[26

[27

(28]

[29

@
=

(31]

[32

[33

(34]

[35

[36

w
=

[38

(39]

[40

[41

I
)

=
&

S
)

Infochimps.com. [n.d.]. 350000 simple english words. http:
//www .infochimps.com/datasets/word-list-350000- simple-english-words-
excel-readable

Business Insider. [n.d.]. Google says the built-in microphone it never told Nest users
about was "never supposed to be a secret’. https://www .businessinsider.com/nest-
microphone-was-never-supposed-to-be-a-secret-2019-2

Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. 2018. Skill squatting attacks on amazon
alexa. In Proceedings of the USENIX Security Symposium.

Tian Liu, Ziyu Liu, Jun Huang, Rui Tan, and Zhen Tan. 2018. Detecting Wireless
Spy Cameras Via Stimulating and Probing. In Proceedings of the ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys).

Richard Mitev, Markus Miettinen, and Ahmad-Reza Sadeghi. 2019. Alexa Lied to
Me: Skill-based Man-in-the-Middle Attacks on Virtual Assistants. In Proceedings
of the ACM Asia Conference on Computer and Communications Security (ASIACCS).
David Monsees. [n.d.]. More information about our processes to safeguard speech
data. https://www.blog.google/products/assistant/more-information-about-
our-processes-safeguard-speech-data/

Alfred Ng. 2019. Alexa and Google Assistant fall victim to eavesdropping
apps.  https://www.cnet.com/news/alexa-and-google-voice-assistants-app-
exploits-left-it-vulnerable-to-eavesdropping/

Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang Dang, N.
Asokan, and Ahmad-Reza Sadeghi. 2018. DIoT: A Crowdsourced Self-learning
Approach for Detecting Compromised IoT Devices. CoRR abs/1804.07474 (2018).
arXiv:1804.07474 http://arxiv.org/abs/1804.07474

TJ OConnor, Reham Mohamed, Markus Miettinen, William Enck, Bradley Reaves,
and Ahmad-Reza Sadeghi. 2019. HomeSnitch: behavior transparency and control
for smart home IoT devices. In Proceedings of the ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec).

Lawrence Philips. 1990. Hanging on the metaphone. Computer Language 7, 12
(1990).

Raspberry Pi Foundation. [n.d.].  Raspberry Pi 3 Model B. https://
www.raspberrypi.org/products/raspberry-pi-3-model-b/

Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. 2017. BackDoor:
Making Microphones Hear Inaudible Sounds. In Proceedings of the ACM Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys).
Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury. 2018.
Inaudible voice commands: The long-range attack and defense. In Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Alex Rudnicky. [n.d.]. The CMU Pronouncing Dictionary. http://
www.speech.cs.cmu.edu/cgi-bin/cmudict

Lea Schonherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. 2018. Adversarial Attacks Against Automatic Speech Recognition Sys-
tems via Psychoacoustic Hiding. arXiv preprint arXiv:1808.05665 (2018).
Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2017. Charac-
terizing and classifying IoT traffic in smart cities and campuses. Proceedings of
the IEEE INFOCOM Workshop on Smart Cities and Urban Computing (SmartCity)
(2017).

Liwei Song and Prateek Mittal. 2017. Inaudible voice commands. arXiv preprint
arXiv:1708.07238 (2017).

Texas Instruments. [n.d.]. Low-Power, Low-OffsetVoltage, Dual Comparators. https:
/lwww .ti.com/lit/ds/symlink/lm393-n.pdf

Kevin C. Tofel. 2018. Here’s why smart home hubs seem to be dying a slow,
painful death. https://staceyoniot.com/heres-why-smart-home-hubs-seem-to-
be-dying-a-slow-painful-death/

tp-link. [n.d.]. 150Mbps High Gain Wireless USB Adapter - TL-WN722N. https:
//www .tp-link.com/en/home- networking/adapter/tl-wn722n/

Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. 2015. Cocaine
noodles: exploiting the gap between human and machine speech recognition. In
Proceedings of the USENIX Workshop on Offensive Technologies (WOOT).
Vladimir Vapnik. 2013. The nature of statistical learning theory. Springer science
& business media.

Merriam Webster. [n.d.]. .

Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen,
Shengzhi Zhang, Heqing Huang, Xiaofeng Wang, and Carl A Gunter. 2018. Com-
manderSong: A Systematic Approach for Practical Adversarial Voice Recognition.
arXiv preprint arXiv:1801.08535 (2018).

Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. Dolphinattack: Inaudible voice commands. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS).

Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and
Feng Qian. 2018. Understanding and Mitigating the Security Risks of Voice-
Controlled Third-Party Skills on Amazon Alexa and Google Home. arXiv preprint
arXiv:1805.01525 (2018).


https://github.com/scikit-learn/
https://github.com/scikit-learn/
https://developer.amazon.com/de-DE/docs/alexa/alexa-voice-service/speechrecognizer.html
https://developer.amazon.com/de-DE/docs/alexa/alexa-voice-service/speechrecognizer.html
https://gizmodo.com/hack-can-turn-robotic-vacuum-into-creepy-rolling-survei-1827726378
https://gizmodo.com/hack-can-turn-robotic-vacuum-into-creepy-rolling-survei-1827726378
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://www.vice.com/en_us/article/xweqbq/microsoft-contractors-listen-to-skype-calls
https://www.vice.com/en_us/article/xweqbq/microsoft-contractors-listen-to-skype-calls
https://www.diodes.com/assets/Datasheets/PAM8403.pdf
https://www.ef.com/wwen/english-resources/english-vocabulary/top-1000-words/
https://www.ef.com/wwen/english-resources/english-vocabulary/top-1000-words/
https://www.bloomberg.com/news/articles/2019-08-13/facebook-paid-hundreds-of-contractors-to-transcribe-users-audio
https://www.bloomberg.com/news/articles/2019-08-13/facebook-paid-hundreds-of-contractors-to-transcribe-users-audio
https://support.google.com/googlenest/answer/9242130?hl=en
https://support.google.com/googlenest/answer/9242130?hl=en
https://support.google.com/googlenest/answer/9250426?hl=en
https://www.wired.co.uk/article/amazon-echo-alexa-hack
https://www.vice.com/en_us/article/43kga3/amazon-is-coaching-cops-on-how-to-obtain-surveillance-footage-without-a-warrant
https://www.vice.com/en_us/article/43kga3/amazon-is-coaching-cops-on-how-to-obtain-surveillance-footage-without-a-warrant
https://www.vrt.be/vrtnws/en/2019/07/10/google-employees-are-eavesdropping-even-in-flemish-living-rooms/
https://www.vrt.be/vrtnws/en/2019/07/10/google-employees-are-eavesdropping-even-in-flemish-living-rooms/
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.hivehome.com/products/hive-hub-360
http://www.infochimps.com/datasets/word-list-350000-simple-english-words-excel-readable
http://www.infochimps.com/datasets/word-list-350000-simple-english-words-excel-readable
http://www.infochimps.com/datasets/word-list-350000-simple-english-words-excel-readable
https://www.businessinsider.com/nest-microphone-was-never-supposed-to-be-a-secret-2019-2
https://www.businessinsider.com/nest-microphone-was-never-supposed-to-be-a-secret-2019-2
https://www.blog.google/products/assistant/more-information-about-our-processes-safeguard-speech-data/
https://www.blog.google/products/assistant/more-information-about-our-processes-safeguard-speech-data/
https://www.cnet.com/news/alexa-and-google-voice-assistants-app-exploits-left-it-vulnerable-to-eavesdropping/
https://www.cnet.com/news/alexa-and-google-voice-assistants-app-exploits-left-it-vulnerable-to-eavesdropping/
https://arxiv.org/abs/1804.07474
http://arxiv.org/abs/1804.07474
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.ti.com/lit/ds/symlink/lm393-n.pdf
https://www.ti.com/lit/ds/symlink/lm393-n.pdf
https://staceyoniot.com/heres-why-smart-home-hubs-seem-to-be-dying-a-slow-painful-death/
https://staceyoniot.com/heres-why-smart-home-hubs-seem-to-be-dying-a-slow-painful-death/
https://www.tp-link.com/en/home-networking/adapter/tl-wn722n/
https://www.tp-link.com/en/home-networking/adapter/tl-wn722n/

	Abstract
	1 Introduction
	2 Background
	3 Solution Overview
	4 LeakyPick Design
	4.1 Audio Event Detection
	4.2 Wake-Word Selection
	4.3 System Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Detection Accuracy
	5.3 RQ2: Wake-Word Sensitivity
	5.4 RQ3 and RQ4: Real-World Performance
	5.5 RQ5: Identifying Unknown Wake-Words

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

