
An Application Package Configuration Approach to
Mitigating Android SSL Vulnerabilities

Vasant Tendulkar
Department of Computer Science
North Carolina State University

tendulkar@ncsu.edu

William Enck
Department of Computer Science
North Carolina State University

enck@cs.ncsu.edu

Abstract—Computing platforms such as smartphones fre-
quently access Web content using many separate applications
rather than a single Web browser application. These applications
often deal with sensitive user information such as financial
data or passwords, and use Secure Sockets Layer (SSL) to
protect it from unauthorized eavesdropping. However, recent
studies have confirmed a wide-spread misconfiguration of SSL
verification in applications. This paper considers the difficulty
faced by Android application developers when modifying SSL
code for using common features like pinning or using a self-
signed SSL certificate. For example, developing an application
that accesses a test Web server with a self-signed certificate
requires additional code to remove SSL verification; however,
this code is not always removed in production versions of the
application. To mitigate vulnerabilities introduced because of the
complexity of customizing SSL code in Android applications,
we propose that common SSL configuration should be specified
in the application’s package manifest. We provide two concrete
suggestions: 1) linking the application’s debug state to SSL
verification, and 2) pinning certificates and CAs in the manifest.
We evaluate the appropriateness of these two suggestions on over
13,000 applications from Google’s Play Store, of which 3,302 use
SSL in non-advertisement code, and find that 1,889 (57.20%) of
these SSL applications would benefit.

I. INTRODUCTION

Smartphones are increasingly integral to our daily lives. A
key feature of smartphones is their ability to run third party
applications, often downloaded from application markets, such
as the Apple App Store and Google Play Store. These appli-
cations frequently do not execute in isolation. Instead, they
communicate with Web servers to retrieve information and
perform computation. If this communication is not secured,
network adversaries can eavesdrop on sensitive information
such as passwords and financial data, or actively intercept and
modify the communication to exploit client software.

The Secure Sockets Layer (SSL) is the de facto standard
for securing communications over the Internet. SSL and the
related Transport Layer Security (TLS) standard have under-
gone many revisions to ensure a robust security protocol.
However, the security of SSL is contingent on correct client-
side verification of 1) the server certificate and 2) the server
hostname. This logic is controlled by the client application
and not the SSL library. For example, the hostname must be
extracted from the URL and compared with the common name
in the SSL certificate. Failing to verify either the certificate
or the hostname enables Man-in-the-Middle (MITM) attacks

wherein an active adversary intercepts the SSL connection
with the client and relays traffic through a new SSL connection
with the server. While all traffic is in fact encrypted, the
adversary can easily eavesdrop and modify the contents.

Until relatively recently, the wide-spread end-user software
using SSL was mostly limited to Web browsers and Email
clients. There were only a handful of such applications, allow-
ing for scrutiny that led to the discovery and removal of veri-
fication flaws [23], [24], [25]. The smartphone’s “application-
centric” computing model creates a new problem. The SSL
verification logic has moved from the Web browser application
to thousands of applications written by a diverse set of devel-
opers. The available scrutiny has remained relatively constant
and must be distributed across these thousands of applications.
Therefore, many applications with vulnerable SSL verification
logic potentially exist. Fahl et al. [16] recently confirmed this
expectation for Android applications. They found 41 of 100
manually audited applications using SSL were vulnerable to
MITM attacks.

A simple solution to widespread SSL verification flaws
is to encapsulate the logic into an easy to use Application
Programming Interface (API). Indeed, this is what Android
provides. In most cases, the difference between using HTTP
and HTTPS to access a Web server is using the https://
prefix scheme in place of http://, and the Android libraries
ensure correct verification. The verification flaws observed by
Fahl et al. occur when the developer decides to add extra code
to define custom SSL socket factories, trust managers, and
hostname verifiers that effectively bypass the verification.

In this paper, we propose an application package configura-
tion approach to mitigating Android SSL vulnerabilities. We
observe that many of the existing SSL vulnerabilities occur
because the developer needed to add code. The significant
number of developers adding SSL-related code implies that
Android’s easy to use SSL API interface is insufficient, be-
cause it does not enable common features required by develop-
ers. By moving SSL configuration to the application’s package
manifest, we seek to eliminate the need for the developer to
add code that will potentially lead to vulnerabilities.

We make the following two suggestions. First, the appli-
cation’s “debug” flag should control SSL verification. If the
application is in debug mode, then SSL should allow any
certificate and hostname. This suggestion accounts for the

common case where developers are using test servers that
use self-signed certificates. Currently, this scenario requires
additional code in development, and the code may not be re-
moved in the production version. Second, the package manifest
should allow the application’s SSL connections to be “pinned”
to a specific set of certificates and certificate authorities (CAs).
This suggestion allows developer to a) use production servers
with self-signed certificates or certificates not yet trusted by
Android, b) limit exposure to vulnerable CAs [8], [12].

We evaluate the usefulness of these two suggestions by
surveying a snapshot of 13,000 popular free applications from
Google’s Play Store and 240 open-source applications from the
F-Droid repository [15]. Of the 3,302 applications that use SSL
within the application (not counting SSL for advertisements
and analytics), we conservatively find that 1,889 applications
(57.20%) could have been supported using our package man-
ifest solution.

This paper makes the following contributions:
• We propose that SSL verification logic should be stated

in an application’s configuration and not in code. We
provide two valuable suggestions for doing so.

• We evaluate our two suggestions on a corpus of 3,302
closed-source applications that use SSL within the appli-
cation. We demonstrate that 57.20% of these applications
would benefit from implementing our suggestions.

Finally, we note that moving all potential SSL configuration
to the package manifest is not practical or desirable. Providing
complete programmability of SSL verification in the pack-
age manifest would require a Turing complete sub-language.
Rather, our goal is to provide an alternative to adding code that
covers a greater majority of use cases. We strongly believe that
there will always be edge cases, and removing code-based SSL
configuration ability from developers, as suggested by a recent
concurrent study by Fahl et al. [17], is overly limiting.

The remainder of this paper proceeds as follows. Section II
overviews SSL and its usage in Android. Section III describes
our proposed solutions to mitigate SSL vulnerabilities in
Android applications. Section IV describes the methodology
and the experiments. Section V discusses additional topics.
Section VI describes related work. Section VII concludes.

II. BACKGROUND AND MOTIVATION

A. Background

SSL Handshake Protocol: The client and server establish
a secure connection by using the SSL handshake protocol,
summarized in Figure 1.

The two steps in the protocol necessary to ensure the
authenticity of the connection are verifying the server cer-
tificate (chain-of-trust establishment) and verifying the server
identity (hostname verification). Since these are implemented
in the application layer, developers have the responsibility of
implementing them correctly in the application.

Certificate Verification: Every SSL client has a list of trusted
root CA certificates. Each SSL certificate contains an “issuer”
field that has the name of the issuer Certificate Authority (CA).

 (1) Client Hello

 (2) Server Hello
Server Certificate

(3) Validate
- a) Server Certificate
- b) Chain of Trust

(4) Verify Server
 Identity

(6) Client Key Exchange

(5) Generate
 Session Key

Encrypted session
(7) Generate
 Client Key

Client Server

Fig. 1. Overview of the SSL Handshake Protocol

Server

(1) Issue
 request

 (2) Send
 - a) Server Cert.
 - b) List of CA Cert(s)
 including root

Root CA

Intermediate
 CA

Intermediate
 CA

Issuer /
Intermediate CA

 (3) Verify
 - a) Server Cert
 - b) Issuer CA Cert(s)
 - c) Root CA Cert

Chain of Trust

(4) Verify Issuer CA
 Cert

(5) Verify Root CA
 Cert

Client

Fig. 2. Establishing the Chain of Trust

In response to the client hello, the server sends its own SSL
certificate and the SSL certificate of its issuer CA to the client.
If the issuer CA is not a root CA then the server sends a chain
of intermediate CAs, all the way to a root CA. The client then
attempts to establish a chain-of-trust starting with the server’s
certificate all the way up the chain to the root CA. The client
also verifies that the certificates are not expired and that each
CA certificate has the ’CA’ bit set in the “Basic Constraints”
field. If either the root CA is not trusted by the client or one
of the intermediate CA’s certificate is either expired or invalid
then the client closes the SSL connection.

Hostname Verification: Once the chain-of-trust is established,
the client then verifies the server’s identity (hostname). The
client constructs a list of acceptable identifiers based on
the server’s domain name. RFC 2818 [26] advises to use
’SubjectAltName (SAN)’ extension as the main source for
server identity. Otherwise, the (most specific) Common Name
(CN) field in the ’Subject’ field of the certificate must be used.
CN use is now deprecated and should be only checked to
ensure backward compatibility. After creating a list of server
identifiers, as specified in RFC 6125 [27], the client attempts
to match the Fully Qualified Domain Name (FQDN) of the
server to one of the identifiers.

Usually a single SSL certificate is used per domain. How-
ever, if a developer wants to use the same certificate for

multiple domains or sub-domains, she would have to use either
a SAN enabled certificate for multiple domains or a wildcard
certificate, both of which are more expensive than regular SSL
certificate. SAN certificates can be used on either multiple
domains or sub-domains. Alternatively, if the developer wants
to use a single certificate on multiple sub-domains of a partic-
ular domain then she could use either a wildcard certificate or
write custom verification code to accept the same certificate
over multiple sub-domains. There are certain vulnerabilities
associated with incorrect sub-domain hostname verification
while using wildcard certificates. For example, if the developer
uses a wildcard certificate for *.foo.com and has custom
verification code to accept all hostnames matching *.foo.com
without correctly validating the hierarchy, then the attacker’s
certificate for *.xyz.foo.com could pass as a correct certificate,
thus making the application vulnerable to MITM attacks.
Hence, irrespective of the certificate used the developer needs
to ensure that the implementation for certificate verification
code is correct. Matching identifiers containing wildcards is
by itself fairly complex. The default hostname verifier used by
the Android SDK matches only sub-domains in the same level
and not with deeper sub-domains. Developers need to write
their own hostname verification code to facilitate hostname
verification at multiple sub-domain levels.

After successful completion of the handshake, a key is
exchanged between the client and the server, which is used
for encrypting the communications between them.

B. Motivation

There are several cases where developers need to modify
the default certificate verification logic to use SSL in their
application. For example, if the developer wants to trust only
one root CA certificate then she has to modify the default
SSL verification logic to pin the root CA certificate to the
application i.e. SSL pinning. Likewise, if the developer wants
to use a self-signed certificate during development or on
production servers, then she has to alter the SSL verification
logic to consider the self-signed certificate as trusted. We
now discuss the ways in which developers can modify default
verification logic to use SSL correctly in their application.

The Android SDK provides APIs for developers to create
SSL connections, but these built-in APIs only trust the root CA
certificates that come bundled with Android. However, the use
of the CA model for SSL verification implies that if developers
choose to trust the root CA then they also have to trust all the
intermediate CAs signed by that root CA. If the developer
does not want to trust all the built-in root CA certificates,
then she can use SSL pinning to trust only certain root CAs.
SSL Pinning is a technique that allows developers to protect
the application from MITM attacks resulting from fraudulently
issued certificates or compromised CA credentials. To protect
the application from compromised CAs, the developer can add
custom certificate verification code which discards all the other
CA certificates except the pinned ones.

The default SSL verification logic of Android also does
not accept self-signed certificates or certificates signed by a

CA not currently trusted by Android (untrusted CA). Such
certificates can be obtained for free or at minimum cost to the
developer. Using self-signed certificates can also protect the
application from MITM attacks resulting from compromised
CAs. Now the developer has to trust only those certificates that
were created and signed by her. Since application updates are
easily distributed through app markets, managing self-signed
or untrusted CA certificates via pinning is also reasonable. In
order to use such certificates, the developer has to modify the
default certificate verification logic to trust the self-signed cer-
tificate or untrusted CA certificate. This can also be achieved
by pinning the aforementioned certificate in the application.

Developers also often use the same certificate or self-signed
certificates on multiple development servers to avoid using
costly SSL certificates for debugging purposes. However, the
production servers use valid SSL certificates. In order to use
self-signed certificates, developers can customize the default
verification logic to pin them to the application. However, once
debugging is complete developers need to remove all traces of
the such code to ensure correct verification of SSL certificates
in the final production version of the application.

When developers use built-in APIs to create SSL con-
nections server certificate and hostname verification is per-
formed by Android. The connection is closed if either of the
verification fails. However, when developers customize SSL
connections for any of the above mentioned reasons, they have
to modify the default SSL verification logic in the application.
Failing to correctly verify either the server certificate or its
identity leaves the application vulnerable to MITM attacks.
We believe that developers should not be burdened with the
responsibility of adding extra code for customizing SSL con-
nections to use a particular kind of certificate or to use popular
SSL features. To alleviate this burden from the developers, we
provide configuration policy based solutions in Section III and
evaluate their effectiveness in Section IV.

III. SOLUTION

Recent research [16], [20] highlighted some flaws in the
use of SSL in mobile and non-browser software. They showed
that the incorrect use of SSL in applications and inconsistent
implementation of APIs in various libraries leaves applications
vulnerable to MITM attacks. Concurrent to our work, Fahl et
al. [17] have provided solutions to address these problems.
Section VI further differentiates our work from Fahl et al.

To provide effective solutions, we looked at the reasons
why developers add custom SSL verification code to appli-
cations. In January 2013, we studied programming-related
Q&A forums (e.g. StackOverflow.com) for “using SSL in
Android applications”. The following list summarizes the most
common causes we found in the replies:

• The developer is using a self-signed certificate.
• The developer is using a certificate signed by a CA not

yet trusted by Android.
• The developer does not know how to use SSL and wants

to get rid of the SSLException.

StackOverflow.com

Fig. 3. Enabling debug flag in Android Manifest

• The developer is using the same certificate on multiple
servers.

The solutions provided to most of the questions mainly
contained explanations on techniques to accept all certificates,
which essentially translates to disabling SSL verification.
These answers were commonly called Allow-All, Accept-All
or Trust-All solutions (cf. Section IV-C). Very few entries
mentioned the negative consequences of writing such code.
Disabling SSL verification leaves the application vulnerable to
MITM attacks. Studying these entries confirmed our belief that
the complexity of customizing SSL verification code to use
common features was a substantial factor in driving developers
towards using a Trust-All or Allow-All solution.

Providing new classes with more complex functionality for
developers to learn and use is not the appropriate solution.
A better solution is to make the process of customizing
SSL verification transparent to the developer. We believe
that customizing SSL verification should not require adding
code to the application, as it can lead to vulnerabilities. We
present configuration-based solutions that can be implemented
as policies in the application manifest file.

It is possible that there are additional reasons why develop-
ers add custom verification code to applications and we might
not have been able to cover all possible causes above. There
will always be edge cases. However, our goal is to provide
an easier alternative to adding code, that covers a majority
of the applications, and at the same time giving developers
the flexibility to customize SSL connections. We discuss this
further in Section V.

A. Linking application debugging with SSL verification

The manifest file (AndroidManifest.xml) in Android ap-
plications uses a tag (android:debuggable) to denote if an
application is a debug build. Figure 3 shows a part of an
AndroidManifest.xml file with debugging enabled. This allows
developers to perform tasks like collecting logs, etc.

It is a common practice to use self-signed or the same
SSL certificate(s) on test servers during the debug phase
and valid SSL certificates during deployment. To use these
certificates developers have to either implement SSL pinning
or completely disable SSL verification. Disabling verification
is equivalent to accepting all SSL certificates.

The downside with adding code that disables SSL verifica-
tion is that developers have to remove all traces of this code
after debugging is complete. It is not uncommon to forget
or leave active debug code in the deployed application. CWE

(Common Weakness Enumeration) defines it as Leftover De-
bug Code [11] - “The application can be deployed with active
debugging code that can create unintended entry points”. If
there are any remnant instances of such debug code then the
application would be vulnerable to MITM attacks.

Our solution to this problem is to link the debug flag
in the application manifest with temporary removal of SSL
verification. If the application is in debug build, then An-
droid should accept any SSL certificate when creating an
SSL connection. With our solution, the use of self-signed or
untrusted CA certificates during debugging can be handled
by Android itself. Thus, if the manifest has the debug flag
set to true, Android can disable SSL verification, i.e. accept
all SSL certificates. Once the debugging of the application is
completed, the debug flag can be removed from the application
manifest and Android can enforce SSL verification checks on
all connections as it would normally do. Note, after debugging
the developer should do one final test of the application in the
release mode with the SSL certificates that are going to be
used on the production servers to ensure correct functioning
of the application.

In our solution, the developer does not have the need to
actively add the debug flag to the application manifest. An-
droid has implemented support for a true debug build starting
with SDK Tools revision 8 (December 2010) [6]. This means
the build tools add the attribute android:debuggable
automatically to the application manifest. The SDK assumes
all incremental builds to be debug builds, so it inserts
android:debuggable="true" to the manifest. When
exporting a signed release build, it removes the attribute.
However, if the developer manually adds the debug flag to
the manifest but forgets to remove it later from the production
build, it is not automatically removed. We believe there is an
easy solution to this i.e. enforcing a check at build time or
at the application market level to see whether the debug flag
is enabled and notifying respective developers to resubmit a
corrected production build.

Thus, if SSL verification is linked with the debug flag,
then developers will not have to worry about adding custom
SSL verification code to use a particular certificate on test
servers. This will alleviate the burden of keeping track of and
removing all instances of extra SSL verification code from the
application that they would have otherwise added.

B. Allowing SSL Pinning as an Application Manifest Policy

SSL Pinning is a process of associating a particular certifi-
cate with a host or server. It allows developers to restrict the
number of default root CA certificates as well as allows them
to trust self-signed, invalid or untrusted CA certificates.

Android comes with a set of trusted root CA certificates
that it uses to establish the chain of trust. Some versions of
Android trust more than a hundred root CAs, for e.g., Android
4.2 trusts 140 root CA certificates. The developer might not
want to trust all of them for reasons such as compromise of
root CA credentials [8], [12]. In such cases, the developer can
pin only a few root CAs she trusts. Developers also need to

1 <uses-SSLPinning useDefaultTrustStore="false" >
2 <!--Self-signed Server Certificate-->
3 <Cert type="self" algo="SHA-1">
4 B8:01:...
5 </Cert>
6 <!--Trusted Issuer CA Certificate-->
7 <Cert type="ca" algo="SHA-1">
8 93:E6:...
9 </Cert>

10 </uses-SSLPinning>

Listing 1. Implementing SSL Pinning as a policy in the AndroidManifest.xml
file.

implement SSL pinning when they use self-signed or untrusted
CA certificates.

In both cases, the developer would have to create a
KeyStore containing those trusted certificates (self-signed
or root CAs) and write custom SSL verification code to use
this KeyStore, instead of the default used by Android.
Another way of using self-signed or untrusted certificates in
Android is to completely disable SSL verification i.e. accept
all certificates which leaves the application vulnerable to
MITM attacks.

Our solution to this problem is to enable the developer to
pin SSL certificate(s) within the application manifest. This
would eliminate the need for the developer to add custom
SSL verification code or to disable SSL verification altogether.
Listing 1 shows the AndroidManifest.xml for an application
with our hypothetical SSL Pinning enabled in the manifest.
The developer would add the trusted certificates as policies in
the manifest. Note, a similar manifest policy for SSL pinning
was also concurrently proposed by Fahl et al. [17] (cf. Sec-
tion VI). However, they allow developers to only pin individual
certificates to the manifest. Thus, if the developer wants to trust
a particular root CA, she would have to implicitly trust all
the intermediate CAs comprising the chain-of-trust. With our
solution, we provide the useDefaultTrustStore option,
which allows the developer to specify if she wants to trust only
the pinned certificate or use it along with the default root CA
certificate store from Android. If set to true, the application
would treat both the pinned certificate and the default root CA
certificate store of Android as trusted, otherwise it would trust
only the pinned certificate.

Enabling SSL Pinning in the manifest can also tackle
likely problems introduced by the use of DNS based load
balancing techniques like GeoDNS [19]. GeoDNS routes the
application’s request to the closest server with respect to geo-
location. In the event that certificates signed by untrusted
CAs are used on some of the servers, the developer can pin
these certificates in the manifest. As there is no definitive
way of knowing beforehand which server the request will be
redirected to, our solution allows the developer and service
provider the flexibility of using any certificate on any server.
This would prevent the need for disabling SSL verification,
thus protecting the application from MITM vulnerabilities.

IV. EVALUATION

We aim to show that developers need not add custom source
code in the application for performing verification checks
when using common SSL features. In order to do that we
analyze the usage of SSL in the application along with the
SSL certificate(s) used on their production servers.

A. Experiment Methodology

Determining the necessity for custom SSL verification: The
study by Fahl et al. [16] demonstrates the misuse of SSL in
Android applications. However, their results do not distinguish
between the vulnerabilities introduced by developer code and
the those introduced because of the use of advertisement
and analytics libraries (henceforth referred to as ad libraries).
We wanted to focus on vulnerabilities caused due to custom
verification code added by the developer. We believe that the
SSL code generated due of the inclusion of ad libraries is
orthogonal to the functionality of the application and does
not affect it. Furthermore, if the vulnerable code is present in
ad libraries, it can be easily addressed by having the library
provider distribute an update. We classified applications that
use SSL into three categories, namely:

• src only - Applications that use SSL only in non-
advertisement source i.e. no SSL code introduced because
of ad libraries.

• ads only - Applications which have SSL only because of
inclusion of ad libraries.

• src and ads - Applications which have some SSL usage
from non-advertisement code and some from ad libraries.

To classify applications in to the above mentioned cate-
gories, we generated a list of the most commonly used ad
libraries. We obtained the top 100 libraries noted by Grace et
al. [22] in their study of mobile advertisement library risks. To
that list, we added the libraries obtained from AppBrain.com, a
Website which shows the statistics for library usage in Android
applications. While this list may not be exhaustive, from
the statistics on AppBrain.com, the list of libraries that we
obtained was present in 78.11% [5] of applications available
in the Google Play Store, as of March 2013.

We examined applications that belonged to the src only and
src and ads categories. We disassembled each application us-
ing baksmali and used grep to search for keywords associated
with SSL, enumerated in Table I, in the disassembled code
and stored it along with the file path where SSL was used.
We used a Python script to classify the usage of SSL into
advertisement and non-advertisement code. A file containing
the list of ad libraries was given to the Python script as input.
Android application source, including ad libraries, follow a
particular directory structure. We used this directory structure
to determine if the SSL usage occurred in an ad library or
in non-advertisement code. The directory path of the library
contains the name of the library which we compared with
the list of known ads and analytics libraries. The Python
script classified an application as src only if it used SSL
only in non-advertisement code and as src and ads if it

AppBrain.com
AppBrain.com

TABLE I
SSL-RELATED KEYWORDS SEARCHED BY grep

SSLSocketFactory
TrustManager
HostnameVerifier
HttpsUrlConnection
SSLContext
SSLSocket
SSL
https://

used SSL in non-advertisement code as well as ad libraries.
The applications which used SSL only in ad libraries were
classified as ads only.

The list of ads and analytics libraries that we used for
classification is not exhaustive. Hence, it is possible that SSL
code occurring from an ad library not in our list might be
classified as non-advertisement SSL code (false negatives).
Such applications would be classified as either src only or
src and ads. However, we analyzed applications belonging
to both classes. In the applications where the SSL code was
originating from a library, we examined whether the library
was a developer tools library supplementing functionality or
an ad library. This reduced the number of false negatives. We
also analyzed the SSL code to determine whether it was used
for creating custom SSL connections or not.

Verifying SSL Certificate:
We downloaded and verified the SSL certificates used on

the production servers of the application to determine whether
developer needed to add custom SSL verification code. We
used a Python script to download the SSL certificate on the
production server . To determine whether the SSL connection
could be made using built-in APIs, we used openssl to verify
each certificate using the default root CA store of Android.
This enabled us to identify which applications needed custom
SSL verification code for using self-signed or untrusted CA
certificates and which did not. We used the root CA certificates
from Android OS ver. 2.3.3, 4.0, 4.1, 4.2 because together they
account for 94.3% of devices being used (as of May 2013 [3]).

We started with the analysis of open-source applications
because Official Google Play Store applications are closed-
source and only the binary (.apk file) is available.

B. Analysis of Open-source Applications

We obtained open-source applications from F-droid, an An-
droid Free and Open Source Software repository, that provides
multiple versions of each app and its source. We downloaded
a snapshot of all applications in the repository in January
2013 which consisted of 240 applications. We used grep to
search each of these applications for terms associated with SSL
(cf. Table I) and classified these applications into those using
SSL and those that do not. Out of the 240 applications, we
identified 26 that use SSL. None of the applications obtained
from F-Droid repository contained ad libraries because of the
repository policy. We manually analyzed the source code of
these applications.

Out of the 26 applications, 10 contained insecure custom
SSL verification code. Out of these 10, 6 applications used
some form of a custom TrustManager that accepted all
SSL certificates without verification. 3 applications used some
form of a custom HostnameVerifier that allowed all
certificates without performing hostname verification. One
application used both techniques to accept all certificates and
not verify server identity. Only 2 out of the 10 applications
containing insecure custom SSL code, used self-signed or
untrusted CA certificates on production servers. It is likely
that this insecure code was added to enable the use of such
certificates. The remaining applications were using valid SSL
certificates and did not have the need for custom SSL verifica-
tion code. Besides analyzing the code we also looked through
the comments added by the developer. In the comments of
one application, that used both the Trust-All and the Allow-
All strategies (cf. Section IV-C), the developer mentioned that
she had to use them because one of the third-party servers
in her application used a self-signed certificate. However, the
use of insecure SSL verification code for one service provider
left all other service providers vulnerable to a MITM attack.
To tackle such scenarios we suggest that the developer pin
only (trusted) self-signed certificates and use them along with
the default Android trusted CA certificate store, as opposed to
completely disabling SSL verification.

The analysis of open-source applications was on too small a
set of applications (26 out of 240 i.e. 10.83% applications used
SSL) to generalize the behavior of all applications using SSL.
The next logical step is to perform a large scale analysis of
applications using SSL and see if they follow similar patterns.

C. Patterns for insecure SSL verification

In some open-source applications, patterns pertaining to the
custom SSL verification code looked remarkably similar to
the patterns we found on StackOverflow.com entries. Rest of
the applications used minor variations of these patterns. These
code patterns, if present in the application, leave it vulnerable
to MITM attacks. Following are the code patterns for insecure
SSL verification code we found:

No Certificate Validation a.k.a Trusting All Certificates:
The TrustManager interface in Android (javax.net.ssl) can
be defined to implement custom certificate verification or
extended validation features like SSL Pinning. It can be ini-
tialized to trust either Android’s default root CA certificates or
the CA certificates that the developer wants or both. Listing 2
shows the code idiom of the sample trust manager which trusts
all certificates. The checkServerTrusted() function has
to be overridden to define custom certificate verification. If it is
defined with an empty code block then the trust manager does
not perform any verification, accepts all SSL certificates and
proceeds with the connection even if the certificate is invalid
or expired. This trust manager is commonly referred to as
Trust-All Trust Manager.

No Hostname Verification a.k.a Allowing All Hostnames:
The SSLSocketFactory class (javax.net.ssl) uses a host-

StackOverflow.com

1 TrustManager tm = new X509TrustManager(){
2

3 public void checkServerTrusted(X509Certificate[] c, String
at) throws CertificateException

4 {} // <- Empty Code Block = No verification
5 };

Listing 2. A Trust Manager that trusts all certificates.

1 SSLSocketFactory s = new SSLSocketFactory(keyStore);
2 s.setHostnameVerifier(SSLSocketFactory.

ALLOW_ALL_HOSTNAME_VERIFIER);

Listing 3. Using built-in Allow All Hostname Verifier

name verifier for verifying the identity of the server. The
default hostname verifier used by the built-in APIs performs
all the necessary checks required. The Android SDK also
provides an Allow All Hostname Verifier. However, it mentions
in the documentation that this hostname verifier [2] neither
performs hostname verification nor throws an exception if the
hostname is invalid. It essentially turns hostname verification
off. Listing 3 shows the code idiom for using a built-in Allow
All Hostname Verifier.

The Android SDK also allows developers to define cus-
tom hostname verification in the verify() function of the
HostnameVerifier interface. This function verifies the
server hostname and throws an exception if it does not match
with the certificate. However, if verify() is defined with
an empty code block or if it always returns true, then the
hostname verifier neither verifies the identity of the server nor
throws an exception. Listing 4 shows the code idiom for such
a hostname verifier. This hostname verifier is also referred as
Allow All Hostname Verifier.

Ignoring SSL Error: A WebView is a View used in Android
applications to allow browsing of Web pages. Developers
can create custom SSL connections when browsing secure
pages in the WebView. It uses the WebViewClient in-
terface to perform handle SSL errors. The developer can
override the onReceivedSslError() function in the
WebViewClient to appropriately notify the user about the
SSL error. However, this function can be defined such that
the error handler ignores the SSL error and proceeds with
the connection. Listing 5 shows the code idiom of such a
WebViewClient.

D. Analysis of Applications from Google Play Store

Our analysis of open-source Android applications depicted
the presence of insecure custom SSL verification code even

1 class AllowAll implements javax.net.ssl.HostnameVerifier{
2 AllowAll() {
3 this.<init>();
4 }
5 public boolean verify(String r1, SSLSession r2) {
6 return true; //<- Always true = Allow All certificates
7 }}

Listing 4. A Hostname Verifier that allows all certificates

1 class IgnoreError implements WebViewClient{
2

3 public void onReceivedSslError(WebView w, SslErrorHandler
h, SslError e) {

4 h.proceed(); //<- Proceed even if error occurs
5 }}

Listing 5. IgnoreWebViewClient which ignores SslError

though a majority of the applications were using valid SSL
certificates. We obtained 13,000 applications from the Official
Google Play Store. We took a snapshot of the 500 most
popular free applications from each of the 26 categories in
the Google Play Store in March 2013. Since the source of
these applications is not readily available, we disassembled
the binary apk using baksmali. On the disassembled code, we
used grep to search for keywords associated with SSL and
identified 4,985 applications (38.34%) that used SSL.

1) Manual Analysis of 200 applications: We wanted to
see if closed-source applications also contain the same code
patterns for vulnerable SSL code. Hence, we randomly se-
lected 200 applications for manual analysis. Another reason
for manual analysis was to identify code patterns and use
these patterns to categorize the remaining applications. We
decompiled these applications using Dare [9]. Dare is a tool
that retargets Android applications to .class files and then
decompiles them into .java files using Soot. We used a Python
script on the decompiled code to classify the applications
based on where SSL was used. We looked at applications
belonging to src only and src and ads categories.

137 out of those 200 applications used SSL in non-
advertisement code. 96 applications belonged to the src only
and the remaining 41 belonged to the src and ads. 84 out
of 137 applications contained insecure SSL code which
introduced MITM vulnerabilities. 58 applications used a
TrustManager that did not perform any server certificate
verification. 13 applications used a HostnameVerifier
that did not perform hostname verification. 13 applications
did neither server nor hostname verification.

For each of these applications, we also downloaded and
verified the SSL certificates used on the production servers of
the application using openssl and the default root CA store of
Android. Surprisingly, only 5 out of the 84 applications using
SSL, used self-signed certificates. The other 79 applications
used valid SSL certificates and did not need custom SSL
verification code. It is highly probable that the developer added
custom SSL code to disable verification checks during the
debugging phase to accommodate untrusted CA or self-signed
certificates on development servers, but forgot to remove all
instances of this code in production code. This confirmed our
belief that closed-source applications also contain additional
code for SSL verification that resembles the code patterns
described in Section IV-C.

2) Analysis of SSL verification code: To determine the
pervasiveness of the presence of code patterns in closed-source
applications, we analyzed the disassembled code of the re-
maining applications that SSL. We classified these applications

42.92%	

39.76%	

1.43%	 15.89%	

Analysis	 of	 SSL	 usage	 in	 applica2ons	

Apps	 using	 correct	 SSL	 verifica>on	

Apps	 trus>ng	 all	 cer>ficates	 (only	 AC)	

Apps	 allowing	 all	 hostnames	 (only	 AH)	

Apps	 using	 both	 AC	 and	 AH	

Fig. 4. Results for the analysis of SSL verification code with respect to the
technique Trust Any Certificate (AC) or Allow Any Hostname (AH) used to
bypass SSL verification.

based on where SSL was being used i.e. advertisement and
non-advertisement code into the three categories mentioned
above. 1,883 applications belonged to src only while 1,282
applications belonged to src and ads, a total of 3,165 out of
4,785 applications.

We obtained a list of known classes which implement
insecure custom SSL verification code patterns from Fahl
et al. [16]. To this list, we added the classes that we
identified as vulnerable during manual analysis of 200 ap-
plications and the analysis of open-source applications. We
used this list to initially prune down the number of appli-
cations which have known classes containing insecure SSL
verification code. For the remaining applications, we used
Androguard [4] to obtain the source code of the classes which
used SSL i.e. TrustManagers, HostnameVerifiers and
SSLSocketFactorys, and analyzed them for presence of
custom code that bypassed SSL verification.

943 applications contained known classes that bypass SSL
verification. On manual analysis of the remaining applica-
tions, we found 680 more applications that contained some
variation of the known classes that bypasses verification.
Thus, 1,623 applications had these implementations of classes
that bypassed SSL verification. We additionally found 182
applications that ignored SSL verification checks but their
class names were obfuscated. In all, 1,805 out of the 3,165
applications contain custom SSL code that bypasses server
certificate and hostname verification.

To see how many of these 1,805 applications actually need
to use custom SSL code, we examined their SSL certificates.
Only 86 applications used self-signed certificates, 3 applica-
tions used certificates signed by a CA not trusted by Android
and 35 applications used expired certificates, which totals
to 124. The remaining 1,681 applications had genuine valid
certificates. They could have created SSL connections using
one of the built-in APIs.

E. Results

Applications that use SSL: From the analysis of the SSL
use in 4,985 closed-source applications obtained from Google
Play Store, we identified 3,302 applications (137 from man-
ual analysis and 3,165 from automated analysis) using SSL

1200	

43	

517	

119	

4	 6	

Analysis	 of	 SSL	 Cer0ficate	 Validity	

Apps	 using	 AC	 with	 trusted	 cer:ficate	

Apps	 using	 AH	 with	 trusted	 cer:ficate	

Apps	 using	 AC	 and	 AH	 with	 trusted	 cer:ficate	

Apps	 using	 AC	 with	 untrusted	 cer:ficate	

Apps	 using	 AH	 with	 untrusted	 cer:ficate	

Apps	 using	 AC	 and	 AH	 with	 untrusted	
cer:ficate	

Fig. 5. Results for the analysis of SSL certificates used on the production
servers of the application with respect to the technique used to bypass SSL
verification i.e. Trust Any Certificate (AC) or Allow Any Hostname (AH)

in non-advertisement code. Out of those 3,302 applications,
1,889 (57.20%) contain additional SSL code that bypasses
verification. Figure 4 shows the breakdown of applications
based on the strategy they use to bypass SSL verification.
39.94% (1,319) of applications only use some variation of a
TrustManager that accepts all certificates (Any Certificate,
AC) without verifying them, whereas 1.43% (47) of applica-
tions only use some variation of a HostnameVerifier that
accepts any hostname (Any Hostname, AH) on the certificate
irrespective of the server identity. Besides these, 15.89%
(523) of applications accepted all certificates and allowed all
hostnames. We can see that very few developers implement
only custom hostname verification that allows any hostname,
whereas a majority of them implement custom certificate
verification that accepts any certificates. This can be attributed
to the fact that the developer does not need to write any
hostname verification code if they do not verify the certificate
itself since the server hostname is verified after the certificate
is verified. The remaining 42.8% of applications use SSL
correctly and hence do not need to use our solutions. However,
using our solutions could help the developers with an easier
way to implement SSL features such as certificate pinning.

Applications that use self-signed or untrusted CA certifi-
cates: Out of the 1,889 applications having custom SSL code
that bypasses verification, only 129 (3.90% of applications us-
ing SSL) applications used self-signed certificates or untrusted
CA certificates. Figure 5 shows the results of SSL certificate
analysis. Only 4 applications using a self-signed certificate on
a production server use an Accept All HostnameVerifier;
119 applications use an Any Certificate TrustManager and
6 applications use both. It is likely that the developers of these
applications added custom SSL code that bypasses verification
to work with the self-signed or untrusted CA certificates.
However, if SSL pinning is enabled as a configuration policy
in the application manifest, developers could mention the
certificates they want to trust in the manifest itself without
having to add custom verification code to the application,
thereby preventing such MITM vulnerabilities.

Applications that use valid SSL certificate but bypass SSL

verification: While the developers of the 129 applications
(using self-signed or untrusted certificates) need to write
custom verification code in order to use those certificates, the
unnecessary presence of custom code that bypasses verification
has left the remaining 1,760 (53.30%) applications vulnerable
to MITM attacks. Figure 5 shows the number of applications
having SSL code that bypasses verification and use valid
certificates on their production servers. 1200 applications use
an Any Certificate TrustManager; 43 applications use an
Accept All HostnameVerifier and 517 applications use
both, despite all applications using valid SSL certificates on
the production servers. Since applications do not need custom
SSL verification code to use valid certificates, the presence of
this vulnerable code can be attributed to the developer adding
that code during debugging and not removing all instances
of that code from the deployed application. If the debug flag
in the manifest is linked with SSL verification, the developer
would not have to worry about adding custom SSL code for
using untrusted CA or self-signed certificates on development
servers.

Linking the debug flag to SSL verification and enabling SSL
pinning as a configuration policy in the application manifest
would be beneficial to at least these 1,889 applications as they
remove the need for the developer to write additional custom
verification code to the application. Our configuration based
solutions could at the least prevent MITM vulnerabilities,
introduced due to custom SSL code that bypasses verification,
in 1,889 applications i.e. 57.20% of the applications using SSL
in non-advertisement code.

V. DISCUSSION

While our solutions involve both linking debugging using
SSL certificates to the debug flag in the application manifest
and enabling SSL pinning as a policy in the manifest, there
could be some confusion if the developer wants to use both the
solutions, for example, use the same self-signed certificate on
test servers and production servers. In this case the developer
would only need to pin the certificate. Since pinning would
make the system treat it as a trusted certificate, the same
certificate could be used for debugging on the development
servers. The developer could also use both techniques to the
same effect.

In Section III we provide a taxonomy of the major causes
why developers add custom SSL verification code to the
application, based on the study of entries related to SSL
in the on-line forum StackOverflow.com. While the causes
we provided are the predominant ones, the taxonomy might
not be exhaustive. We believe that remaining possible causes
constitute a minor percent of applications. There could be
reasons such as insufficient and inconsistent API documen-
tation causing developers to copy-paste code snippets from
on-line forums. It could also be that the complexity of the
built-in APIs drives the novice developer to use ready-made
solutions without considering their consequences. In order to
mitigate the vulnerabilities occurring due to these reasons,

further investigation in this matter requiring co-operation from
the developers is necessary.

VI. RELATED WORK

Fahl et al. [16] perform static analysis on Android applica-
tions to show the widespread misuse of SSL. Concurrent to
our work, follow on work by Fahl et al. [17] suggests solutions
to tackle the problems concerning SSL misuse in Android
applications. Fahl et al. suggested making SSL verification
mandatory for developers; providing two new classes that
replace the default Android trust manager; and implementing
SSL pinning in the application manifest. We believe that
making SSL verification mandatory and adding new classes
for verification are invasive solutions and make customizing
SSL connections even more complex. Our contribution is that a
small change in the application manifest is sufficient to address
the problem of developers having the need to add custom SSL
verification code.

Georgiev et al. [20] have demonstrated how the lack of
uniformity across the industry regarding standards for creating
APIs has lead to a plethora of certificate validation bugs
in commercial softwares and SDKs. They analyze various
libraries and merchant SDKs, used in non-browser softwares
and how incorrect implementation of certificate validation
is leading to vulnerabilities in major software components.
Sounthiraraj et al. [29] use static and dynamic analysis to
enable the automatic, large-scale identification of SSLvul-
nerabilities in Android applications. They identify custom
validation procedures in an application and extract information
from it, which is used along with user interface enumeration
to drive dynamic analysis on emulators.

SSL has been used as the de facto standard for securing
communications over the Web but the current state of SSL
leaves much to be desired for. A lot of research has looked
into the implementation of SSL protocol and the flaws therein.
Moxie Marlinspike has demonstrated how the infrastructure of
SSL can be defeated because of the lack of basic constraint
checking [23] and incorrect parsing of the null characters
in the ”CommonName” field of the certificate [24]. Percoco
et al. [25] showed how fake SSL certificates can be used
in mobile devices due to buggy certificate validation code
present in mobile Web browsers. By contrast, we investigate
malpractices while using SSL in Android applications.

There have been numerous efforts to investigate security
vulnerabilities in the Android ecosystem such as the work by
Porter Felt et al. [18], Enck et al. [13], Grace et al. [21],
[22], Zhou et al. [31], Davi et al. [10], Bugiel et al. [7],
Zhou et al. [1]. These studies show how the permission system
of Android can be abused and how it can be prevented, but
do not include the study of SSL in Android and its abuse.
Our work highlights the vulnerabilities based on the incorrect
use of SSL in Android apps. Since the permissions used by
these apps during connection establishment are legitimate, the
countermeasures provided in these studies would not prevent
or mitigate the threats present due to incorrect use of SSL.

StackOverflow.com

Several studies provide a good overview of the Android
Security Model and its threat model, such as Enck et al. [14],
Vidas et al. [30], Shabatai et al. [28]. In a comprehensive
study on Android application security, Enck et al. [14] mention
finding applications containing socket factories with names
such as TrustAllSSLSocketFactory and AllTrustSSLSocketFac-
tory. They discussed the presence of these socket factories
as bearing a potential for vulnerabilities but could not find
malicious use for them (cf. [14], Finding 13). Our work
demonstrates the presence of SSL related vulnerabilities in
Android applications and proposes solutions for the same.

VII. CONCLUSION

We investigated Man-in-the-Middle SSL vulnerabilities in
Android applications introduced because developers needed
to add custom SSL code that bypasses verification in the
application. We identified insufficient Android API support for
commonly used SSL features such as pinning, as the driving
reason for developers needing to write additional verification
code for customizing SSL connections. We proposed that
customization of SSL verification should be stated in an
application’s package manifest and provided two suggestions:
1) Linking SSL verification with the debug flag; and 2)
Enabling SSL pinning in the application manifest. We studied
a total of 13,240 applications from the F-Droid repository
and official Google Play Store and evaluated the usefulness
of our suggestions on a corpus of 3,302 applications that
use SSL in non-advertisement code. We demonstrated that a
total of 1,889 (57.20%) of 3,302 applications using SSL in
non-advertisement code would benefit from implementing our
solutions. Based on our findings, we observe that using appli-
cation package configuration policies is an effective approach
to mitigating Android application SSL vulnerabilities.

ACKNOWLEDGEMENTS

This work was supported by NSF grant CNS-1222680.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. We would also like to
thank Adwait Nadkarni, Al Gorski, Ashwin Shashidharan, and
the anonymous reviewers for their valuable feedback during
the writing of this paper.

REFERENCES

[1] Detecting repackaged smartphone applications in third-party android
marketplaces. In Proceedings of the second ACM conference on Data
and Application Security and Privacy, CODASPY ’12, pages 317–326,
New York, NY, USA, 2012. ACM.

[2] Allow All Hostname Verifier. http://developer.android.com/reference/
org/apache/http/conn/ssl/AllowAllHostnameVerifier.html.

[3] Android Platform Versions. http://developer.android.com/about/
dashboards/index.html.

[4] Z. Anthony Desnos. Androguard: Reverse engineering, Malware analysis
of Android applications. https://code.google.com/p/androguard/.

[5] AppBrain. Stats for Android Ad Networks, visited on March 2013.
http://www.appbrain.com/stats/libraries/ad.

[6] SDK Tools. https://developer.android.com/tools/sdk/tools-notes.html.
[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and

B. Shastry. Towards taming privilege-escalation attacks on android. In
19th Annual Network & Distributed System Security Symposium (NDSS),
volume 17, pages 18–25, 2012.

[8] Comodo report of Incident. http://www.comodo.com/Comodo-Fraud-
Incident-2011-03-23.html.

[9] Dare: Dalvik Retargeting. http://siis.cse.psu.edu/dare/index.html.
[10] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege

escalation attacks on android. In Information Security, pages 346–360.
Springer, 2011.

[11] Leftover Debug Code. http://cwe.mitre.org/data/definitions/489.html.
[12] A Post Mortem on the Iranian DigiNotar Attack. https://www.eff.org/

deeplinks/2011/09/post-mortem-iranian-diginotar-attack.
[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX conference on
Security, SEC’11, Berkeley, CA, USA, 2011. USENIX Association.

[15] FDroid - Android FOSS Repository. http://f-droid.org.
[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and

M. Smith. Why eve and mallory love android: an analysis of android ssl
(in)security. In Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, New York, NY, USA, 2012.

[17] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith. Revisiting ssl
development in an appified world. In Proceedings of the 2013 ACM
conference on Computer and communications security, CCS ’13, New
York, NY, USA, 2013. ACM.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[19] Features of GeoDNS, Zerigo Solutions. http://www.zerigo.com/
managed-dns/features?f=geodns-gslb.

[20] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: validating ssl
certificates in non-browser software. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages
38–49, New York, NY, USA, 2012. ACM.

[21] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of
capability leaks in stock android smartphones. In Proceedings of the
19th Annual Symposium on Network and Distributed System Security,
2012.

[22] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks, WISEC ’12, New York, NY, USA, 2012. ACM.

[23] M. Marlinspike. Internet Explorer SSL Vulnerability. http://www.
thoughtcrime.org/ie-ssl-chain.txt.

[24] M. Marlinspike. Null prefix attacks against ssl/tls certificates. Black-
hat’09.

[25] N. Percoco and P. Kehrer. Getting sslizzard. Defcon 2011, 2011.
[26] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000.
[27] P. Saint-Andre and J. Hodges. Representation and Verification of

Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Trans-
port Layer Security (TLS). RFC 6125 (Proposed Standard), Mar. 2011.

[28] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.
Google android: A comprehensive security assessment. Security &
Privacy, IEEE, 8(2):35–44, 2010.

[29] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan. Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps. In 21st Annual Network & Distributed
System Security Symposium (NDSS), 2014.

[30] T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us:
A survey of current android attacks. In Proceedings of the 5th USENIX
conference on Offensive technologies. USENIX Association, 2011.

[31] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-
stealing smartphone applications (on android). In Proceedings of
the 4th international conference on Trust and trustworthy computing,
TRUST’11, pages 93–107, Berlin, Heidelberg, 2011. Springer-Verlag.

 http://developer.android.com/reference/org/apache/http/conn/ssl/AllowAll HostnameVerifier.html
 http://developer.android.com/reference/org/apache/http/conn/ssl/AllowAll HostnameVerifier.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://code.google.com/p/androguard/
 http://www.appbrain.com/stats/libraries/ad
 https://developer.android.com/tools/sdk/tools-notes.html
 http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
 http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://siis.cse.psu.edu/dare/index.html
 http://cwe.mitre.org/data/definitions/489.html
 https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-atta ck
 https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-atta ck
http://f-droid.org
http://www.zerigo.com/managed-dns/features?f=geodns-gslb
http://www.zerigo.com/managed-dns/features?f=geodns-gslb
http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/ie-ssl-chain.txt

	Introduction
	Background and Motivation
	Background
	Motivation

	Solution
	Linking application debugging with SSL verification
	Allowing SSL Pinning as an Application Manifest Policy

	Evaluation
	Experiment Methodology
	Analysis of Open-source Applications
	Patterns for insecure SSL verification
	Analysis of Applications from Google Play Store
	Manual Analysis of 200 applications
	Analysis of SSL verification code

	Results

	Discussion
	Related Work
	Conclusion
	References

